The X20 Programmable logic controller’s system can handle all tasks large or small. This system is extremely compact and highly modular because of its unique "slice" system. Perfectly integrated fieldbus connections provide the highest degree of freedom for decentralized machine and system concepts.

Used in conjunction with ABB Servo drives gives a powerful and cost-effective solution for many application types.

Introduction

This application note provides and details an example Automation Studio project that includes library functions to allow a B&R X20 PLC to control and monitor ABB MicroFlex e190 and/or MotiFlex e180 AC servo drives via Ethernet Powerlink. The following application note covers the basic configuration of a B&R X20 and ABB Motion drives system and some associated features. Before the configuration we must ensure that we have all the pre-requisites for this.

To control an ABB motion drive as an EPL/SDC slave you will need the following hardware/software ...

- PPC/PLC with Ethernet Powerlink support (e.g. X20CP1382)
- Software license for Automation Studio
- Automation Studio 4.8. (or later)
- Acp10_MC (PLCopen Motion Control function blocks)
- Acp10sdc (Smart Device Controller)
- AsEPL (Used to access SDO objects)

If any files, Automation Studio versions or further support documentation are needed for the B&R PLC you can get these from their support website: Downloads | B&R Industrial Automation (br-automation.com)

Note: It's possible that you will experience issues downloading certain components from the software when on the corporate network. If there are problems, please try restarting your PC and try different networks.
Getting Started

Activating your licence

Before you can use your Automation Studio you must activate your licence (which can be purchased from your local B&R salespoint). To do so follow the below steps:

1. Open Automation Studio and navigate to Help > About
2. Select Relicense
3. Select Type: Automation Studio
4. Enter the code you have been given and then Press Activate

Activation should take a few minutes to complete. After its finish now be complete. Restart AS.
Navigation
To aide easy navigation and descriptions used within this app note the key view tabs are pointed out below.
When you open AS you will see a standard UI layout with several key areas as pointed out below:

Within each area there are tabs to change view or get different detail. The tabs in the Hardware area are pointed out below.
Logical View: Manage all the PLC program, library

Configuration View: Interface between PLC program and physical devices

Physical View: List all the physical devices
Create AS Program and PLC Hardware Configuration

Firstly, we must create the hardware layer required to run the system. Complete the following steps to achieve this.

Create a new AS Program

File > New Project

Enter name and Storage Location > Next
Select ‘Define a new Hardware Configuration’ > next

Select the CPU type to match your CPU

After you click “Finish” it will add the CPU to your project.

Note: If your AS version is not up to date you may get an error here saying there is no runtime installed for this PLC. If so ensure that the license is installed and try to automatically update by going to Toolbar > Tools > Upgrade and selecting the files that are missing. If this doesn’t work, you can get the files directly from the website.

Now we have selected the CPU we will use we can proceed with configuration of the PLC.
How to connect with PLC

Next, we must connect to the PLC. To do this go to Online > Settings

This will navigate to the ‘Online Settings’ window. Here you can select the Ethernet tab. Selected TCPIP, ensure the cable is connected, click the browse button and refresh.

After a successful scan the PLC will appear in the Target Window.

Note: Your firewall will need to be turned off for this to work. If this is not possible please see the next section for more detail. Default IP address is 192.168.0.100.
To test the connection to the PLC right click on the connection you are using and click connect.

You will notice in the bottom right hand corner of the screen the status of the connection will change from OFFLINE to RUN and will also show the CPU type and further detail.

If the PLC is detected the next step can be skipped.

What to do if the PLC cannot be detected.
If your PLC cannot be detected, then you can force it to be recognized if you know the IP address of the PLC. To do this in the Online Settings Window Create a new TCPIP Connection and name it appropriately.

Next add the Destination IP Address of the PLC.

As before right click on the connection and select ‘Connect’ to test the connection.
What to do if you cannot force a connection?
The next steps vary dependent on the CPU type you use. You can select the relevant chapter based to the part code.

Guidance for X20 CPU (CF card), CP1583, CP1584, CP1585, and CP1586
Create a new AS program and set the IP address manually by going to Physical view > ‘ETH’ right clicking and selecting Configuration.

In the CPU configuration window change the Mode to enter IP address manually

Then type the IP address of the CPU below

Take out the CF card from PLC and plug it into your PC.

Select offline install AS program to CF card.
Browse to the destination where the card is on your PC

Create the file system and Reinstall Card in PLC then Re-boot it

Then as mentioned earlier in 'What to do if the PLC cannot be detected' you can force an IP address into the destination IP and connect to the PLC with the IP you set.

Guidance for X20 Compact CPU, integrated hard disk, CP1381, CP1382

You can try to use the Serial port to scan the PLC hardware, and then change the IP address using this connection and download it to PLC.

If this fails, it’s possible some IT issues could be causing the problem so to try a different PC to eliminate this as a possible issue
Powerlink Configuration
To configure the Powerlink settings please follow the steps below.
Select the Physical view > PLC and right click > Select Configuration.

From here you can set the parameters of the system.
It is recommended that the controller be synchronized to the POWERLINK network. To do so, the source of the cycle timer must be set. Other settings that define PLK operation can also be checked here.

Click save when edits are complete.
Next go back to the Physical View, right click on the PLC, and select ‘Configuration’

In the Configuration Window navigate to the Timing branch then System timer. The interface should be set to ‘EPL/ X2X Interface’
The Interface should be set to the correct port which in this case is the IF3 port. Ensure ‘Task class idle time’ is set correctly to the cycle time of the CPU. This will also set the Cycle time of the System Timer. This should match the settings that were used earlier. In the below example 2000us

Click save when edits are complete
How to import the ABB servo drive files into AS

Now the PLC hardware, Ethernet and Powerlink communications are configured it’s possible to proceed into the configuration of the drives. Before we can add these to our project, we must ensure the latest files are installed into AS. The below steps How to import ABB servo drive into AS are below

How to get the correct .xdd file

It’s always best to get the .xdd file version from Mint Workbench directly, this way we can be sure its correct and up to date.

Firstly, you must ensure the ABB Servo Motion drive is in EPL mode. To do this set the rotary switches to a value greater than ‘0.0’ but less than ‘F.0’ and then power cycle.

Now you can connect to your ABB Servo Motion drive with your PC and open a Mint workbench session. Navigate to the Ethernet POWERLINK section in the bottom left corner.

![Ethernet POWERLINK](image)

There are two versions of xdd file available, one that can be used for legacy ABB motion controllers (top one) and one for use with Automation Studio (Bottom one). Upload the special Automation Studio .xdd file from the servo drive.

![View basic information about Ethernet POWERLINK](image)

Click ‘Save as.’ and store it in a sensible location for later use.
Import .XDD file into AS

Next, we need to import this file into AS. To do this open your AS session and select Tools > Manage 3rd party devices.

Note: In previous versions this option was called ‘Import Fieldbus devices’

Next click ‘Import Fieldbus devices’.

Navigate to where the .xdd file created earlier is stored, select it and click ‘Open’.

After a while you will get a warning message, details will be shown in the error window.

These can be ignored. Click Yes to continue.
Add ABB servo drive into AS program

Now we have added the capability we can start to add the drive(s) to the program. To do this we must drag items from the Toolbox to in the PLK section of the hardware view.

To select the correct items first you should select PLK in the Physical view (this will filter the list)
Then filter the Toolbox view You can select ‘Drive’ or ‘Motion’ depending on your AS version.

Note: Ensure that View > Toolbox is ticked to ensure its visible

Then drag the device over to the PLK section of the Physical View device tree and drop it

It will now appear below the PLK section, keep adding drives until the configuration is complete.
Edit the device node number as required in the physical view

You can view the topological view of the connections with the “System Designer”. To access this in the toolbar select Open > System Designer
Here you can see the view that gives us showing physical devices and expected connections.

If you need to update the version of an xdd in a project
This can be done by right click on the object in the Physical view and Click Replace Hardware Module. This will automatically update the item to the latest.

You will then need to delete any unassigned modules that have been updated

Powerlink parameterisation for the ABB servo drives
Now we have set up the physical connections of the system we must set up the Powerlink parameters to suit. To do this for each device we must open the configuration view

Note: If you plan to simulate the code you will need to turn Module Supervised = off. If you don’t then you will get errors when simulating.

The default settings for these parameters are normally enough but can be adjusted as required.
IO Mapping and Configuration
After installing Powerlink field bus device through the XDD file, all the PDO/SDO mappings are included. We must select which of these objects are used to communicate with the drives.

PDO and SDO Access
Along with the hardware settings to edit the I/O configuration, we should first right click on the PLK device and select Configuration.

As with other DS 402 devices, the methods of communication are PDO and SDO. The lists of objects for these can be accessed as indicated below.

Commonly used values include 6040, 6041, 6060, 6064
PDO Mapping

All standard and drive specific PDO objects which need to be accessed during cyclic transmission are accessed via the ‘Channels’ section of the tree. As default no PDO’s are mapped (‘cyclic transmission’ = None), so you must find and map them as needed and also define the data from direction by setting the property for ‘cyclic transmission’ designation to be READ or WRITE.

Once relevant mappings are complete (Objects 6040, 6041, 6060, 6064 and 607A) Save the changes. After setting up in the “Channels”, we must then go to PDO mapping list by right clicking on the Drive in Physical view and selecting in the “I/O mapping” page as below:

We must then map across the DS 402 objects to the Sdc control structure process variable, to do this click on the items in the Process Variable column one by one and click the ‘…’ next pick the correct item from the gSdcAxisCtrl structure as shown below. Each item has a number after it eg [0] this refers to the item in the sdc, 0 is e190 (1st item), 1 is e180 (2nd item)
SDO Mapping

All standard and drive specific SDO objects here are transmitted to the device at **startup** and accessed via the ‘device specific parameters’ section of the tree. As default the SDO’s are mapped but have no initialization value. So, you must find and add these values as needed.

All these “device specific parameters (SDO)” are defined by .xdd file and related to drive parameters. The “Init value” here is transmitted to the drive at startup so that to modify the parameter table of E180/ E190. You can also use a function to read/ write these parameters (SDO) in your PLC program as soon as you need.

Note: If any start up SDO’s are needed, then the Parameter for immediate apply should also be set to true for these to take effect. This object defines if the settings are moved from the objects in the parameters inside the drive.
Insert SDC Program and Motion Control Libraries
Before we can start programming, we must ensure that the correct libraries and utilities are installed.

Import Motion Control Libraries
To do this we must first switch the view to ‘Logical view’ and highlight the ‘Libraries’ folder and then from within the Toolbox ensure the Library selection is made.

Next drag the B&R Libraries across and place it in the Libraries folder. This is a collection of libraries so the next view we are given an option to select which of the sub libraries we want to import.

Here we should select ‘Acp10_MC’, ‘AsEPL’ and ‘Acp10sdc’ then Finish. These will now all be available under the heading libraries.
Import SDC program (and / or EasySpeed)

'StepServo' is a standard X20 PLC program used to control third-party servo drive (via the SDC). EasySpeed is an alternative program used for control of the servo in CSV mode. These programs are included in a zip file along with this application note in the folder ‘Sub Programs’. They should be extracted to your PC then you can drag the folders from your PC directly into the Logical view and it will be added.

This program has many sub parts. As default, the ‘SdcCtrl’ > ‘GlobalSdcCtrl.var’ includes 4 axes with addresses 12, 11 and 12.

If your hardware configuration differs from this, you should change these values. The example below shows 2 axes configured with node addresses 3 and 4.
NC Axis Configuration and Mapping
Next, we must map the SDC control to the axis configuration to ensure all the discrete items we have configured can be connected.

Insert SDC interface
To do this change the view to the ‘configuration’ view, then Find [CPU TYPE] > Motion > ‘Acp10cfg.ncc’ and double click on it. This will open the configuration in the main view.
Right click in this area and select ‘Insert interface’.
Select ‘Smart Device Controller (SDC)’ on ‘SDC_IF1’

Once these steps are finished you will see a now Smart Device Interface has been added
Global Variables

For each axis a variable list is needed to interact with the Axis’ IO. We must create these and name them according to the axis reference.

To do this navigate to Logical view and find the list ‘Global.var’

Double click on it. This will open the Variable declaration view

From here you can click on the Add Variable Icon which will create a new row. From here you should add information like below:

<table>
<thead>
<tr>
<th>Name</th>
<th>gAxis01</th>
<th>Axis variable name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>ACP10AXIS_typ</td>
<td>Special datatype for the Axis Structure</td>
</tr>
<tr>
<td>Replicable</td>
<td>Tick</td>
<td></td>
</tr>
</tbody>
</table>

Once finished you should have a view like below:

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Constant</th>
<th>Replicable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>gAxis01</td>
<td>ACP10AXIS_typ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gAxis02</td>
<td>ACP10AXIS_typ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Repeat the steps above creating an item for every axis.
NC mapping

Next, we must add an NC mapping object to connect the Axis Control Program, the SDC Program and the Actual hardware Axis together. You cannot edit the preexisting NC mapping object “Acp10map.ncm” so you must add a new one from the toolbox into the same area to create a new editable version “Acp10map1.ncm”. To do this first select the Configuration view and look for the object called ‘ACP10 Mapping Table’ then drag it into the Motion folder.

![Configuration View](image1)

Now we can double click on the new mapping table to open the Editor and start to add NC Objects to it. To do so right click in the mapping editor and selected ‘Add NC Object’

![Add NC Object](image2)

Add mappings for all the axes in your project using the table below for Guidance...

<table>
<thead>
<tr>
<th>NC Object Name</th>
<th>PLC Address</th>
<th>NC Object Type</th>
<th>NC INIT Parameter</th>
<th>ACOPOS Parameter</th>
<th>Additional Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>gAxis01</td>
<td>SDC_IF1ST1</td>
<td>ncAXIS</td>
<td>intAxis</td>
<td>ParaTable</td>
<td>Connect SDC axis with actual axis</td>
</tr>
<tr>
<td>Axis name defined in Axis_Control_Program</td>
<td>Axis name defined in SDC interface</td>
<td>Defines data format structure</td>
<td>Initial parameter table of NC Axis. The NC Initialization Parameter Table contains the basic parameters for the NC Manager initialization axis, which is made when the controller is started.</td>
<td>Parameters (Special parameters, non-basic parameters) that should be transferred when the drive is initialized can be entered in an ACOPOS parameter table.</td>
<td></td>
</tr>
</tbody>
</table>

When your finished you should end up with all the axes added with the correct references

![Mapping Editor](image3)
Motion Control Program
Now the mappings have been added we can start the parameter configuration.

Motion Parameter Configuration
There are two parameter tables, ‘InitAxis’ and ‘Para Table’ which can be viewed from the Logical view. You can define new parameter tables so that to assign to different axis or use the common parameters for all the SDC controlled axes.

If you open the ‘InitAxis’ parameter table the structure of the sub folders shows the different groups of mapping object. Controller has the PID settings in the control loop and message has the diagnostic data stored in it.

In the ‘ParaTable’ we can set the scaling and encoder parameters

Scale for the encoder is in ‘pulses per rev’ not ‘counts per rev’ so ensure the SCALE_ENCOD_INCR should be equal to Mint Keyword ‘EncoderResolution(0)’ e.g. for eSM motors with SmartINC encoders, 131072/4 = 32768
Import Axis Control Sample Program
Now we must import a “Single Axis Control” program from motion examples. This problem has the standard PLCopen style command to control the servo drive.
To do this in the Logical view, go to the Toolbox and Select ‘samples’ and ‘ACP10/ ARNC0’ to filter the view, then find Motion samples and drag into the project...
Next select which sub elements to import. Navigate to and find ‘LibACP10MC_SingleAx_ST.zip’ and click Finish.
Now your project will have the SDC Program and the Single Axis Control Program within it.

Assign PLC program to CPU Cyclic Communication

A PLC program (SDC/Axis Control) needs to be assigned to a specific CPU Cyclic to be run. To do this in ‘Physical’ View double click on the CPU to open the ‘CPU Software’ view.

Find task Cyclic #1 right click and select Properties. This will then open the CPUs configuration.

In the area for ‘Cyclic #1’, set Duration to the ‘EPL cycle time’, and the tolerance time to ‘0’ and then build the configuration to accept the settings. Then save the configuration.

Next, we must add the ‘sdcCtrl’ program to this task, to do so right click in the task ‘Cyclic #1’ > ‘Add Object’
Then navigate to ‘[Project] > StepServo > SdcCtrl > SdcCtrl program’ click okay.

The SDC program is now assigned to this task. Repeat the above step for additional axes.

Next, we must define another Cyclic task for the lower speed control programs. Using the same method as above, edit the properties of the task (e.g. Cyclic #4) to be suitable for the requirements of the code. In the below example it was edited to be a 100ms cyclic task. The control programs must be added to this slow speed task, this is any program sections that don’t require real time updates. To do this right click on the task and select ‘Add Object’. Navigate to ‘[Project] > xxxx program’ (Where xxxx is the program name) click okay.

In the example above you can see we just add the Basic program for simple control.

Now the basic programming is complete, this is enough to use basic functionality forcing it through the program control functions. At the stage the user could either test the basic functionality or add further programming of their own.
Download AS program into PLC

There are two methods to download the program, “On-line Transfer” or “Offline Installation”

First, it’s a good idea to Clean the configuration so the program is compiled from scratch. To do this go to Toolbar > Project > Clean Configuration.

Next, go to Toolbar > Project > Project Installation > and select either:
- ‘Transfer to Target’ to download current AS program into PLC (PLC must be online)

OR
- ‘Offline installation’ to load the project onto an SD card which can then be loaded onto the PLC

Note: You will need to connect to the PLC first before you can select ‘Transfer to Target’

Next you will get a pop up Window and from here you can select ‘Transfer’. You’ll get a pop up warning you that the PLC will be formatted if you continue. Select ‘Yes’

Once Complete you will get a view like below
Motion Control Operator Interface

Now the program is downloaded and running we can test it.

Standard NC Axis ‘Test’ Interface

The program includes a standard servo drive test interface, so that you can set motion parameter and verify a simple motion and collect some motion plots if needed.

To test the interface first ensure the PLC is online and the CPU is in RUN

Next Switch to the Configuration view and find: [Config] > [CPU] > Motion > Acp10map1.ncm

This will open a view like below giving 4 windows for easy analysis of the axis’ operation.
Watch and Force Variables in PLC program

Now we can debug and control our program watching and forcing the variables of the **basic program**, to control or monitor the drive.

To do this open the Logical view and find [Project name] > LibACP10MC_SingleAx_ST > Basic > basicCyclic.st

Double click to open this ‘Structured text’ program.

Click the “Monitor” tool
This will open a Watch Window, here you can insert variables by right clicking in the Watch area and Select Insert Variable…

Add the variables you want to monitor one by one by selecting them and clicking Add.
Now you can watch and force the **variable of the SDC program**, to control or monitor the drive.

To do this open the Logical view and find [Project name] > StepServo > SdcCtrl > SdcCtrl.c

Double click to open this ‘Structured text’ program.

The Watch Window will still be open from earlier, as before right click and insert all the wanted parameters.

Note: All the motion related parameters and status of all the SDC controlled axes can be found here.

You can now use this list to watch and force variables as required.
Troubleshooting and Diagnosis

It's commonly needed to do a trace of the motion characteristics of a system. As it's controlled by the PLC, this is the best place to trace the operation.

Trace

There are two ways of turning on “Trace” function in AS: **NC Axis Trace** and **Program Variables Trace**

NC Axis Trace

To use this open the Configuration view and find [Project name] > [CPU type] > Motion > Acp10map1.ncm and double click on it. This will open the Mapping Editor. From here, right-click on the NC Object and select Open > Trace.

This will open the trace view, Right-click on the trace you want to use to Monitor a variable and select Configuration.

You can select which NC Object we want to view, select the variable, and Click Apply.

Check the Timing configuration is acceptable then click ‘OK’

Note: NC Axis trace has the following limitations: Maximum points: 4096, Minimum sample rate: 1ms
Program Variables Trace
To use this open the Logical view and find [Project name] > LibACP10MC_SingleAx_ST > Basic and right click
Then select Open > Trace
From here, right click on the NC Object and select Open > Trace

This will open the trace for the program you right clicked on.
Next press the icon to Insert Trace then right click on it and select Properties
From here you can configure the trace buffer and set a trigger condition if one is needed.

Note: Program Variables Trace: Limitations Maximum points: 32767, Minimum sample rate: The same as system tick(400us)

Next, we must insert variables into this trace as required.

Now we have a fully configured chart we can use the controls at the top to stop start and manipulate it.
System Diagnostic Manager (SDM)

If further debugging is needed, it’s advisable to use the functions made available by the SDM. The SDM is a diagnostic webpage built into the CPU which will give information on the current running state of the PLC. To configure this, we must turn on the SDM port by going to Physical View > [CPU] > Right click > Configuration

Then in the configuration window go to System Diagnostics > Activate System Diagnostics manager (SDM) and ensure its set to ‘on’ then connect to the PLC and put it in Run mode.

Now we can connect to the CPU either simulated or real. For a simulated PLC ‘ARsim’ the IP address is: http://127.0.0.1/SDM
For real CPU, just input the respective IP address of the CPU, for example: http://192.168.0.100/SDM

Note: SDM service also consumes CPU resource so its best to only turn it on when necessary
Logger

You can use the logger function to check the CPU events and errors. If the CPU is stuck in “Service Mode” or not running correctly, you can check what is happening here. To access the Logger, go to Toolbar > Open > Logger

This will then open the Logger window where you can see all errors and Warnings both active and historical.

Note: If no hardware is connected, and you have not turned the supervision off, then the CPU would run into “Service Mode”
Profiler

If your program is running but you want to check how its running you can use the profiler. Here you can check the CPU load and cyclic running.
To access it go to the Toolbar > Open > Profiler.

This will then Open the Profiler view which will give and active view of all the CPU cycle times, CPU loading and so on.
Additional Programs and Files

Included with this application note there are several programs which include the examples are outlined below.

Example 1 File name: AN270_BnR_1Ax CSP
Functions: (SDC Control, 1 Axis, e190, Address = 3, Axis = 1)
Description: Simple Single axis configuration

Example 2 File name: AN270_BnR_2Ax CSP
Functions: (SDC Control, 2 Axis, e190, [Address = 3, Axis = 1] and e180 [Address = 4, Axis = 2])
Description: Dual Axis configuration with additional Function Block examples for CAM and Gear

Example 3 File name: AN270_BnR_2Ax CSV
Functions: (SDC Control, 2 Axis, e190, [Address = 3, Axis = 1] and e180 [Address = 4, Axis = 2])
Description: Dual Axis configuration showing structures needed for CSV control

These programs can be loaded to test and learn more about the programs and structures used to realize motion with B&R X20 PLC’s

Please see also the below app notes for more information on B&R and SDC.

- AN00275 - B&R SDC using the Touchprobe function, for further information on SDC functions
- AN00265 - Generic Drive Interface - B&R PLC with Modbus (GDI)
- AN00264 - Generic Drive Interface - B&R PLC with EPL (GDI)

Contact us

For more information please contact your local ABB representative or one of the following:

new.abb.com/drives/low-voltage-ac/motion
new.abb.com/drives
new.abb.com/channel-partners
new.abb.com/plc

© Copyright 2020 ABB. All rights reserved.
Specifications subject to change without notice.