CoriolisMaster FCB330, FCB350 Caudalímetro Másico Coriolis

CoriolisMaster FCB330, FCB350 Caudalímetro Másico Coriolis

Manual de instrucciones OI/FCB300-ES

Rev. B

Fecha de edición: 08.2012

Traducción de las instrucciones originales

Fabricante ABB Automation Products GmbH Process Automation

Dransfelder Str. 2 37079 Göttingen Germany

Tel: +49 551 905-534 Fax: +49 551 905-555

Customer Center Service

Phone.: +49 180 5 222 580 Fax: +49 621 381 931-29031 automation.service@de.abb.com

© Copyright 2012 by ABB

Modificaciones reservadas

Este documento está protegido por derechos de autor. Debe ayudar al usuario a utilizar el equipo con seguridad y eficiencia. Está prohibido copiar o reproducir el contenido en parte o íntegramente, sin previa autorización del titular.

Contenido

Cc	ontenio	do		4.6	Posiciones de montaje19
1	Segurio	dad6		4.6.1	Instalación en posición vertical, en una tubería ascensional
	1.1	Informaciones generales e indicaciones para la		4.6.2	Instalación en posición vertical, en una tubería descendente
	1.2	lectura		4.6.3	Instalación en posición horizontal, para
	1.3	Uso contrario al fin previsto		4.0.0	la medida de líquidos
	1.4	Grupos destinatarios y cualificaciones		4.6.4	Instalación en posición horizontal, para
	1.5	Suministro de garantía		4.0.4	la medida de gases
	1.6	Etiquetas y símbolos		4.6.5	Puntos de montaje problemáticos para
	1.6.1	Símbolos de seguridad / peligro, símbolos de		4.0.0	la medida de líquidos20
	1.0.1	información		4.6.6	Puntos de montaje problemáticos para
	1.6.2	Placa de características		1.0.0	la medida de gases21
	1.7	Instrucciones de seguridad para el transporte 8		4.6.7	Montaje cerca de bombas
	1.8	Instrucciones de seguridad para el montaje 8		4.6.8	Ajuste del cero
	1.9	Instrucciones de seguridad para la instalación		4.6.9	Instalación en función de la temperatura
	1.0	eléctrica			del fluido
	1.10	Instrucciones de seguridad relativas al		4.6.10	Instalación en caso de uso de la opción TE1
	1110	funcionamiento			"Longitud ampliada de la torre"
	1.11	Valores técnicos límite		4.6.11	Notas sobre la conformidad EHEDG22
	1.12	Fluidos permitidos			
	1.13	Instrucciones de seguridad para trabajos de	5	Conexio	ones eléctricas23
		inspección y mantenimiento		5.1	Instrucciones para conectar la alimentación
	1.14	Devolución de aparatos			eléctrica23
	1.15	Sistema de gestión integrado10		5.2	Indicaciones para el cableado
	1.16	Eliminación de residuos		5.3	Diseño compacto24
	1.16.1	Información sobre la directiva WEEE 2002/96/CE		5.4	Diseño remoto
		(residuos de aparatos eléctricos y electrónicos)		5.4.1	Especificación del cable25
		(Waste Electrical and Electronic Equipment) 10		5.4.2	Colocación del cable de señal25
	1.16.2	Directiva ROHS 2002/95/CE		5.4.3	Conexión del cable de señal25
				5.5	Comunicación digital26
2	Diseño	y función11		5.5.1	Protocolo HART26
	2.1	Generalidades11		5.6	Esquemas de conexión27
	2.2	Principio de medición11		5.6.1	Conexión a equipos periféricos - Modelos de
	2.3	Versiones del aparato			transmisor
	2.3.1	Cuadro sinóptico del aparato ATEX14		5.6.2	Ejemplos de conexión con periféricos28
	2.3.2	Cuadro sinóptico del aparato cFMus15		5.6.3	Conexión del transmisor al sensor de caudal 29
				5.6.4	Conexión del transmisor al sensor de caudal
3	Transp	orte16			en Zona 1 / Div. 130
	3.1	Controles			
	3.2	Generalidades	6		en marcha31
				6.1	Controles antes de la puesta en funcionamiento 31
4		e16		6.2	Conectar la alimentación de corriente31
	4.1	Generalidades		6.2.1	Medidas de control después de conectar la
	4.2	Sensor de caudal16			alimentación de corriente31
	4.3	Transmisor		6.3	Ajustes básicos
	4.3.1	Transmisor de diseño remoto (opción F1 o F2) 17		6.4	Configuración de la salida de impulsos32
	4.3.2	Transmisor de diseño remoto (opción R1 o R2) 17		6.5	Interruptor de protección contra
	4.4	Orientación de la caja del transmisor y			modificaciones no autorizadas32
		del indicador LCD		6.6	Instrucciones para el funcionamiento seguro en
	4.4.1	Caja del transmisor			zonas potencialmente explosivas (ATEX)33
	4.4.2	Indicador LCD		6.6.1	Controles 33
	4.5	Instrucciones para el montaje		6.6.2	Circuitos eléctricos de salida
	4.5.1	Requisitos de montaje / instrucciones de		6.6.3	Contacto NAMUR
		planificación		6.6.4	Entradas de cables
	4.5.2	Soportes 19		6.6.5	Aislamiento del sensor de caudal
	4.5.3	Dispositivos de cierre		6.6.6	Uso en la zona 2, con la clase de protección
	4.5.4	Tramos de entrada		0.07	"a prueba de vapor" (nR)
	4.5.5	Modelos de diseño remoto		6.6.7	Cambio de tipo de protección35
	4.5.6	Pérdida de presión19			

	6.7	Instrucciones para el funcionamiento seguro e			9.4.1	Cambio	70
		zonas potencialmente explosivas (cFMus)					
	6.7.1	Controles	36	10	Datos to	écnicos - Sensor de caudal	
	6.7.2	Entradas de cables	36		10.1	Diseños	71
	6.7.3	Conexión eléctrica	36		10.2	Diámetro nominal y rango de medida	71
	6.7.4	Process sealing	37		10.2.1	Rango de caudal recomendado	71
	6.7.5	Cambio de tipo de protección	38		10.3	Precisión	71
					10.3.1	Condiciones de referencia	71
7	Config	uración, parametración	39		10.3.2	Precisión de medida	71
	7.1	Manejo			10.3.3	Estabilidad del cero	
	7.1.1	Navegación por menús			10.3.4	Influencia de la temperatura del fluido	
	7.2	Niveles del menú			10.3.5	Influencia de la presión de servicio	
	7.2.1	Indicador de procesos			10.4	Datos técnicos	
	7.2.2	Cambio al nivel de configuración	10		10.4.1	Pérdida de presión	
	1.2.2	(parametrización)	40		10.4.2	Rango de viscosidad	
	7.2.3	Selección y modificación de parámetros			10.4.2	Límites de temperatura °C (°F)	
	7.2.3		41		10.4.4	Conexiones a proceso	
	1.3	Sinopsis de los parámetros en el nivel de	40			Presión nominal	
	7 1	configuración			10.4.5		/ 3
	7.4	Descripción de los parámetros			10.4.6	Carcasa como dispositivo de protección	7.0
	7.4.1	Menú: *Prog. level				(opcional)	
	7.4.2	Menú: Language			10.4.7	Directiva de equipos apresión	
	7.4.3	Menú: Mode of operation			10.4.8	Notas sobre la conformidad EHEDG	
	7.4.4	Menú: Concentration			10.4.9	Materiales para el transmisor	
	7.4.5	Menú: Unit	49		10.4.10	Material del sensor de caudal	74
	7.4.6	Menú: Flowmeter primary	50		10.4.11	Cargas del material de las conexiones	
	7.4.7	Menú: QmMax	50			a proceso	74
	7.4.8	Menú: Damping	50		10.4.12	Curvas de carga del material de los aparatos	
	7.4.9	Menú: Low cutoff setting	50			bridados	74
	7.4.10	Menú: Field optimization	51				
	7.4.11	Menú: System Zero adj	51	11	Datos to	écnicos - Transmisor	75
	7.4.12	Menú: Alarm	52		11.1	Generalidades	75
	7.4.13	Menú: Display	53		11.2	Datos técnicos	75
	7.4.14	Menú: Totalizer			11.2.1	Rango de medida	75
	7.4.15	Menú: Pulse Output			11.2.2	Modo de protección	
	7.4.16	Menú: Current output 1			11.2.3	Conexión eléctrica	
	7.4.17	Menú: Current output 2			11.2.4	Alimentación eléctrica	
	7.4.18	Menú: Switch contacts			11.2.5	Tiempo de reacción	
	7.4.19	Menú: Label			11.2.6	Temperatura ambiente	
	7.4.19	Menú: Interface			11.2.7	Versión de caja	
	7.4.20	Menú: Function test			11.2.8	Medida de caudal directo / inverso	
	7.4.22	Menú: Status			11.2.9	Indicador LCD	
	7.4.23	Menú: Versión del software	61			Mando	
	7.5	Medida de concentraciones DensiMass				Seguridad de datos	
		(sólo disponible para FCB350)			11.3	Especificaciones eléctricas	
	7.5.1	Precisión de la medida de concentraciones			11.3.1	Salidas de corriente	76
	7.5.2	Introducción de la matriz de concentraciones	62		11.3.2	Salida de impulsos	
	7.5.3	Estructura de la matriz de concentraciones	63		11.3.3	Salidas de contacto digitales	
	7.6	Historia de versiones del software	64		11.3.4	Entradas de contacto digitales	77
3	Mensa	ijes de error	64	12	Datos to	écnicos relevantes para la protección	
	8.1	Generalidades	64		Ex segú	ún ATEX / IECEx	
	8.2	Sinopsis	65		12.1	Especificaciones eléctricas	78
	8.3	Mensajes de error	66		12.1.1	Sinopsis de las diferentes opciones de salida	78
	8.4	Mensajes de advertencia	68		12.1.2	Versión I: salidas de corriente activa / pasiva	78
						Versión II: salidas de corriente pasiva / pasiva .	
9	Mante	nimiento / Reparación	70			Condiciones especiales de conexión	
	9.1	Generalidades				·	
	9.2	Limpieza					
	9.3	Sensor de caudal					
	9.4	Transmisor					
	J. 1		, 0				

	12.2	Sensor de caudal – modelo FCB300	. 80
	12.2.1	Clase de temperatura	. 80
	12.2.2	Homologación Ex ATEX / IECEx	. 81
	12.3	Transmisor de diseño remoto -	
		Modelo FCT300	. 82
	12.3.1	Homologación Ex ATEX / IECEx	. 82
13	Datos t	técnicos relevantes para la protección Ex seg	ún
	cFMus		. 83
	13.1	Sinopsis de las diferentes opciones de salida	. 83
	13.2	Datos eléctricos para Div. 2 / Zona 2	. 83
	13.2.1	Versión I: salidas de corriente activa / pasiva, y	
		versión II: salidas de corriente pasiva / pasiva	. 83
	13.3	Datos eléctricos para Div. 1 / Zona 1	. 84
	13.3.1	Versión I: salidas de corriente activa / pasiva	. 84
	13.3.2	Versión II: salidas de corriente pasiva / pasiva	. 84
	13.3.3	Condiciones especiales de conexión	. 84
	13.4	Sensor de caudal – modelo FCB300	. 85
	13.4.1	Clases de temperatura	. 85
	13.4.2	Homologación Ex cFMus	. 86
	13.5	Transmisor de diseño remoto -	
		Modelo FCT300	. 88
	13.5.1	Homologación Ex cFMus	. 88
14	Lista d	e piezas de repuesto	
	14.1	Transmisor en caja de campo	. 90
15	Anexo.		
	15.1	Homologaciones y certificados	
	15.2	Installation diagram 3KXF002126G0009	. 94

1 Seguridad

1.1 Informaciones generales e indicaciones para la lectura

¡Lea atentamente este manual de instrucciones antes de proceder al montaje y la puesta en marcha! El manual de instrucciones es una parte integrante esencial del producto y deberá guardarse para su uso posterior. Para asegurar una orientación fácil, este manual no puede dar una información exhaustiva sobre todas las versiones del producto, ni tratar todas las formas posibles de instalación, funcionamiento o conservación.

Si precisa más información o si surgen anomalías no descritas con detalle en el presente manual de instrucciones, le rogamos se ponga en contacto con el fabricante para solicitar más información.

El presente manual de instrucciones ni forma parte ni contiene una modificación de un acuerdo, una promesa o relación jurídica anterior o existente.

El producto cumple los requisitos de seguridad y los niveles tecnológicos actuales. Ha sido examinado y ha salido de fábrica en condiciones perfectas de seguridad. Para mantener estas condiciones durante el tiempo de servicio previsto, se deben observar y seguir las indicaciones del presente manual de instrucciones.

Las modificaciones y reparaciones están únicamente permitidas en la forma descrita en el manual de instrucciones. Sólo cuando se siguen y se observan las indicaciones de seguridad y todos los símbolos de seguridad y advertencia del manual de instrucciones, se garantiza que el personal operador y el medio ambiente estén protegidos contra peligros posibles y que el aparato funcione correctamente. Es absolutamente necesario que se observen y sigan los símbolos e indicaciones que se encuentran en la carcasa del aparato. Asegúrese de que sean perfectamente legibles. No está permitido eliminarlos.

1.2 Uso conforme al fin previsto

El aparato sirve para:

- La conducción de fluidos líquidos y gaseosos (también fluidos inestables).
- La medida directa del caudal másico.
- La medida indirecta del flujo volumétrico (mediante la medida de la densidad y del caudal másico).
- La medida de la densidad del fluido.
- La medida de la temperatura del fluido.

El uso conforme al fin previsto comprende también los siguientes puntos:

- Se deben cumplir y seguir las instrucciones de este manual.
- Se deben mantener los valores límite indicados. Véase el capítulo "Valores técnicos límite".
- Se deben utilizar exclusivamente los fluidos permitidos.
 Véase el capítulo "Fluidos permitidos".

1.3 Uso contrario al fin previsto

No está permitido el uso del aparato para:

- utilizarlo como adaptador flexible en tuberías, como p. ej., para compensar desviaciones, vibraciones y dilataciones de las mismas, etc.
- utilizarlo como peldaño, p. ej., para realizar trabajos de montage
- utilizarlo como soporte para cargas externas, p. ej., como soporte para tuberías, etc.
- recubrirlo con otros materiales, p. ej., por sobrepintar la placa de características o soldar piezas
- arranque de material, p. ej. mediante perforación de la carcasa

1.4 Grupos destinatarios y cualificaciones

La instalación, puesta en marcha y mantenimiento del producto sólo deben ser llevados a cabo por personal especializado debidamente instruido que haya sido autorizado por el propietario del equipo. El personal especializado tiene que haber leído y entendido el manual y debe seguir sus indicaciones.

El usuario debe seguir básicamente las disposiciones nacionales vigentes en su país relacionadas con la instalación, verificación, reparación y conservación de productos eléctricos.

1.5 Suministro de garantía

Cualquier forma de uso que se no corresponda con el fin previsto, así como el incumplimiento de este manual de instrucciones o el empleo de personal insuficientemente cualificado y modificaciones arbitrarias del aparato, excluyen la responsabilidad del fabricante por daños y perjuicios que resulten de ello. En este caso se extinguirá la garantía del fabricante.

1.6 Etiquetas y símbolos

1.6.1 Símbolos de seguridad / peligro, símbolos de información

PELIGRO – ¡Daños graves para la salud / peligro de muerte!

Este símbolo indica, en combinación con el mensaje "PELIGRO", un peligro inminente. El incumplimiento de esta indicación de seguridad causará la muerte o lesiones gravísimas.

PELIGRO – ¡Daños graves para la salud / peligro de muerte!

Este símbolo indica, en combinación con el mensaje "PELIGRO", un peligro inminente por corriente eléctrica. El incumplimiento de esta indicación de seguridad causará la muerte o lesiones gravísimas.

ADVERTENCIA - ¡Daños físicos!

El símbolo indica, en combinación con el mensaje "ADVERTENCIA", una situación que puede ser peligrosa. El incumplimiento de esta indicación de seguridad puede causar la muerte o lesiones gravísimas.

ADVERTENCIA - ¡Daños físicos!

Este símbolo indica, en combinación con el mensaje "ADVERTENCIA", una situación que puede resultar peligrosa debido a la corriente eléctrica. El incumplimiento de esta indicación de seguridad puede causar la muerte o lesiones gravísimas.

ATENCIÓN – ¡Lesiones leves!

El símbolo indica, en combinación con el mensaje "ATENCIÓN", una situación que puede ser peligrosa. El incumplimiento de esta indicación de seguridad puede causar lesiones leves o menos graves. El símbolo puede ser utilizado también para advertir de daños materiales.

AVISO - ¡Daños materiales!

El símbolo indica una situación que puede ser dañina.

El incumplimiento de esta indicación de seguridad puede ocasionar daños o la destrucción del producto y/o de otros componentes del equipo.

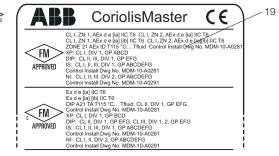
IMPORTANTE (NOTA)

El símbolo indica consejos para el usuario o informaciones muy útiles o importantes sobre el producto o sus ventajas adicionales. La indicación "IMPORTANTE (NOTA)" no advierte de situaciones peligrosas o dañinas.

1.6.2 Placa de características

IMPORTANTE (NOTA)

Las placas de características representadas son solo ejemplos. Las placas de características colocadas en el aparato pueden divergir de esta representación.



IECEx

Ex tD A21 IP6X T115°C...T_{Fluid}
Ex tD [iaD] A21 IP6X T115°C...T_{Fluid}
lectrical data, ignition class of output circuits and

Electrical data, ignition class of output circuits and temperature classes, see EC-Type Examination Certificate.

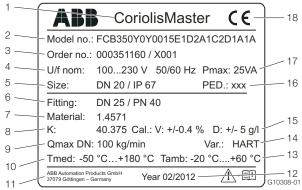


Fig. 1: Sensor de caudal con forma compacta (ejemplo)

- 1 Denominación de tipo completa | 2 Código para pedido |
- 3 Número de pedido | 4 Alimentación eléctrica |
- 5 Diámetro nominal / Modo de protección |
- 6 Conexión a proceso / presión niominal |
- 7 Material de la tubería de medida | 8 Factor de calibración |
- 9 Caudal máximo | 10 Rango de temperatura del fluido |
- 11 Fabricante | 12 Año de construcción (mes / año) |
- 13 Rango de temperatura ambiente | 14 Comunicación |
- 15 Precisión de calibración |
- 16 Marca PED (directiva de equipos a presión)
- 17 Consumo de potencia máximo | 18 Marca CE |
- 19 Homologación Ex cFMus | 20 Homologación Ex ATEX / IECEx

1.7 Instrucciones de seguridad para el transporte

Deben observarse las siguientes indicaciones:

- Durante el transporte, no exponer el aparato a humedad.
 Embalar el aparato adecuadamente.
- Embalar el aparato de tal forma que queda protegido contra choques o vibraciones (p. ej: embalaje con colchón de aire).
- Según el tipo de aparato, el centro de gravedad puede no estar en el centro del equipo.

1.8 Instrucciones de seguridad para el montaje

Antes de instalar los aparatos hay que asegurarse de que no presenten daños por transporte inadecuado. Los daños de transporte deben ser documentados. Todas las reclamaciones de indemnización por daños deberán presentarse inmediatamente, y antes de la instalación, ante el transportista competente.

- El sentido de caudal debe corresponder con la señalización (en caso de que exista).
- Debe mantenerse el par de apriete máximo en todos los tornillos de las bridas.
- Al montar el aparatos se deben evitar tensiones mecánicas (torsión, flexión).
- Los aparatos bridados deben montarse con contrabridas planoparalelas.
- Los aparatos deben ser aptos para las condiciones de servicio previstas y deben instalarse con juntas adecuadas
- En caso de vibraciones de la tubería, utilizar fijaciones apropiadas para los tornillos y tuercas de las bridas.

1.9 Instrucciones de seguridad para la instalación eléctrica

La conexión eléctrica debe efectuarse exclusivamente por personal técnico autorizado y de acuerdo con los esquemas de conexiones.

Deben seguirse las instrucciones para la conexión eléctrica para no deshabilitar el modo de protección eléctrica. Poner a tierra el sistema de medida siguiendo las indicaciones correspondientes.

1.10 Instrucciones de seguridad relativas al funcionamiento

Asegúrese, antes de conectar el aparato, de que se cumplen las condiciones ambientales indicadas en el capítulo "Datos técnicos" o en la especificación técnica.

Cuando sea de suponer que ya no es posible utilizar el aparato sin peligro, póngalo fuera de funcionamiento y asegúrelo contra arranque accidental.

Fluidos calientes pueden causar quemaduras, por lo que hay que evitar tocar la superficie del aparato.

Los fluidos agresivos o corrosivos pueden dañar las partes mojadas. Debido a ello, se pueden producir fugas de los fluidos sometidos a presión.

La fatiga de las juntas de las conexiones a proceso (p. ej., racor roscado aséptico, Tri-Clamp, etc.) puede provocar fugas de fluidos a presión.

Juntas planas internas (si existen) pueden fragilizarse por procesos CIP/SIP.

¡ADVERTENCIA! - ¡Peligro de intoxicación!

Las tuberías y fluidos pueden contaminarse por bacterias y sustancias químicas tóxicas. En instalaciones según EHEDG se deben observar las indicaciones siguientes:

- Para un montaje conforme a la normativa EHEDG es imprescindible que se cumplan las condiciones de instalación correspondientes.
- Para instalaciones según la normativa EHEDG es absolutamente necesario que la combinación de conexión a proceso y juntas realizada por el cliente o propietario cumplen la normativa EHEDG. Sírvase observar al respecto las indicaciones de la versión actual del documento:
 - EHEDG Position Paper: "Hygienic Process connections to use with hygienic components and equipment".

1.11 Valores técnicos límite

El aparato se ha concebido para utilizarse exclusivamente dentro de los valores técnicos límite indicados en la placa de características y en las especificaciones técnicas.

Deben mantenerse los siguientes valores técnicos límite:

- La presión (PS) y temperatura (TS) permitidas del fluido no deben exceder los valores de presión y temperatura previstos (p/T-Ratings) (véase el capítulo "Datos técnicos").
- La temperatura de servicio no debe exceder o bajar por debajo del valor límite máximo/mínimo previsto.
- No debe sobrepasarse la temperatura ambiente permitida.
- Durante el uso del aparato deberá mantenerse el modo de protección de la caja.
- El sensor de caudal no debe instalarse en las proximidades de campos electromagnéticos fuertes, p. ej., motores, bombas, transformadores, etc. Se debe mantener la distancia mínima de ~1 m (3,28 ft). Durante el montaje sobre/en piezas de acero (p. ej., soportes de acero) debe mantenerse una distancia mínima de 100 mm (4"). (Estos valores se han determinado en conformidad con la norma IEC801-2 y/o IECTC77B).

1.12 Fluidos permitidos

Para utilizar los fluidos correctamente es necesario que se observen y sigan las instrucciones siguientes:

- Sólo deben utilizarse fluidos en los que pueda asegurarse, según la técnica actual o la experiencia de trabajo del usuario/propietario, que las propiedades físicas y químicas de los materiales en contacto con el fluido no puedan perjudicarse y, a consecuencia de ello, mermar el tiempo de servicio previsto.
- Por ejemplo, los fluidos que tengan un alto contenido de cloro pueden causar daños de corrosión invisibles en los componentes de acero inoxidable, que pueden destruir, en consecuencia, las partes mojadas y provocar fugas de fluido. El propietario/usuario deberá controlar que los materiales utilizados sean apropiados para la aplicación prevista.
- Los fluidos con propiedades desconocidas o los fluidos abrasivos sólo deben utilizarse si el usuario puede asegurar unas condiciones seguras del aparato mediante una comprobación adecuada efectuada con regularidad.
- Observe las especificaciones indicadas en la placa de características.

1.13 Instrucciones de seguridad para trabajos de inspección y mantenimiento

ADVERTENCIA - ¡Peligro por corriente eléctrica!

Cuando la caja está abierta, la protección CEM no funciona y el usuario no está protegido contra el riesgo de contacto accidental.

Antes de abrir la caja hay que desconectar la alimentación eléctrica.

Los trabajos de reparación y mantenimiento sólo deben ser llevados a cabo por personal especializado debidamente instruido.

- Antes de desmontar el aparato hay que despresurizar el aparato y, si existen, los conductos y recipientes adyacentes.
- Antes de abrir el aparato se debe controlar si han sido utilizadas sustancias peligrosas. Es posible que el aparato contenga restos peligrosos que puedan salir cuando se abra el aparato.

En cuanto esté previsto dentro del marco de responsabilidad del usuario, deberán realizarse inspecciones periódicas para controlar los siguientes puntos:

- las paredes expuestas a la presión / el revestimiento del aparato a presión
- la función técnica de medición
- la estanqueidad
- el desgaste (corrosión)

1.14 Devolución de aparatos

Para el envío de aparatos para reparación o recalibración deberá utilizarse el embalaje original o un recipiente apropiado de transporte.

El aparato debe enviarse acompañado del impreso de reenvío debidamente rellenado (véase el capítulo "Anexo"). Según la Directiva CE sobre Sustancias Peligrosas, los propietarios de basuras especiales son responsables de su correcta eliminación y deben observar las siguientes instrucciones:

Todos los aparatos que se envíen a ABB tendrán que estar libres de sustancias peligrosas (ácidos, lejías, soluciones, etc.).

Consulte al Servicio de atención al cliente (dirección en la página 2) para el establecimiento colaborador más cercano.

1.15 Sistema de gestión integrado

La ABB Automation Products GmbH dispone de un sistema de gestión integrado compuesto por:

- El sistema de gestión de calidad ISO 9001:2008
- El sistema de gestión ambiental ISO 14001:2004
- El sistema de gestión de salud y salud ocupacional BS OHSAS 18001:2007 y
- El sistema de gestión de protección de datos e información.

La preocupación por el medioambiente forma parte de la política de nuestra empresa.

Durante la fabricación, el almacenamiento, transporte, uso y la explotación y eliminación de nuestros productos y soluciones técnicas, la carga contaminante al medio ambiente y a las personas debe minimizarse al máximo.

Esto requiere, en particular, que los recursos naturales se utilicen con la precaución debida. Nuestros folletos de información sirven para llevar un diálogo abierto con el público.

1.16 Eliminación de residuos

El presente producto está compuesto por materiales que pueden reciclarse en plantas de reciclaje especializadas.

1.16.1 Información sobre la directiva WEEE 2002/96/CE (residuos de aparatos eléctricos y electrónicos) (Waste Electrical and Electronic Equipment)

El presente producto no está sujeto a la directiva WEEE 2002/96/CE ni a las leyes nacionales pertinentes (en Alemania, p. ej., ElektroG).

El producto usado debe entregarse a una empresa de reciclaje especializada. Por favor, no utilice los puntos de recogida de basura habituales. Estos deben utilizarse solamente para productos de uso privado según la directiva WEEE 2002/96/CE. La eliminación adecuada evita repercusiones negativas sobre el hombre y el medio ambiente y permite el reciclaje de materias primas valiosas. Si no existe ninguna posibilidad de eliminar el equipo usado debidamente, nuestro servicio posventa está dispuesto a recoger y eliminar el equipo abonando las tasas correspondientes.

1.16.2 Directiva ROHS 2002/95/CE

Con la ElektroG, Alemania transpone las Directivas europeas 2002/96/CE (WEEE) y 2002/95/CE (RoHS) en Derecho nacional. Por un lado, la ElektoG regula cuáles productos deben recogerse y eliminarse de forma ordenada o reutilizarse en caso de eliminación / al final de su duración útil. Por otro lado, la ElektroG prohibe la comercialización de equipos eléctricos y electrónicos que contengan cantidades determinadas de plomo, cadmio, mercurio, cromo hexavalente, bifenoles polibromurados (PBB) y difenilos polibromurados (PBDE) (sustancias prohibidas). Los productos suministrados por ABB Automation Products GmbH no están sujetos al ámbito de aplicación de la prohibición de sustancias peligrosas, o bien, la directiva sobre restricciones en el uso de determinadas sustancias peligrosas en equipos electrónicos y eléctricos usados (según ElektroG). En el supuesto de que los componentes necesarios estén disponibles a tiempo en el mercado, podremos renunciar, en el futuro, a utilizar estas sustancias en desarrollos nuevos.

Diseño y función

Generalidades

Los caudalímetros másicos de ABB Automation Products funcionan según el principio de Coriolis.

El modelo equipado con las tuberías de medida paralelas convencionales se distingue especialmente por su diseño compacto, el diámetro nominal grande y su ventaja económica para el cliente.

2.2 Principio de medición

Cuando a través de una tubería vibrante fluyen masas, se producen fuerzas de Coriolis que deforman la tubería. Estas deformaciones muy pequeñas de la tubería de medida se registran y se evalúan por sensores óptimamente dispuestos. Como el desplazamiento de fase de las señales del sensor es proporcional al caudal, el caudalímetro másico coriolis puede medir directamente el caudal másico transportado a través de la tubería de medida. Este principio de medida funciona independientemente de la densidad, temperatura, viscosidad, presión y conductividad.

Las tuberías de medida vibran siempre en resonancia. Esta frecuencia de resonancia depende de la forma geométrica de la tubería de medida, de las propiedades del material y de la masa del fluido vibrante en la tubería de medida. Así se obtiene una información extacta sobre la densidad del fluido a medir.

El aparato tiene incorporada un sensor de temperatura que sirve para corregir los parámetros dependientes de la temperatura. Resumiendo puede decirse que el caudalímetro másico coriolis permite medir al mismo tiempo el caudal másico, la densidad y la temperatura. Partiendo de estos valores se pueden calcular otras magnitudes de medida como, p. ej., el flujo volumétrico o la concentración.

Función para cálcular el fuerza de Coriolis

$$\vec{Fc} = -2m(\vec{\omega} \times \vec{v})$$

Signo de fórmula	Descripción
→ Fc	Fuerza de Coriolis
ď	Velocidad angular
V	Velocidad de la masa
m	Masa

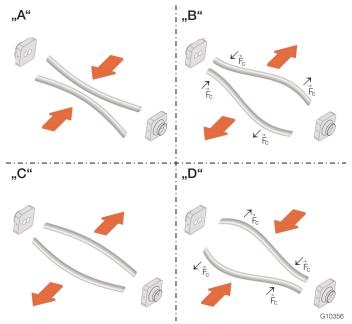


Fig. 2: Representación gráfica simplificada del efecto dinámico de la fuerza de Coriolis

Fig. 2	Descripción	
"A"	Movimiento de las tuberías, hacia adentro, sin caudal	
"B"	Dirección de las fuerzas de Coriolis, con caudal y movimiento	
	de las tuberías hacia afuera	
"C"	Movimiento de las tuberías, hacia afuera, sin caudal	
"D"	Dirección de las fuerzas de Coriolis, con caudal y movimiento	
	de las tuberías hacia adentro	

2.3 Versiones del aparato

	Sensor de caudal FCBXXX (diseño compacto)				
		G10334			
	Aplicaciones estándar	Aplicaciones de alta precisión			
Número de modelo	FCB330	FCB350			
Conexiones a proceso					
- Brida DIN 2501 / EN 1092-1	DN 10 65, PN 40 100	DN 10 65, PN 40 100			
- Brida ASME B16.5	DN 1/4" 2 1/2" PN CL150 CL600	DN 1/4" 2 1/2" PN CL150 CL600			
- Racor roscado DIN 11851	DN 10 65 (1/4" 2 1/2")	DN 10 65 (1/4" 2 1/2")			
- Tri-Clamp	DIN 32676 (ISO 2852)	DIN 32676 (ISO 2852)			
	BPE Tri-Clamp	BPE Tri-Clamp			
	DN 10 65 (1/4" 2 1/2")	DN 10 65 1/4" 2 1/2")			
Precisión de la medida de líquidos					
 Caudal másico 	0,4 % y 0,25 % del valor medido (v.m.)	0,1 % y 0,15 % del valor medido (v.m.)			
 Flujo volumétrico 	0,4 % y 0,25 % del valor medido (v.m.)	0,15 % del valor medido (v.m.)			
- Densidad	0,01 kg/l	- 0,002 kg/l			
		- 0,001 kg/l (opcional)			
		 0,0005 kg/l (después del ajuste in situ, en 			
		condiciones de servicio)			
- Temperatura	1 K	0,5 K			
Precisión de la medida de gases	1 % del valor medido (v.m.)	0,5 % del valor medido (v.m.)			
Materiales mojados	Acero inoxidable	Acero inoxidable			
Modo de protección según EN 60529	IP 65 / 67, NEMA 4X	IP 65 / 67, NEMA 4X			
Temperatura permitida del fluido	-50 160 °C (-58 320 °F)	-50 200 °C (-58 392 °F)			
Aprobaciones y certificados 1)					
 Protección contra explosión ATEX / IECEx 	Zona 0, 1, 2, 21, 22	Zona 0, 1, 2, 21, 22			
 Protección contra explosión cFMus 	Class I Div. 1, Class I Div. 2, Zone 0, 1, 2, 20, 21	Class I Div. 1, Class I Div. 2, Zone 0, 1, 2, 20, 21			
 Protección contra explosión, aprobaciones adicionales 	Bajo demanda				
Requisitos de higiene y esterilidad	3A, EHEDG				
Caja	Diseño compacto, diseño remoto				

¹⁾ En preparación en parte

	T	
	Transmis	or FCTXXX
	G10334	G10846
Caja	Diseño compacto	Diseño remoto
Longitud del cable	10 m (33 ft) como máximo, sólo para diseño remo	to
Alimentación eléctrica	100 230 V AC, 24 V AC/DC	
Salida de corriente	Salida de corriente 1: activa, 0/4 20 mA o pasiv	va, 4 20 mA
	Salida de corriente 2: pasiva, 4 20 mA	
Salida de impulsos	Activa (no disponible para Zone 1 / Div. 1) o pasivo	a
Desconexión externa de la salida	Sí	
Puesta a cero externa del totalizador	Sí	
Medida de caudal directo / inverso	Sí	
Comunicación	Protocolo HART	
Detección de tubería vacía	Sí, debido a una alarma de densidad preasignada	[< 0,5 kg/l]
Autorregulación y diagnóstico	Sí	
Visualización in situ / contaje	Sí	
Optimización del campo, para el caudal y la densidad	Sí	
Modo de protección según EN 60529	Diseño compacto: IP 65 / IP 67, NEMA 4X	
	Diseño remoto: IP 67, NEMA 4X	

2.3.1 Cuadro sinóptico del aparato ATEX

	Estándar / sin protección contra explosión		Zona 2, 21, 22		Zona 1, 21 (Zona 0)	
Número de modelo	FCB300 Y0	/ FCB350 Y0	FCB300 A2 /	FCB350 A2	FCB300 A1	/ FCB350 A1
Diseño compacto		70 Nip		Ex>		Ex
 Estándar 	ŧ.			IECEx		IECEX
- Zona 2, 21, 22		⊒	. 4			
Zona 1, 21						
Zona 0			lhri		Zone 0	
		G11455a		G11455b	izone o	G11455c
Número de modelo	FCT330 Y0 /	FCB300 Y0 /			FCT330 A2 /	FCB300 A1 /
	FCT350 Y0	FCB350 Y0			FCT350 A1	FCB350 A1
Diseño remoto						(E)
Transmisor y sensor					₩ PP	1505··
 Estándar 		√				IECEx
- Zona 2, 21, 22						
- Zona 1, 21						
- Zona 0		G11455d			Zon	ne 0 G11455f
Número de modelo	FCT330 Y0	/ FCT350 Y0			FCB300 A1	/ FCB350 A1
Diseño remoto						(Ex)
Transmisor						IECEx
 Estándar 						ILOLA
- Zona 2, 21, 22	• •				· Chart	
Sensor de caudal						
- Zona 1, 21		G11455g			Zon	G11455i
- Zona 0		G114009				G1 14001

IMPORTANTE (NOTA)

Para los detalles, veáse el capítulo "Datos técnicos relevantes para la protección Ex según ATEX / IECEx" o el certificado de homologación.

2.3.2 Cuadro sinóptico del aparato cFMus

	Estándar / sin protección contra explosión		Class I Div. 2 Zone 2, 21		Class I Div. 1 Zone 0, 1, 20 ,21	
Número de modelo	FCB300 Y0 / FCB350 Y0		FCB300 F2	FCB350 F2	FCB300 F1	/ FCB350 F1
Diseño compacto				€ FM US	_	€ FM US
 Estándar 				APPROVED		APPROVED
- Class I Div. 2	, T					
- Class I Div. 1						
- Zone 2, 21	lhrr —		lhrit —		Zana O	
- Zone 1, 21		G11456a		G11456b	Zone 0	G11456c
- Zone 0, 20						T
Número de modelo	FCT330 Y0 /	FCB300 Y0 /	FCT330 F2 /	FCB300 F2 /	FCT330 F2 /	FCB300 F1 /
	FCT350 Y0	FCB350 Y0	FCT350 F2	FCB350 F2	FCT350 F1	FCB350 F1
Diseño remoto				E FM US		APPROVED
Transmisor y sensor				ALTIOTED		ATTROVES
Estándar		— • □		—— —		—
- Class I Div. 2						
Class I Div. 1	40000		A A A A A A A A A A A A A A A A A A A		Zon	e 0
- Zone 2, 21		G11456d		G11456e	12011	G11456f
- Zone 1, 21						
- Zone 0, 20						
Número de modelo	FCT330 Y0 /	FCT350 Y0	FCT330 F2	/ FCT350 F2	FCB300 F1	/ FCB350 F1
Diseño remoto			olololololololololol	C FM US		C FM US
Transmisor				7411012		
 Estándar 						
Class I Div. 2						
- Zone 2, 21	<u>"#####</u>				Zon	
Sensor de caudal		G11456g		G11456h	(2011	G11456i
Class I Div. 1						
- Zone 1, 21						
- Zone 0, 20						

IMPORTANTE (NOTA)

Para los detalles, veáse el capítulo "Datos técnicos relevantes para la protección Ex según cFMus" o el certificado de homologación.

3 Transporte

3.1 Controles

Inmediatamente después de desembalarlos hay que asegurarse de que los aparatos no presenten daños por transporte inadecuado.

Los daños de transporte deben ser documentados. Todas las reclamaciones de indemnización por daños deberán presentarse inmediatamente, y antes de la instalación, ante el expedidor competente.

3.2 Generalidades

Durante el transporte del aparato al punto de medición debe tenerse en cuenta:

- El centro de gravedad no está en el centro del aparato.
- Los aparatos bridados no deben levantarse a través de la carcasa del transmisor o de la caja de conexión.

4 Montaje

4.1 Generalidades

Durante el montaje se deben observar los siguientes puntos:

- El sentido del caudal debe corresponder con la señalización (en caso de que exista).
- Asegúrese al montar los tornillos de la brida de no sobrepasar el par máximo de apriete.
- Al montar el aparatos se deben evitar tensiones mecánicas (torsión, flexión).
- Los aparatos de brida/Wafer deben montarse con contrabridas planoparalelas y solamente con juntas apropiadas.
- Las juntas utilizadas deben ser de un material resistente al fluido y a la temperatura del fluido. En el caso de equipos higiénicos "Hygienic Design", usar material estanqueizante adecuado.
- Las juntas no deben penetrar en la zona de flujo, porque se pueden producir turbulencias que afectan la precisión del aparato.
- La tubería no debe ejercer ninguna fuerza o par de torsión sobre el aparato.
- Los tapones de los pasacables no deben desmontarse antes de que se monten los cables eléctricos.
- Asegúrese de que las juntas de la tapa de la caja queden asentadas correctamente. Cerrar la tapa correctamente.
 Apretar las uniones roscadas de la tapa.
- Transmisores externos deben instalarse en un lugar libre de vibraciones.
- Asegúrese de que el transmisor y el sensor de caudal no estén expuestos directamente a los rayos del sol; instalar un dispositivo de protección contra rayos solares, si es necesario.
- Al instalar el transmisor en un armario de distribución, es necesario asegurar una refrigeración suficiente.

4.2 Sensor de caudal

El aparato se puede instalar en cualquier zona de la tubería, siempre que se cumplan los requisitos de instalación.

- 1. Desmontar las placas protectoras montadas en los lados izquierdo y derecho del sensor de caudal (si existen).
- 2. Montar el sensor de caudal de manera que se sitúe planoparalela y céntricamente entre las tuberías.
- 3. Colocar las juntas entre las superficies de junta.

4.3 Transmisor

El transmisor debe instalarse en un lugar que, en lo posible, esté libre de vibraciones (véase el capítulo "Datos técnicos"). No deben sobrepasarse los valores límite de temperatura indicados y la longitud máxima permitida del cable de señal entre el transmisor y sensor de caudal.

IMPORTANTE (NOTA)

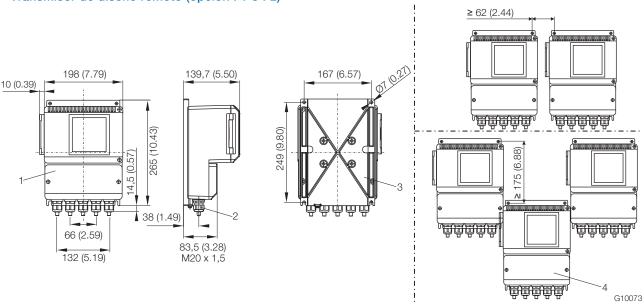
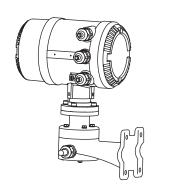
Asegúrese al elegir el lugar de montaje de que el transmisor no esté expuesto directamente a los rayos del sol. Si no es posible evitar la radiación directa del sol, hay que instalar un dispositivo de protección contra rayos solares.

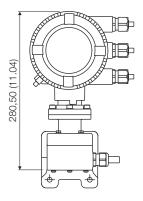
Deben mantenerse los valores límite de la temperatura ambiente.

Caja de campo

La caja tiene el modo de protección IP 65 / 67, NEMA 4X (EN 60529) y debe fijarse con cuatro tornillos. Medidas: veáse Fig. 3 y Fig. 4.

4.3.1 Transmisor de diseño remoto (opción F1 o F2)


Fig. 3: Medidas en mm (inch)

- 1 Caja de campo con ventana | 2 Racor atornillado para cables M20 x 1,5 ó 1/2" NPT |
- 3 Agujeros de fijación para el kit de montaje para tubos de 2"; kit de montaje bajo demanda (referencia de pedido: 612B091U07) |
- 4 Modo de protección IP 67

4.3.2 Transmisor de diseño remoto (opción R1 o R2)

IP 65 / 67, NEMA 4X

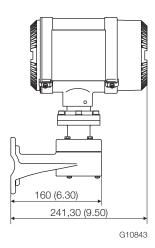


Fig. 4: Medidas en mm (inch)

4.4 Orientación de la caja del transmisor y del indicador I CD

Según la posición de montaje, es posible girar la caja del transmisor compacto/indicador LCD y orientarla horizontalmente, para poder leer mejor la pantalla.

4.4.1 Caja del transmisor

Para girar la caja del transmisor, se deben realizar los pasos siguientes. Un dispositivo de bloqueo en la caja del transmisor impide su giro en exceso (>330°).

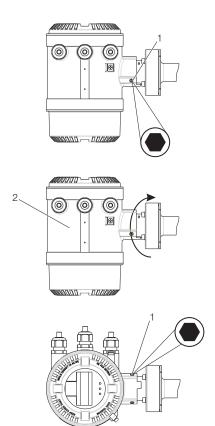


Fig. 5: Orientación de la caja del transmisor 1 Tornillo de fijación | 2 Caja del transmisor

- 1. Aflojar los tornillos de fijación (2 vueltas, aproximadamente)
- 2. Girar cautelosamente la caja del transmisor, hasta alcanzar la posición deseada.
- 3. Apretar el tornillo de fijación.

PELIGRO - ¡Peligro de explosión!

Posible riesgo de perjudicar la protección contra explosión.

No desmontar el transmisor del sensor de caudal.

4.4.2 Indicador LCD

ADVERTENCIA - ¡Peligro por corriente eléctrica!

Cuando la caja está abierta, la protección CEM no funciona y el usuario no está protegido contra el riesgo de contacto accidental.

Antes de abrir la caja hay que desconectar la alimentación eléctrica.

Para girar el indicador LCD, se deben realizar los pasos siguientes.

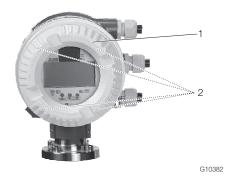


Fig. 6: Orientación del indicador LCD

- 1. Desconectar la alimentación eléctrica.
- 2. Desmontar la tapa de la caja (1).
- 3. Aflojar los cuatro tornillos de fijación (2) del indicador LCD. A continuación, el indicador LCD cuelga del mazo de cables conectado a la unidad electrónica enchufable.
- 4. Fijar el indicador LCD en la posición deseada. Asegúrese de no dañar el mazo de cables.
- 5. Volver a montar la tapa de la caja (1).

AVISO – ¡Pérdida del modo de protección de la caja!

Pérdida del modo de protección de la caja por asiento incorrecto o daño de la junta (junta tórica).

Antes de cerrar la tapa de la caja, controlar la junta (junta tórica) y cambiarla, si es necesario. Asegúrese al cerrar la tapa de la caja de que la junta esté asentada correctamente.

4.5 Instrucciones para el montaje

4.5.1 Requisitos de montaje / instrucciones de planificación

El CoriolisMaster FCB330, FCB350 puede instalarse en el interior y exterior. El modelo estándar tiene el modo de protección IP 67. El sensor de caudal permite la medida en ambas direcciones de flujo y puede instalarse en cualquier posición posible. El usuario ha de asegurarse de que las tuberías de medida puedan llenarse completamente en cualquier momento. Además debe convencerse de que el fluido no afecte la resistencia de las partes mojadas.

Durante la instalación se deben observar los siguientes puntos:

- En la dirección de montaje preferida, el fluido fluye en el sentido de la flecha por el sensor de caudal. En este caso se indica un caudal positivo (opcionalmente está disponible un dispositivo de calibración para caudal directo/inverso).
- La formación de burbujas de gas en la tubería de medida puede aumentar el número de errores de medición, especialmente durante la medida de la densidad. Por ello, el sensor de caudal no debe montarse en el punto más alto del sistema. Lo ideal es un lugar de montaje que se encuentre entre el punto más bajo del sistema y tenga una tubería en forma de U.
- Se recomienda no instalar tuberías largas de caída detrás del sensor de caudal, para impedir que las tuberías de medida puedan vaciarse completamente.
- Asegúrese después del montaje de que el transmisor esté libre de tensiones mecáncias.
- Asegúrese de que el sensor de caudal no entre en contacto con otros objetos. El sensor de caudal no debe fijarse en la caja.
- Asegúrese de que los gases disueltos en el fluido no se liberen y de que las tuberías de medida estén siempre llenadas completamente. Para garantizar esto, se recomienda aplicar una contrapresión de 0,2 bar (2,9 psi) como mínimo.
- Asegúrese en la medida de gases de que los gases estén secos y libres de humedad.
- En caso de presión negativa en la tubería de medida o en aplicaciones de líquidos con bajo punto de ebullición hay que asegurarse de que la presión de vapor del fluido no baje por debajo del valor límite exigido.
- El sensor de caudal no debe instalarse cerca de campos electromagnéticos fuertes (p. ej., bombas, motores, transformadores, etc.)
- Además, deben tomarse medidas adecuadas para evitar "diafonía" entre varios sensores de caudal instalados.
 Para evitar "diafónía", es necesario instalar los sensores de caudal de manera que se encuentren a gran distancia entre sí, o desacoplar las tuberías entre los sensores de caudal individuales.

4.5.2 Soportes

Para sostener el peso propio del sensor de caudal y garantizar una medición segura en caso de influencias negativas externas (p. ej., burbujas de gas en el fluido), se recomienda instalarlo en una tubería rígida apropiada.

En la proximidad inmediata de las conexiones a proceso deben montarse sin tensión, simétricamente, dos soportes o suspensiones apropiados.

4.5.3 Dispositivos de cierre

Para ajustar el cero del sistema es necesario que en la tubería se instalen dispositivos de cierre:

- en caso de montaje horizontal: por el lado de salida,
- en caso de montaje vertical: por el lado de entrada.

Los dispositivos de cierre deben instalarse, en lo posible, delante y detrás del sensor de caudal.

4.5.4 Tramos de entrada

El sensor de caudal no necesita tramos de entrada. Asegúrese de que las válvulas, compuertas, mirillas etc. instaladas en la proximidad del sensor de caudal no se caviten y no estén expuestas a vibraciones causadas por el sensor de caudal.

4.5.5 Modelos de diseño remoto

Asegúrese de que el sensor de caudal y el transmisor sean compatibles. Las placas de características de los aparatos compatibles tienen los mismos números finales, p. ej., X001 y Y001 o X002 y Y002.

4.5.6 Pérdida de presión

La pérdida de presión varía en función de las propiedades del fluido y el caudal actual.

Para obtener ayuda para el cálculo de la pérdida de presión, descargue el archivo correspondiente de la página www.abb.com/flow.

4.6 Posiciones de montaje

El caudalímetro funciona en cualquier posición de montaje. La mejor posición de montaje es la vertical con sentido de flujo ascendente.

4.6.1 Instalación en posición vertical, en una tubería ascensional

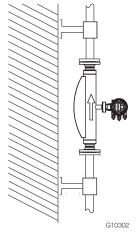


Fig. 7: Instalación en posición vertical, vaciado automático

4.6.2 Instalación en posición vertical, en una tubería descendente

Asegúrese durante el proceso de medición de que el sensor de caudal esté llenado completamente.

Para ello, hay que prever en la tubería un estrangulamiento u obturador (debajo del sensor de caudal). El diámetro del obturador o estrangulamiento debe ser inferior al diámetro de la tubería, para impedir que el sensor de caudal se descargue durante el proceso de medida.

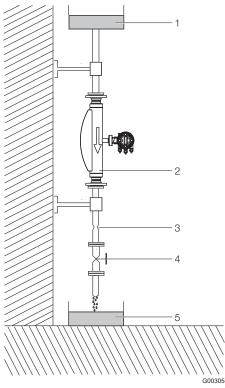


Fig. 8: Instalación en posición vertical, en una tubería descendente

- 1 Depósito de reserva | 2 Sensor de caudal |
- 3 Estrangulamiento u obturador | 4 Válvula |
- 5 Recipiente de recogida

4.6.3 Instalación en posición horizontal, para la medida de líquidos

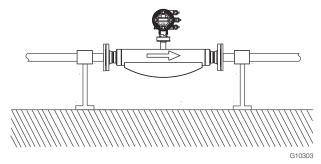


Fig. 9: Instalación en posición horizontal (líquidos)

4.6.4 Instalación en posición horizontal, para la medida de gases

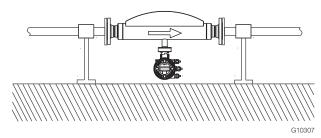


Fig. 10: Instalación en posición horizontal (gases)

Para la medida de gases, la instalación debe realizarse de manera que el sensor de caudal o la caja de conexión apunte hacia abajo.

4.6.5 Puntos de montaje problemáticos para la medida de líquidos

En la medida de líquidos hay que tener en cuenta que acumulaciones de aire o burbujas de gas en la tubería de medida pueden tener gran influencia sobre la precisión de medida.

Para la medida de líquidos, se recomienda no instalar el aparato en los puntos siguientes:

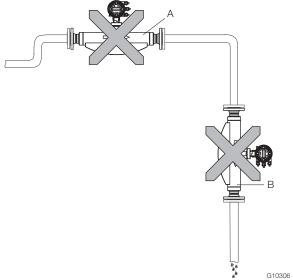


Fig. 11: Puntos de montaje problemáticos

- "A": Si el aparato se instala en el punto más alto de la tubería, se pueden formar acumulaciones de aire o burbujas de gas en la tubería de medida, las cuales afectan la presión de medida.
- "B": Si el sensor de caudal se instala en una tubería descendente, no está garantizado que la tubería de medida pueda llenarse completamente durante el proceso de medición. Esto puede influir muy negativamente sobre la precisión de medida.

4.6.6 Puntos de montaje problemáticos para la medida de gases

En la medida de gases hay que tener en cuenta que las acumulaciones de líquido o de condensado en la tubería de medida pueden tener gran influencia sobre la precisión de medida.

Para la medida de gases, se recomienda no instalar el aparato en los puntos siguientes:

Fig. 12: Puntos de montaje problemáticos

 "A": Si el aparato se instala en el punto más bajo de la tubería, se pueden formar acumulaciones de líquidos o de condensado en la tubería de medida, las cuales afectan la presión de medida.

4.6.7 Montaje cerca de bombas

Las vibraciones intensas que puedan presentarse en la tubería deben amortiguarse en caso dado mediante elementos amortiguadores elásticos.

Los elementos amortiguadores deben instalarse fuera del tramo sustentado y fuera del tramo que se encuentra entre los dispositivos de cierre.

Se debe evitar que los elementos amortiguadores flexibles se conecten directamente al sensor de caudal.

Fig. 13: Amortiguación de vibraciones

4.6.8 Ajuste del cero

Requisitos necesarios para el ajuste del cero en condiciones de servicio:

- La tubería de medida está completamente llena.
- La tubería de medida no contiene burbujas de gas o aire (medida de líquidos).
- La tubería de medida no contiene condensados (medida de gases).
- La presión y temperatura en la tubería de medida corresponden a las condiciones de servicio normales.

Para garantizar estas condiciones se recomienda la instalación de una tubería de derivación apropiada que permite realizar el ajuste durante el funcionamiento.

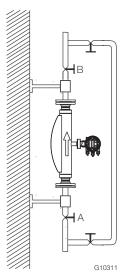


Fig. 14: Tubería de derivación

4.6.9 Instalación en función de la temperatura del fluido

La posición de montaje del sensor de caudal depende de la temperatura del fluido T_{medium} . Existen las variantes de montaje siguientes:

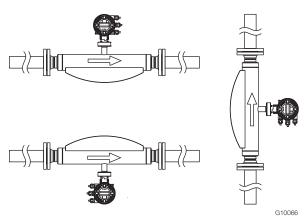


Fig. 15: Posición de montaje para T_{medium} -50°... 120 °C (-58 ... 248 °F)

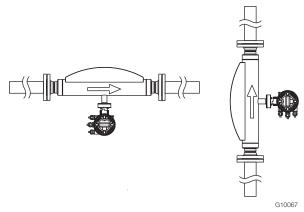


Fig. 16: Posición de montaje para T_{medium} -50°... 200 °C (-58 ... 392 °F)

4.6.10 Instalación en caso de uso de la opción TE1 "Longitud ampliada de la torre"

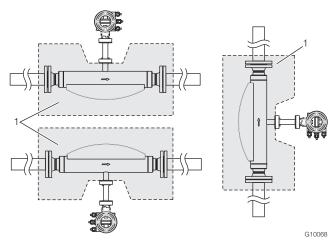


Fig. 17: Posición de montaje para T_{medium} -50°... 200 °C (-58 ... 392 °F)

1 Aislamiento

Si se utiliza la opción TE1 "Longitud ampliada de la torre", el sensor de caudal se puede aislar como se muestra en Fig. 17).

4.6.11 Notas sobre la conformidad EHEDG

¡ADVERTENCIA! - ¡Peligro de intoxicación!

Las tuberías y fluidos pueden contaminarse por bacterias y sustancias químicas tóxicas. En instalaciones según EHEDG se deben observar las indicaciones siguientes:

- Para un montaje conforme a la normativa EHEDG es imprescindible que se cumplan las condiciones de instalación correspondientes.
- Para instalaciones según la normativa EHEDG es absolutamente necesario que la combinación de conexión a proceso y juntas realizada por el cliente o propietario cumplen la normativa EHEDG. Sírvase observar al respecto las indicaciones de la versión actual del documento:

EHEDG Position Paper: "Hygienic Process connections to use with hygienic components and equipment".

Se permiten todas las combinaciones de racores soldados suministrados por ABB.

El racor roscado según DIN11851 está permitido si se combina con una empaquetadura con homologación EHEDG para procesos industriales (p. ej. de la marca Siersema).

5 Conexiones eléctricas

5.1 Instrucciones para conectar la alimentación eléctrica

IMPORTANTE (NOTA)

- Se deben mantener los valores límite de la alimentación eléctrica (véase el capítulo "Datos técnicos").
- Tener en cuenta la caída de tensión, si se utilizan cables largos con diámetro pequeño.
 La tensión conectada a los terminales del aparato no debe bajar por debajo del valor mínimo necesario.
- Realizar la conexión eléctrica siguiendo los esquemas de conexión.

La placa de características del transmisor indica la tensión de conexión y el consumo de corriente.

En la línea de alimentación eléctrica del transmisor se debe instalar un cortacircuito automático con una corriente nominal máxima de 16 A.

El diámetro del cable de alimentación y el cortacircuito automático utilizado deben cumplir la norma VDE 0100 y corresponder al consumo de corriente del caudalímetro instalado. Las líneas deben ser conformes a IEC 227 o IEC 245.

Se recomienda instalar el cortacircuito automático cerca del transmisor y marcarlo como parte del aparato.

La conexión de la alimentación eléctrica se realizará según las especificaciones indicadas en la placa de características, a través de los terminales L (fase), N (cero) o 1+, 2- y PE. El transmisor y el sensor de caudal deben conectarse a tierra.

5.2 Indicaciones para el cableado

Al instalar los cables de conexión en el sensor de caudal hay que preveer un lazo de goteo (trampa de agua).

En caso de montaje vertical del sensor de caudal, orientar hacia abajo la entrada de cables. Girar la caja del transmisor, si es necesario.

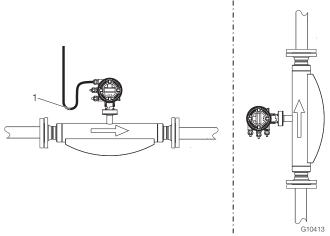
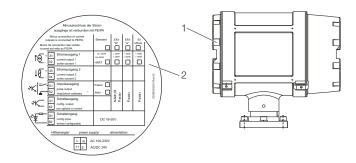



Fig. 18: Colocación de los cables de conexión 1 Lazo de goteo

5.3 Diseño compacto

En los modelos de diseño compacto, los terminales de conexión se encuentran detrás de la tapa, en la cara posterior de la caja del transmisor.

La cara interior de la tapa muestra el esquema de conexión. La configuración del aparato se marcará.

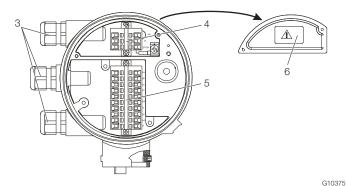


Fig. 19: Terminales de conexión

- 1 Tapa del compartimento de conexión |
- 2 Empleo de las conexiones | 3 Entradas de cables |
- 4 Terminales de conexión para la alimentación eléctrica
- 5 Terminales de conexión para las entradas y salidas de señal |
- 6 Tapa de los terminales

IMPORTANTE (NOTA)

Para conectar los cables correctamente se deben utilizar virolas de cable apropiadas.

Conexión del aparato:

- 1. Desmontar la tapa del compartimento de conexión.
- 2 Confeccionar los terminales del cable e introducirlos en el compartimento de conexión (pasándolos por las entradas de cables).
- 3. Desmontar la tapa de los terminales y conectar el cable de alimentación siguiendo los esquemas de conexión correspondientes.
- 4. Volver a montar la tapa de los terminales.
- Conectar el cable para las entradas y salidas de señal siguiendo los esquemas de conexión. Conectar los apantallamientos del cable (si existen) utilizando al efecto la abrazadera de puesta a tierra correspondiente.
- 6. Volver a montar la tapa del compartimento de conexión.

AVISO – ¡Pérdida del modo de protección de la caja!

Pérdida del modo de protección de la caja por asiento incorrecto o daño de la junta (junta tórica).

Antes de cerrar la tapa de la caja, controlar la junta (junta tórica) y cambiarla, si es necesario. Asegúrese al cerrar la tapa de la caja de que la junta esté asentada correctamente.

5.4 Diseño remoto

En caso de los modelos de diseño remoto, el transmisor se montará por separado. Su conexión al sensor de caudal se realizara a través de un cable de señal.

5.4.1 Especificación del cable

Cable de señal				
Denominación	LI2YCY PIMF			
	5 x 2 x 0,5 mm ²			
Apantallamiento	Par blindado con conductor de tierra y			
	pantalla de trenza de cobre			
Rango de temperatura	-30 70 °C (-22 158 °F)			
Resistencia de bucle	máximo: 78,4 Ω/km			
Inductividad	~ 0,4 mH/km			
Longitud máx. del cable	10 m (33 ft)			

5.4.2 Colocación del cable de señal

Durante la colocación del cable deben observarse los siguientes puntos:

- El cable de señal conduce una señal de tensión de sólo unos milivoltios y, por lo tanto, debe ser tan corto como sea posible. La longitud máxima permitida del cable de señal es de 10 m (33 ft).
- Evite colocar el cable cerca de máquinas eléctricas grandes y elementos de conmutación que pueden producir interferencias, impulsos de conexión e inducciones. Si esto no es posible, instalar el cable de señal en un tubo metálico de protección y conectar el tubo al potencial de tierra de la red.
- Para aislarlo contra interferencias magnéticas, el cable dispone de una pantalla exterior conectada al potencial de tierra de la red.
- Debe evitarse que el cable de señal discurra cerca de cajas de unión o regletas de bornes.

5.4.3 Conexión del cable de señal

IMPORTANTE (NOTA)

Para conectar los cables correctamente se deben utilizar virolas de cable apropiadas.

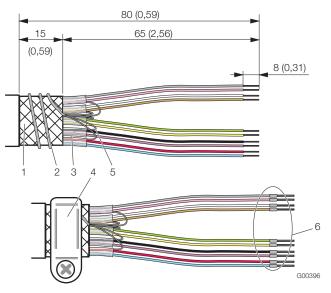


Fig. 20: Confección del cable de señal, medidas en mm (inch)

- 1 Pantalla trenzada |
- 2 Conductores de tierra de las pantallas de lámina (retorcidos) |
- 3 Pantalla de lámina | 4 Abrazadera de puesta a tierra |
- 5 Conductor de tierra | 6 Virolas de cable
- 1. Pelar el cable de señal como se muestra en la figura.
- 2. Cortar unos 15 mm (0,59 inch) de la pantalla trenzada.
- 3. Separar el alma del cable y la pantalla de lámina de los pares de conductores.
- 4 Pelar los conductores y dotarlos de virolas de cable.
- Retorcer los conductores de tierra de las pantallas de lámina y envolver con ellos la pantalla trenzada. Para la conexión al aparato, sujetar debajo de la abrazadera de puesta a tierra la pantalla trenzada y los conductores de tierra retorcidos.
- 6. Conectar al transmisor y sensor de caudal el cable de señal siguiendo los esquemas de conexión.
- Conectar al transmisor el cable para las entradas y salidas de señal siguiendo los esquemas de conexión. Conectar los apantallamientos del cable a la abrazadera de puesta a tierra correspondiente.
- 8. Conectar al transmisor el cable de alimentación siguiendo los esquemas de conexión.
- 9. Volver a montar todas las tapas de los compartimentos de conexión del transmisor y sensor de caudal.

AVISO – ¡Pérdida del modo de protección de la caja!

Pérdida del modo de protección de la caja por asiento incorrecto o daño de la junta (junta tórica).

Antes de cerrar las tapas de la cajas, controlar la junta (junta tórica) y cambiarla, si es necesario. Asegúrese al cerrar las tapas de que la junta esté asentada correctamente.

5.5 Comunicación digital

5.5.1 Protocolo HART

El aparato está registrado en la HART Communication Foundation.

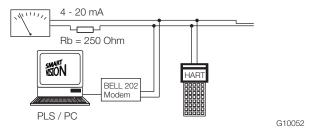


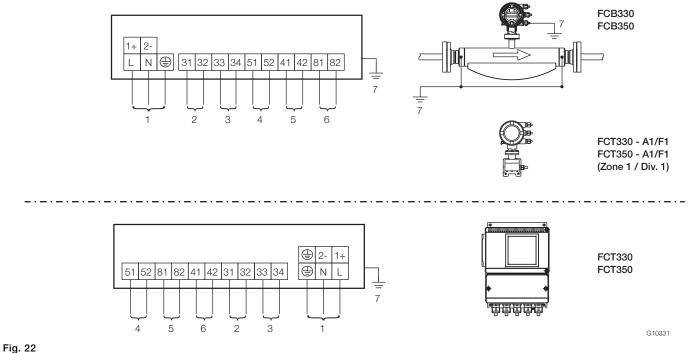
Fig. 21: Comunicación mediante el protocolo HART

Protocolo HART	Protocolo HART				
Configuración	Directamente en el aparato				
	Mediante software DSV401 + HART-DTM				
Transmisión	Modulación FSK sobre la salida de corriente de				
	4 20 mA, según estándar Bell 202				
Velocidad en baudios	1200 baud				
Indicación	Lógico 1: 1200 Hz				
	Lógico 0: 2200 Hz				
Amplitud máxima de la	1,2 mAss				
señal					
Carga en la salida de	250 560 Ω				
corriente	(en la zona Ex: máx. 300 Ω)				
Cable					
Diseño	Cable de dos conductores AWG 24, retorcido				
Longitud máxima	1500 m (4921 ft)				

Para información detallada, véase la descripción de la interfaz correspondiente.

Integración en el sistema:

En combinación con el software DTM disponible para el aparato (Device Type Manager), la comunicación (configuración, parametrización) puede realizarse mediante las aplicaciones de tramas correspondientes según FDT 0.98 ó 1.2 (DSV401 R2).


Otras formas de integración en el sistema/herramientas (p.ej.: Emerson AMS / Siemens SCS7) pueden suministrarse bajo demanda.

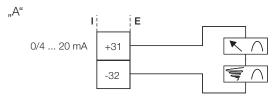
Los archivos DTM y otros archivos necesarios se pueden descargar de la página www.abb.com/flow.

5.6 Esquemas de conexión

5.6.1 Conexión a equipos periféricos - Modelos de transmisor

Modelos FCB330, FCB350, FCT330, FCT350

1 Alimentación eléctrica | 2 Salida de corriente 1 | 3 Salida de corriente 2 | 4 Salida de impulsos | 5 Salida de contacto digital | 6 Entrada de contacto digital | 7 Conexión equipotencial (PA)


IMPORTANTE (NOTA)

Si el aparato se utiliza en zonas potencialmente explosivas, se deberán mantener los datos de conexión adicionales indicados en el capítulo "Datos técnicos relevantes para la protección Ex".

Terminal	Función
L/N/PE	Alimentación eléctrica, 100 230 V AC, 50/60 Hz
1+ / 2- / PE	Alimentación eléctrica
	- 24 V AC, 50/60 Hz
	- 24 V DC
31 / 32	Salida de corriente 1, activa
	0/4 20 mA , (0 Ω ≤R _B ≤560 Ω , FCT300-A1/F1:1 0 Ω ≤R _B ≤300 Ω)
	Salida de corriente 1 pasiva
	4 20 mA (0 Ω ≤R _B ≤600 Ω), tensión de fuente 12 ≤U _q ≤ 30 V
33 / 34	Salida de corriente 2 pasiva
	4 20 mA (0 Ω ≤R _B ≤600 Ω), tensión de fuente 12 ≤U _q ≤ 30 V
51 / 52	Salida de impulsos, pasiva
	fmáx = 5 kHz, ancho de impulso = 0,1 2000 ms, 0,001 1000 impulsos/unidad
	- "cerrada": 0 V ≤ U_{CEL} ≤ 2 V, 2 mA ≤ I_{CEL} ≤ 220 mA
	- "abierta": 16 V ≤ U_{CEH} ≤ 30 V DC, 0 mA ≤ I_{CEH} ≤ 0,2 mA
	Salida de impulsos activa, U = 16 30 V, carga ≥ 150 Ω, fmáx = 5 kHz
41 / 42	Salida de contacto digital, pasiva
	- "cerrada": 0 V ≤ U_{CEL} ≤ 2 V, 2 mA ≤ I_{CEL} ≤ 220 mA
	- "abierta": 16 V ≤ U_{CEH} ≤ 30 V DC, 0 mA ≤ I_{CEH} ≤ 0,2 mA
81 / 82	Entrada de contacto digital, pasiva
	- Entrada "On": 16 V ≤ UKL ≤ 30 V
	Entrada "Off": 0 V ≤ UKL ≤ 2 V
-	Conexión equipotencial "PA"
	Si el transmisor FCT300 se conecta al sensor de caudal FCB300, es necesario conectar el transmisor a la conexión equipotencial "PA".

5.6.2 Ejemplos de conexión con periféricos

Salidas de corriente (incl. comunicación HART)

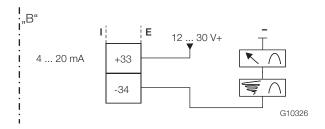
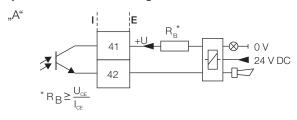



Fig. 23: Salidas de corriente activa / pasiva "A" activa | "B" pasiva | I interna | E externa

Salida y entrada de contacto digitales

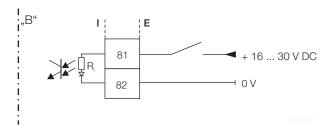
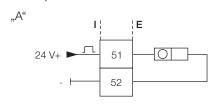



Fig. 24

- "A" Salida del control del sistema, alarmas Máx./Mín. tubería de medida vacía o señalización de directo/inverso |
- "B" Entrada para la puesta a cero externa del totalizador o desconexión externa de la salida | I interna | E externa

Salida de impulsos

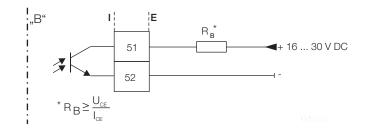


Fig. 25: Salida de impulsos activa / pasiva

"A" activa | "B" pasiva (optoacoplador) | I interna | E externa

5.6.3 Conexión del transmisor al sensor de caudal

Transmisor FCT330, FCT350 al sensor de caudal FCB330, FCB350

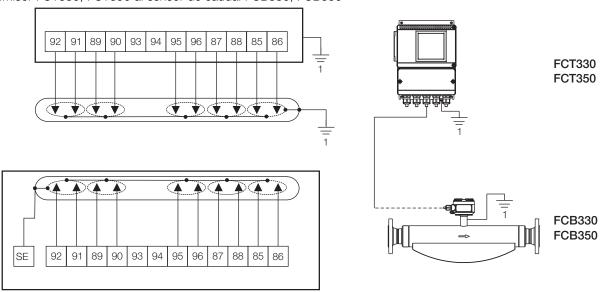


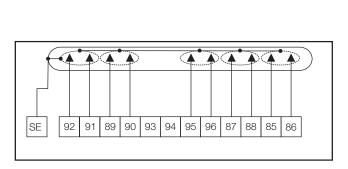
Fig. 26 1 Conexión equipotencial (PA)

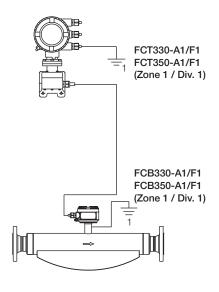
Terminal	Color del conductor	Función
85	Blanco	Sensor A
86	Marrón	Sensor A
87	Verde	Sensor B
88	Amarillo	Sensor B
89	Negro	Temperatura
90	Violeta	Temperatura

Terminal	Color del conductor	Función
91	Gris	Excitador
92	Rosa	Excitador
93	-	no se utiliza
94	-	no se utiliza
95	Azul	Temperatura
96	Rojo	Temperatura

G10329-01

IMPORTANTE (NOTA)


La posición exacta de los terminales de conexión equipotencial puede variar según el tipo de aparato. Los terminales están marcados de forma correspondiente. Si el transmisor FCT330 / FCT350 se conecta al sensor de caudal FCB330 / FCT350, es necesario conectar el transmisor a la conexión equipotencial "PA".


Están permitidas las siguientes combinaciones de sensor de caudal y transmisor:

- Sensor de caudal FCB330 y transmisor FCT330
- Sensor de caudal FCB350 y transmisor FCT350

5.6.4 Conexión del transmisor al sensor de caudal en Zona 1 / Div. 1

Transmisor FCT330, FCT350 al sensor de caudal FCB330, FCB350

G10330-01

Fig. 27 1 Conexión equipotencial (PA)

Terminal	Color del conductor	Función
85	Blanco	Sensor A
86	Marrón	Sensor A
87	Verde	Sensor B
88	Amarillo	Sensor B
89	Negro	Temperatura
90	Violeta	Temperatura

Terminal	Color del conductor	Función
91	Gris	Excitador
92	Rosa	Excitador
93	-	no se utiliza
94	-	no se utiliza
95	Azul	Temperatura
96	Rojo	Temperatura

IMPORTANTE (NOTA)

Para la conexión deben utilizarse conductores torcidos en pares, para garantizar la protección CEM. Están permitidas las siguientes combinaciones de sensor de caudal y transmisor:

- Sensor de caudal FCB330 y transmisor FCT330
- Sensor de caudal FCB350 y transmisor FCT350

6 Puesta en marcha

6.1 Controles antes de la puesta en funcionamiento

Antes de la puesta en servicio se deberán controlar los siguientes puntos:

- La asignación correcta del transmisor al sensor de caudal.
- El cableado correcto descrito en el capítulo "Conexiones eléctricas".
- La puesta a tierra correcta del sensor de caudal.
- El número de serie del módulo de almacenamiento de datos (FRAM externo) debe corresponder con el número de serie del sensor de caudal.
- El módulo de almacenamiento de datos (FRAM externo) debe estar enchufado en la ranura prevista (véase el capítulo "Mantenimiento / Reparación").
- Las condiciones ambientales deben corresponder con los valores indicados en la especificación técnica.
- La alimentación eléctrica debe corresponder con los datos indicados en la placa de características.

6.2 Conectar la alimentación de corriente

Conectar la alimentación de corriente.

Después de conectar la alimentación de corriente, los datos del sensor memorizados en la FRAM externo se compararán con los valores guardados internamente.

Si los datos no son idénticos, los datos del transmisor se intercambiarán automáticamente. Poco después aparecerá el mensaje "Ext. Data loaded". El caudalímetro está listo para el funcionamiento.

La pantalla LCD indicará el caudal actual.

6.2.1 Medidas de control después de conectar la alimentación de corriente

Después de la puesta en servicio se deberán controlar los siguientes puntos:

- La configuración de los parámetros debe corresponder con las condiciones ambientales.
- Debe haberse realizado un ajuste del cero.

Informaciones generales:

- En el caso de que el indicador de caudal señale que el sentido de flujo sea incorrecto, pueden haberse confundido los conductores del cable de señal entre el sensor de caudal y el transmisor.
- La posición y los valores de los fusibles se indican en la lista de repuestos.

6.3 Ajustes básicos

IMPORTANTE (NOTA)

Para información detallada sobre el uso del indicador LCD, véase el capítulo "Configuración, parametración / Manejo".

Para una descripción detallada de todos los menús y parámetros, véase el capítulo "Configuración, parametración / Descripción de los parámetros".

Si el cliente lo desea, el aparato se entregará ajustado a los valores especificados. Cuando falten estos datos, el aparato se entregará con los ajustes de fábrica.

Para ajustar el aparato in situ, basta seleccionar o introducir unos pocos parámetros.

Antes de la puesta en servicio del aparato es necesario que se controlen y ajusten los parámetros siguientes:

Valor límite superior del rango de medida

(Parámetro "QmMax" y submenú "Unit").

El aparato está ajustado por defecto al valor límite máximo posible del rango de medida, siempre que el cliente no especifique otros valores.

Salidas de corriente

(Submenú "Current output 1" y "Current output 2"). Seleccionar el rango de corriente deseado (0 ... 20 mA ó 4 ... 20 mA).

Salida de impulsos

(Parámetro "Pulse" y submenú "Unit").

Para ajustar el número de impulsos por cada unidad volumétrica, hay que seleccionar primero, en el submenú "Unit", la unidad del totalizador (p. ej., kg. o t). A continuación hay que introducir, bajo el parámetro "Pulse", el número de impulsos deseado.

Ancho de impulso

(Parametro "Pulse width").

Para el procesamiento externo de los impulsos de contaje se puede ajustar un ancho de impulso de entre 0,1 y 2000 ms.

Ajuste del cero del sistema

(Submenú "System Zero adj.").

Para ello es necesario detener completamente el líquido contenido en el sensor de caudal. El sensor de caudal debe estar completamente lleno. Seleccionar el menú "System Zero adj.". Pulsar la tecla ENTER. Pulsar la tecla STEP para llamar la opción "System Zero adj. Function automatic?" y pulsar ENTER para activar el ajuste automático. Se puede elegir un método de ajuste lento o rápido. El método lento es normalmente más apropiado para obtener un ajuste más preciso del cero.

6.4 Configuración de la salida de impulsos

La configuración de la salida de impulsos (activa, pasiva) se realiza en el transmisor (mediante un puente enchufable). Para modificar la configuración es necesario sacar de la caja la unidad de transmisor enchufable.

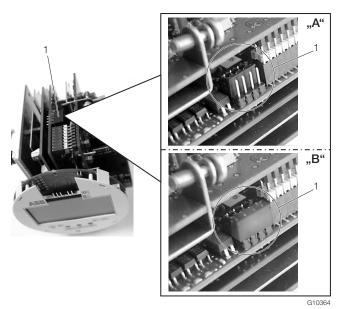


Fig. 28: Posición del puente enchufable
1 Puente enchufable para configurar la salida de impulsos

Posición	Función	
"A"	Salida de impulsos 51 / 52 pasiva	
"B"	Salida de impulsos 51 / 52 activa (no disponible en	
	modelos con protección Ex)	

6.5 Interruptor de protección contra modificaciones no autorizadas

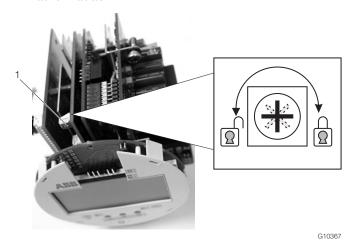


Fig. 29: Interruptor de protección contra modificaciones no autorizadas

Adicionalmente a la protección por contraseña, hay la posibilidad de activar la protección de hardware contra escritura

El bloqueo de programación puede activarse o desactivarse girando el interruptor (1) en el sentido o contra el sentido de las agujas del reloj.

En el caso de que se deban modificar parámetros y el bloqueo de programación esté activado, aparecerá el mensaje de advertencia: "Operating protection" y el programa denegará el acceso.

En tal caso, incluso es posible sellar la tapa del aparato de diseño compacto mediante un tornillo de retención con agujero, para impedir que modificaciones de los parámetros relevantes para la calibración se queden sin descrubrir.

6.6 Instrucciones para el funcionamiento seguro en zonas potencialmente explosivas (ATEX)

6.6.1 Controles

PELIGRO - ¡Peligro de explosión!

Peligro de explosión al abrir la carcasa. Antes de abrir la carcasa se deben observar los puntos siguientes:

- El propietario debe disponer de un certificado que autorice la utilización de fuego.
- Asegúrese de que no haya peligro de explosión.
- Antes de abrir la caja hay que desconectar la alimentación eléctrica.

ATENCIÓN - ¡Peligro de quemadura!

Peligro de quemadura por contacto con fluidos calientes. ¡No tocar el sensor de caudal! ¡La temperatura superficial depende de la temperatura del fluido y puede alcanzar más de 70 °C (158 °F)!

Asegúrese antes de realizar trabajos en el sensor de caudal de que el aparato se haya enfriado suficientemente.

La puesta en servicio tendrá que realizarse de acuerdo con el ElexV (reglamento sobre instalaciones eléctricas en zonas potencialmente explosivas) y la norma EN 60079-14 (montaje de instalaciones eléctricas en zonas potencialmente explosivas) o las disposiciones nacionales pertinentes. El montaje, la puesta en funcionamiento y los trabajos de mantenimiento y reparación en la zona Ex deben ser realizados, exclusivamente, por personal debidamente cualificado.

La puesta en funcionamiento descrita en este documento se realizará después del montaje y la conexión eléctrica del caudalímetro instalado.

La alimentación eléctrica está desconectada.

El uso de polvos inflamables está sujeto a la norma EN 61241-0:2006.

Por favor consulte la explicación "3KXF002126G0009" del anexo.

6.6.2 Circuitos eléctricos de salida

Instalación con seguridad intrínseca "i" o seguridad elevada "e"

Los circuitos eléctricos de salida están diseñados de manera que puedan conectarse a circuitos con o sin seguridad intrínseca.

No está permitido combinanar circuitos eléctricos con y sin seguridad intrínseca.

A lo largo de la sección de la línea del circuito intrínsicamente seguro deberá establecerse una conexión equipotencial. La tensión de cálculo de los circuitos eléctricos sin seguridad intrínseca es UM = 60 V.

IMPORTANTE (NOTA)

En el estado de entrega, los racores atornillados para cables están diseñados en color negro. En el caso de que las salidas de señal se conecten a circuitos intrínsicamente seguros, se recomienda que para la entrada de cable se utilice la tapa de color azul claro, que se encuentra en el compartimento de conexión.

IMPORTANTE (NOTA)

Los datos técnicos de seguridad de los circuitos eléctricos intrínsecamente seguros pueden verse en el Certificado CE de homologación de modelos de construcción.

- Asegúrese de que la tapa del enchufe de alimentación de corriente esté cerrada correctamente. Los circuitos eléctricos de salida intrínsecamente seguros permiten abrir el compartimento de conexión.
- Se recomienda que los racores atornillados para cables que van incluidos en el suministro (no disponible para la versión de -40 °C (-40 °F)), se utilicen para los circuitos eléctricos de salida, de acuerdo con el tipo de protección 'e' pertinente. Con seguridad intrínseca: azul. Sin seguridad intrínseca: negro
- El sensor y la caja del transmisor deben conectarse a la conexión equipotencial. A lo largo de los circuitos eléctricos de las salidas de corriente intrínsecamente seguras deberá establecerse una conexión equipotencial.
- Después de desconectar la alimentación de corriente y antes de abrir la caja del transmisor es necesario observar un tiempo de espera de t > 2 min.
- Asegúrese de que la puesta en servicio se realice de acuerdo con la norma EN61241-1:2004 para aplicaciones en zonas con polvo inflamable.
- El propietario/usuario tendrá que asegurar, cuando conecte el conductor protector (PE), que en caso de fallo no se produzcan diferencias de potencial entre el conductor protector (PE) y la conexión equipotencial (PA).
- Durante el uso en las zonas Ex-polvo, la temperatura superficial máxima es de 85 °C (185 °F).
- Es posible que la temperatura de proceso del conducto conectado sobrepase 85 °C (185 °F).

6.6.3 Contacto NAMUR

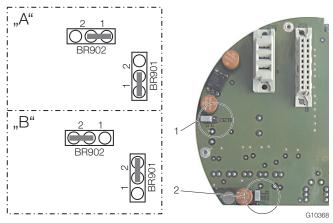


Fig. 30: Posición de los puentes enchufables
"A" Conexión estándar | "B" Conexión NAMUR
1 Puente enchufable BR902 | 2 Puente enchufable BR901

Puente	Posición	Función
Fuente	FUSICIOII	Tuncion
enchufable		
BR902	1	Configuración estándar preferida para
BR901	1	Ex "e" (configuración por defecto)
BR902	2	Configuración NAMUR preferida para Ex "i"
BR901	2	

Los puentes enchufables permiten conectar un amplificador NAMUR, es decir, la salida de contacto y salida de impulsos (terminales 41, 42 y 51, 52) pueden conectarse internamente de manera que funcionen como contacto NAMUR.

6.6.4 Entradas de cables

Indicaciones especiales para modelos con certificado para América del Norte.

Los modelos con certificado para América del Norte sólo están equipados con roscas 1/2" NPT (sin racor atornillado para cables).

6.6.5 Aislamiento del sensor de caudal

Si es necesario aislar el sensor de caudal, se deberán seguir las indicaciones del capítulo "Montaje / Posiciones de montaje / Montaje con uso del componente opcional TE1 "Longitud ampliada del torre".

6.6.6 Uso en la zona 2, con la clase de protección "a prueba de vapor" (nR)

La carcasa del transmisor (rectangular o redonda, diseño compacto o remoto) está aprobada para el uso en la Zona 2, con la clase de protección "a prueba de vapor" (nR).

ADVERTENCIA – ¡Pérdida del modo de protección!

Después de los trabajos de instalación o mantenimiento o después de abrir la carcasa, el usuario debe someter el aparato a un ensayo según la norma IEC 60079-15.

Cómo realizar el ensayo

- Desconecte la alimentación de corriente y espere al menos dos minutos antes de abrir la carcasa.
- Desmonte uno de los racores atornillados de reserva para cables. Normalmente se utilizan racores atornillados con certificado ATEX o IECEx (p. ej., M20 x 1,5 o roscas NPT 1/2").
- Conecte, en lugar del racor atornillado desmontado, un aparato de ensayos de presión. Asegúrese de que el aparato de ensayo esté montado y sellado correctamente.
- Realice el ensayo mediante el aparato de ensayo conectado.
- Desmonte el aparato de ensayo y vuelva a montar correctamente el racor atornillado para cables.

Antes de conectar la alimentación eléctrica, se deberá realizar un control visual de la caja y de las selladuras, roscas y boquillas de paso. Asegúrese de que no se hayan producido daños o defectos.

IMPORTANTE (NOTA)

Asegúrese al elegir el lugar de montaje de que el transmisor no esté expuesto directamente a los rayos del sol.

Si no es posible evitar la radiación directa del sol, hay que instalar un dispositivo de protección contra rayos solares.

Deben mantenerse los valores límite de la temperatura ambiente.

6.6.7 Cambio de tipo de protección

Los modelos FCB330/350 y FCT330/350 pueden utilizarse con modos de protección diferentes:

- Como aparato intrínsecamente seguro (Ex ia), si se conecta a un circuito eléctrico intrínsecamente seguro en la Zona 1.
- Como aparato antideflagrante (Ex d), si se conecta a un circuito eléctrico sin seguridad intrínseca en la Zona 1.
- Como aparato "no productor de chispas" (Ex nA), si se conecta a un circuito eléctrico sin seguridad intrínseca en la Zona 2.

En el caso de que un aparato instalado deba utilizarse con otro modo de protección, se tendrán que realizar, según la normativa vigente, las medidas y ensayos que a continuación se describen.

1. Modo de protección 'e'	2. Modo de protección 'e'	Medida necesaria / ensayo
Zona 1:	Zona 1:	- 500 V AC/1min o 500 x 1,414 = 710 V DC/1min
Ex d, circuitos eléctricos sin	Circuitos eléctricos	prueba entre los terminales 31 / 32, 33 / 34, 41 / 42, 51 / 52, 81 / 82 y /o 97 / 98 y
seguridad intrínseca	intrínsicamente seguros	los terminales 31, 32, 33, 34, 41, 42, 51, 52, 81, 82, 97, 98 y la carcasa.
		Control visual, especialmente de las placas electrónicas.
		Control visual: no deben presentarse daños o daños por explosión.
	Zona 2:	- 500 V AC/1min o 500 x 1,414 = 710 V DC/1min
	No productor de chispas	prueba entre los terminales 31 / 32, 33 / 34, 41 / 42, 51 / 52, 81 / 82 y /o 97 / 98 y
	(nA)	los terminales 31, 32, 33, 34, 41, 42, 51, 52, 81, 82, 97, 98 y la carcasa.
		Control visual, especialmente de las placas electrónicas.
		Control visual: no deben presentarse daños o daños por explosión.
Zona 1:	Zona 1:	Control visual: las roscas no deben presentar daños (tapa, racores atornillados para
Ex d, circuitos eléctricos con	Ex d, circuitos eléctricos sin	cables NPT 1/2").
seguridad intrínseca	seguridad intrínseca	
	Zona 2:	No se requieren medidas especiales
	No productor de chispas	
	(nA)	
Zona 2:	Zona 1:	- 500 V AC/1min o 500 x 1,414 = 710 V DC/1min
Ex d, circuitos eléctricos sin	Circuitos eléctricos	prueba entre los terminales 31 / 32, 33 / 34, 41 / 42, 51 / 52, 81 / 82 y /o 97 / 98 y
seguridad intrínseca	intrínsicamente seguros	los terminales 31, 32, 33, 34, 41, 42, 51, 52, 81, 82, 97, 98 y la carcasa.
		Control visual, especialmente de las placas electrónicas.
		Control visual: no deben presentarse daños o daños por explosión.
	Zona 1:	Control visual: las roscas no deben presentar daños (tapa, racores atornillados para
	Ex d, circuitos eléctricos sin	cables NPT 1/2").
	seguridad intrínseca	

6.7 Instrucciones para el funcionamiento seguro en zonas potencialmente explosivas (cFMus)

6.7.1 Controles

PELIGRO - ¡Peligro de explosión!

Peligro de explosión al abrir la carcasa. Antes de abrir la carcasa se deben observar los puntos siguientes:

- El propietario debe disponer de un certificado que autorice la utilización de fuego.
- Asegúrese de que no haya peligro de explosión.
- Deconecte la alimentación eléctrica antes de abrir la carcasa y mantenga un tiempo de espera de t > 2 minutos.

ATENCIÓN - ¡Peligro de quemadura!

Peligro de quemadura por contacto con fluidos calientes. ¡No tocar el sensor de caudal! ¡La temperatura superficial depende de la temperatura del fluido y puede alcanzar más de 70 °C (158 °F)!

Asegúrese antes de realizar trabajos en el sensor de caudal de que el aparato se haya enfriado suficientemente.

Además, se deben seguir las instrucciones siguientes:

- El montaje, la puesta en funcionamiento y los trabajos de mantenimiento y reparación en la zona Ex deben ser realizados, exclusivamente, por personal debidamente cualificado.
- Cuando la carcasa está abierta, la protección CEM y la protección contra contacto accidental están desactivadas.
- La conexión a tierra del sensor y del transmisor debe cumplir los estándares internacionales vigentes.
- La conexión entre el sensor de caudal y el transmisor sólo debe realizarse mediante el cable de señalización suministrado por ABB Automation Products.
- En la versión con diseño remoto, la longitud del cable de señal entre el sensor y el transmisor debe ser de 5 m (16,4 ft) como mínimo.
- Se deberán mantener estrictamente las clases de temperatura aprobadas, indicadas en el capítulo "Datos técnicos relevantes para protección Ex según cFMus".
- Por favor consulte la explicación "3KXF002126G0009" del anexo.

6.7.2 Entradas de cables

Indicaciones especiales para modelos con certificado para América del Norte.

Los modelos con certificado para América del Norte sólo están equipados con roscas ½" NPT (sin racor atornillado para cables).

6.7.3 Conexión eléctrica

IMPORTANTE (NOTA)

La caja del transmisor y del sensor de caudal debe conectarse al conductor de conexión equipotencial PA. El propietario deberá asegurar que cuando se conecte el conductor protector PE, no se produzcan diferencias de potencial entre el conductor protector PE y la conexión equipotencial PA.

Los cálculos Ex se basan en las temperaturas producidas en la entrada de cables [70 °C (158 °F)]. Por ello es necesario que para la alimentación eléctrica y las salidas y entradas de señal se utilicen cables que cumplan con una especificación mínima de 70 °C (158 °F).

Puesta a tierra

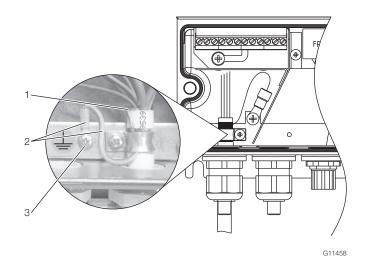


Fig. 31

Según el estándar NEC, la conexión a tierra entre el transmisor y el sensor de caudal se puede realizar de la siguiente forma:

- 1. Pelar el cable de señal 100 ... 120 mm (3.94 ... 4,72 inch).
- 2. Deshilar 10 ... 15 mm (0,39 ... 0,59 inch) de la malla de blindaje del cable de señal. Trenzar los hilos destrenzados de la malla de blindaje hasta obtener un haz completo.
- Introducir el haz en el tubo protector flexible suministrado (verde/amarillo), hasta que en su extremo sobren 10 mm (0,39 inch) (acortar el tubo protector flexible, si es necesario).
- 4. Montar a presión el terminal de cable anular suministrado (2).
- 5. Conectar el cable a la toma de tierra (3).

6.7.4 Process sealing

Según "North American Requirements for Process Sealing between Electrical Systems and Flammable or Combustible Process Fluids".

IMPORTANTE (NOTA)

El aparato es apropiado para uso en Canadá. Si se utiliza en los entornos Class II, Groups E, F and G, la temperatura superficial no debe sobrepasar el máximo permitido [165 °C (329 °F)].

Todos los conductos para cables (conduits) deben sellarse dentro de una distancia de 18 inch (457.20 mm) desde el aparato.

Los caudalímetros de ABB han sido diseñados para el mercado industrial internacional y son apropiados, entre otras aplicaciones, para la medida de fluidos y líquidos inflamables y combustibles y para el montaje en tuberías de proceso. Entre otras cosas, los aparatos que van equipados con conductos de cables (conduits), están conectados a la instalación eléctrica, lo que hace posible que los fluidos de proceso puedan entrar en el sistema eléctrico.

Para impedir que los fluidos de proceso penetren en el sistema eléctrico, los instrumentos van dotados de un juego de juntas de aislamiento que cumplen los requisitos de la norma ANSI / ISA 12.27.01.

Los caudalímetros másicos de efecto Coriolis están diseñados como "Single Seal Devices".

Según los requisitos de la norma ANSI / ISA 12.27.01, es necesario reducir los valores límite de funcionamiento para la temperatura, la presión y las partes presurizadas y ajustarlos a los valores límite siguientes:

Valores límite	
Material de las bridas o tuberías	Todos los materiales del modelo
	suministrado
Diámetros nominales	DN 20 150 (1/2" 6")
Temperatura de servicio	-50 °C 200 °C (-58 °F 392 °F)
Presión de proceso	PN100 / Class 600

6.7.5 Cambio de tipo de protección

Los modelos FCB330/350 y FCT330/350 pueden utilizarse con modos de protección diferentes:

- Como aparato intrínsecamente seguro (IS), si se conecta a un circuito eléctrico intrínsecamente seguro en Div. 1.
- Como aparato con blindaje antideflagrante (XP), si se conecta a un circuito eléctrico sin seguridad intrínseca en Div 1.
- Como aparato "no productor de chispas" (NI), si se conecta a un circuito eléctrico sin seguridad intrínseca en Div. 2.

En el caso de que un aparato instalado deba utilizarse con otro modo de protección, se tendrán que realizar, según la normativa vigente, las medidas y ensayos de aislamiento que a continuación se describen.

1. Modo de protección 'e'	2. Modo de protección 'e'	Medida necesaria / ensayo
Housing: XP, U _{max} = 60 V Outputs non IS	Housing: XP Outputs: IS Housings: Div 2 Outputs: NI	 500 V AC/1min o 500 x 1,414 = 710 V DC/1min prueba entre los terminales 31 / 32, 33 / 34, 41 / 42, 51 / 52, 81 / 82 y /o 97 / 98 y los terminales 31, 32, 33, 34, 41, 42, 51, 52, 81, 82, 97, 98 y la carcasa. Durante esta prueba no se deben producir descargas de tensión en el interior o exterior del aparato. Control visual, especialmente de las placas electrónicas. Control visual: no deben presentarse daños o daños por explosión. 500 V AC/1min o 500 x 1,414 = 710 V DC/1min prueba entre los terminales 31 / 32, 33 / 34, 41 / 42, 51 / 52, 81 / 82 y /o 97 / 98 y los terminales 31, 32, 33, 34, 41, 42, 51, 52, 81, 82, 97, 98 y la carcasa. Durante esta prueba no se deben producir descargas de tensión en el interior o exterior del aparato. Control visual, especialmente de las placas electrónicas. Control visual: no deben presentarse daños o daños por explosión.
Outputs: IS Housing: XP	Housing: XP Outputs: non IS Housing: XP Outputs: NI	Control visual: las roscas no deben presentar daños (tapa, racores atornillados para cables NPT 1/2"). No se requieren medidas especiales
Housing: XP, U _{max} = 60 V Outputs: NI	Housing: XP Outputs: IS	 500 V AC/1min o 500 x 1,414 = 710 V DC/1min prueba entre los terminales 31 / 32, 33 / 34, 41 / 42, 51 / 52, 81 / 82 y /o 97 / 98 y los terminales 31, 32, 33, 34, 41, 42, 51, 52, 81, 82, 97, 98 y la carcasa. Durante esta prueba no se deben producir descargas de tensión en el interior o exterior del aparato. Control visual, especialmente de las placas electrónicas. Control visual: no deben presentarse daños o daños por explosión.
	Housing: XP Outputs: non IS	Control visual: las roscas no deben presentar daños (tapa, racores atornillados para cables NPT 1/2").

7 Configuración, parametración

7.1 Manejo

7.1.1 Navegación por menús

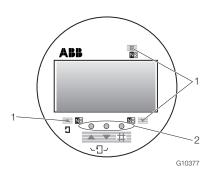


Fig. 32: Indicador LCD

- 1 Puntos para la programación mediante el puntero magnético |
- 2 Botones de control para navegar por el menú |
- 3 1a. línea del indicador LCD | 4 2a. línea del indicador LCD

Durante la programación, el transmisor permanecerá en línea, es decir, las salidas de corriente y de impulsos seguirán indicando el estado actual de funcionamiento.

Funciones de los botones de control

Las teclas de control so sirven para desplazarse por el menú o para seleccionar valores de una lista.

Según la posición en el menú, los botones de control pueden tener funciones adicionales.

Símbolo	Significado		
#=	Cambio entre el indicador de procesos y el menú		
	Salida del submenú		
	Desplazamiento hacia adelante en el menú o en una		
	lista de parámetros		
	Aumento de los valores numéricos (incremento)		
	Desplazamiento hacia atrás en el menú o en una lista		
	de parámetros		
	Reducción de los valores numéricos (decremento)		
	Selección de la posición siguiente para introducir		
	valores numéricos y alfanuméricos		
+ =	Función ENTER		
	La función ENTER se puede ejecutar pulsando		
	simultáneamente las teclas + =.		
	 Selecciona un parámetro que se debe modificar 		
	 Confirmación de un valor / parámetro introducido 		
-	 Salto al submenú 		

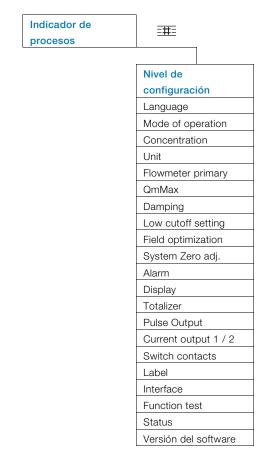
IMPORTANTE (NOTA)

Los datos introducidos se someten a un control de plausabilidad. En el caso de que los datos no se acepten y se rechacen aparecéra un mensaje correspondiente en la pantalla LCD.

Control mediante puntero magnético

El puntero magnético permite la programación cuando la tapa de la caja está cerrada.

Para activar esta función hay que apuntar con el puntero magnético a los puntos correspondientes de la pantalla LCD. Los puntos están marcados con el símbolo NS.


Uso de la tecla ENTER en caso de control mediante puntero magnético

El puntero magnético no puede utilizarse para activar dos botones al mismo tiempo. En caso de control mediante puntero magnético, la función ENTER se ejecutará activando durante más de tres segundos el punto .

El indicador LCD comenzará a parpadear, para confirmar que la función ENTER se haya ejecutado correctamente.

7.2 Niveles del menú

El nivel de configuración se halla por debajo del indicador de procesos.

Indicador de	El indicador de procesos muestra los valores
procesos	actuales del proceso.
Nivel de	El nivel de configuración contiene todos los
configuración	parámetros necesarios para la puesta en
	marcha y la configuración del equipo. Desde
	aquí se puede modificar la configuración del
	aparato.

7.2.1 Indicador de procesos

Una vez conectado el aparato, en la pantalla LCD aparecerá el indicador de procesos. Allí se muestra información sobre el equipo y los valores de proceso actuales.

Fig. 33: Indicador de procesos

1 1.ª línea del indicador de procesos |
2 2.ª línea del indicador de procesos |

Para modificar la representación en pantalla de los valores de proceso actuales indicados en las líneas 1 y 2, hay que cambiar al nivel de configuración.

Símbolo	Descripción	
\rightarrow	Indicación del totalizador de caudal directo	
←	Indicación del totalizador de caudal inverso	

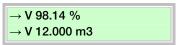
Mensajes de error del indicador LCD

En caso de fallo aparecerá un mensaje de error en la pantalla del indicador de procesos. El texto mostrado da una indicación sobre el área en la que se ha producido el error.

Indicador de procesos Mensaje de error

IMPORTANTE (NOTA)

Para una descripción detallada de los errores y obtener información sobre cómo corregir los errores, véase el capítulo 8 "Mensajes de error".


7.2.2 Cambio al nivel de configuración (parametrización)

En el nivel de configuración se pueden ver y modificar los parámetros del equipo.

IMPORTANTE (NOTA)

El mensaje "Error – bloqueo de programación" en la pantalla LCD indica la activación de la protección de hardware contra escritura a través del interruptor de protección contra modificaciones no autorizadas.

- Pulsar ===== para pasar al nivel de configuración. A continuación, el indicador LCD muestra una opción cualquiera del menú.
- Pulsar o para llamar el submenú "Nivel. prog."
 y, a continuación, pulsar t (función ENTER)
 para modificar el ajuste correspondiente.

- 3. Pulsar o para seleccionar el nivel de acceso "Specialist".
- Pulsar + (función ENTER), para confirmar el ajuste efectuado.

Si se ha definido una contraseña (Prog. Prot. Code), introducir la contraseña correspondiente.

- 5. Pulsar para ajustar el valor deseado (la decimal se incrementa con cada pulsación de la tecla).
- 6. Pulsar para seleccionar la decimal siguiente.
- 7. Pulsar + (función ENTER), para confirmar el ajuste efectuado.

Una vez introducida la contraseña se autorizará el acceso al nivel de programación corrrespondiente. Si se ha seleccionado el nivel de acceso "Service" hay que introducir la contraseña de servicio.

A continuación, la pantalla LCD muestra la opción de menú primera del nivel de configuración.

- 8. Pulsar o para elegir un menú.
- Pulsar + (función ENTER), para confirmar el menú elegido.

Niveles de acceso

IMPORTANTE (NOTA)

Hay cuatro niveles de acceso. Para los niveles de acceso "Standard" y "Specialist" se puede definir una contraseña.

No hay una contraseña por defecto.

Nivel de acceso	Descripción
Blocked	En el nivel "Blocked" todas las opciones están
	bloqueadas.
	Los menús / parámetros sólo pueden leerse.
	No es posible modificarlos.
Standard	Indicación y modificación de todos los menús /
	parámetros necesarios para el funcionamiento
	del aparato.
Specialist	Indicación y modificación de todos los menús /
	parámetros accesibles para el cliente.
Service	Visualización del menú de servicio después de
	introducir la contraseña de servicio (sólo para el
	personal de servicio de ABB).

7.2.3 Selección y modificación de parámetros

Entrada de datos desde una tabla

En la entrada de datos desde una tabla, los valores se seleccionan de una lista de valores paramétricos.

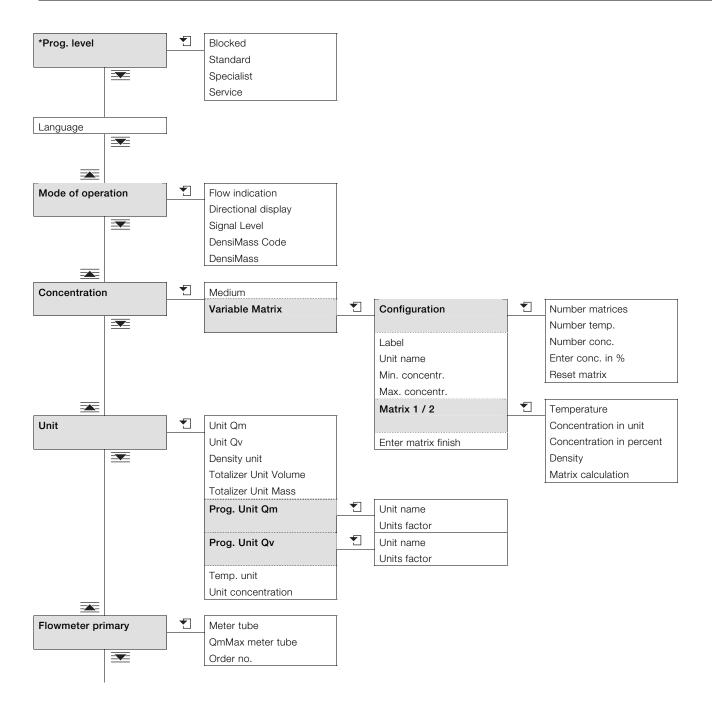
- 1. Seleccionar en el menú el parámetro a ajustar.
- 2. Pulsar + (función ENTER) para seleccionar el parámetro a editar.
- 3. Pulsar o para seleccionar el valor deseado.
- 4. Pulsar + (función ENTER), para confirmar la selección.

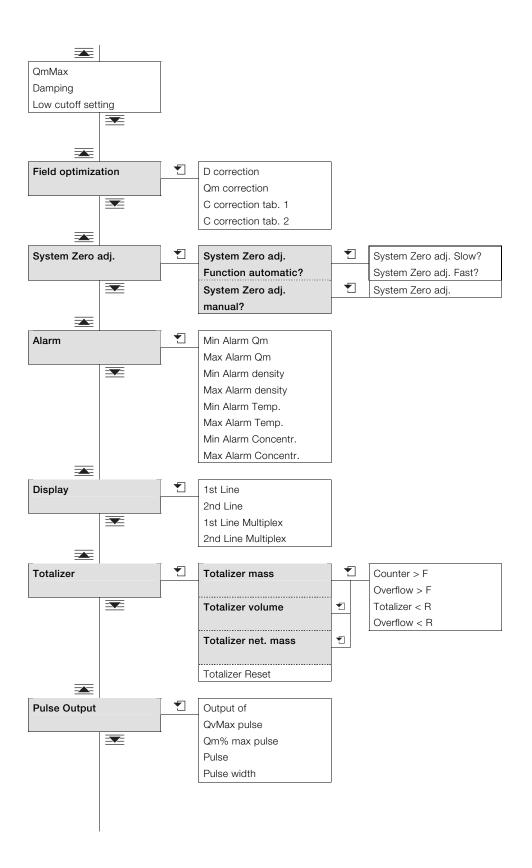
Entrada numérica

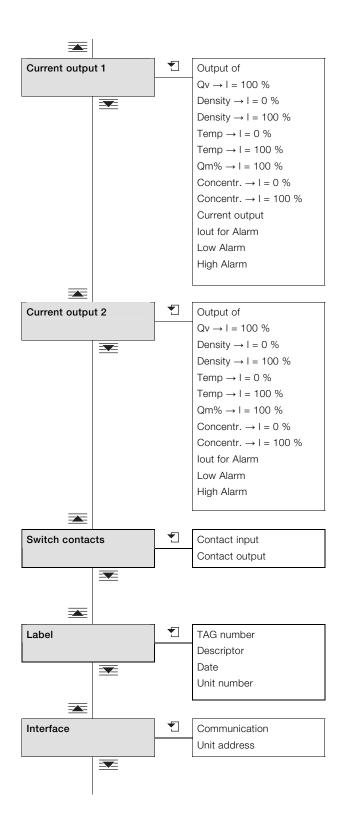
En la entrada numérica se ajusta un valor al introducir los decimales.

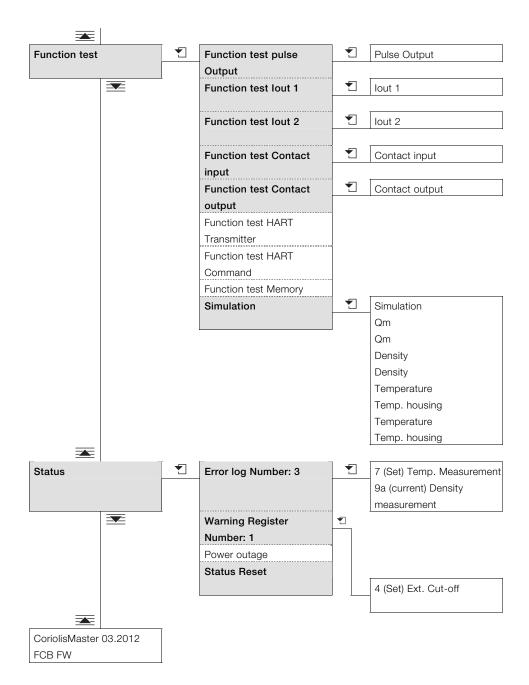
QmMáx 180.00 kg/h

- 1. Seleccionar en el menú el parámetro a ajustar.


- 3. Pulsar para ajustar el valor deseado (la decimal se incrementa con cada pulsación de la tecla).
- 4. Pulsar para seleccionar la decimal siguiente.
- 5. Si es necesario, seleccionar y ajustar otras decimales siguiendo los pasos 3 a 4.
- 6. Pulsar + (función ENTER), para confirmar el ajuste efectuado.


El ajuste del parámetro ha terminado.


7.3 Sinopsis de los parámetros en el nivel de configuración



IMPORTANTE (NOTA)

7.4 Descripción de los parámetros

7.4.1 Menú: *Prog. level

.../ *Prog. level

Máscaras	Rango de valores	Descripción
*Prog. level	Blocked	Selección del nivel de acceso.
	Standard	Si se ha definido una contraseña (código de protección del programa), introducir a continuación
	Specialist	la contraseña correspondiente.
	Service	Después de introducir la contraseña, seleccionar a continuación el nivel de acceso deseado. Si la
		contraseña es "0000" (valor por defecto), el nivel de acceso puede seleccionarse sin introducir la
		contraseña.
		- "Blocked": En el nivel "Bloqueado" todas las opciones están bloqueadas. Los menús /
		parámetros sólo pueden leerse. No es posible modificarlos.
		- "Standard": Indicación y modificación de todos los menús / parámetros necesarios para el
		funcionamiento del aparato.
		- "Specialist":Indicación y modificación de todos los menús / parámetros accesibles para el
		cliente.
		 "Service": Indicación adicional del menú de servicio después de introducir la contraseña de
		servicio
		(sólo para el personal de servicio de ABB).
Prog. Prot. Code	★ + ▼	Selección del submenú "Prog. Prot. Code".

.../ *Prog. level / Prog. Prot. Code

<u> </u>	- 0	
Máscaras	Rango de valores	Descripción
Old Prog. Prot. (PS)	0 9999	Cómo cambiar la contraseña
code?		Para poder modificar la contraseña es necesario introducir primero la contraseña actual.
		Confirmar la entrada pulsando = + ==.
New Prog. Prot. (PS)	0 9999	Introducir una contraseña nueva. Confirmar la entrada pulsando 🚾 🛨 🚾.
code?		

7.4.2 Menú: Language

.../ Language

Máscaras	Rango de valores	Descripción
Language	German	Selección del idioma del menú.
	English	

7.4.3 Menú: Mode of operation

.../ Mode of operation

Máscaras	Rango de valores	Descripción
Flow indication	Forward / Return	Selección del sentido de flujo.
	Forward	- "Forward / Return": Visualización de la medida del caudal directo e inverso.
		- "Forward": Visualización de la medida del caudal directo. Cuando el sensor de caudal mide e
		caudal inverso, en el indicador LCD parpadea el símbolo ← R y el caudal indicado es de un 0
		%. Además, aparecerá el mensaje de advertencia "Q inverso".
		IMPORTANTE (NOTA)
		En el modo "Forward / Return", la salida de impulsos transmite impulsos para
		ambas direcciones de flujo.
Directional display	Normal, Reverse	Inversión del sentido de flujo indicado. En ello debe tenerse en cuenta que la precisión de la
		medida de caudal depende de la dirección de flujo tomada en consideración durante el proceso
		de calibración (sólo sentido directo o sentido directo e inverso).
		- "Normal": Indicación del sentido de flujo normal.
		 "Reverse": Indicación del sentido de flujo inverso.
Signal Level	automatic, High, Low	Selección del comportamiento del nivel de señal.
		- "automatic": según la densidad.
		- "High": densidad < 0,4 kg/i -> cambio del nivel de señal a "High".
		"Low": densidad > 0,5 kg/l/i -> cambio del nivel de señal a "Low".
		IMPORTANTE (NOTA)
		Nivel de señal "Low" = 0,5 * nivel de señal "High".
DensiMass Code	-	Si el software incluye la opción DensiMass aparecerá aquí el código específico del aparato.
		Para utilizar esta opción posteriormente, sírvase contactar con el servicio posventa o
		representante de ABB.
DensiMass	On, Off, Code invalid	Indicador de estado de la función DensiMass. Si aparece "Code invalid", se ha introducido un
		código de desbloqueo incorrecto.

7.4.4 Menú: Concentration

.../ Concentration

Máscaras	Rango de valores	Descripción
Medium	Variable Matrix	Selección de la matriz para el cálculo de la concentración
	Sodium hydro	Para más información al respecto, véase el capítulo "Software de medida de concentración
	Alcohol in water	DensiMass".
	Wheat starch	
	Corn starch	
	Sugar in H2O (BRIX)	
Variable Matrix	+ =	Selección del submenú "Variable Matrix".

.../ Concentration / Variable Matrix

Máscaras	Rango de valores	Descripción
Configuration	★ + ▼	Selección del submenú "Configuration".
Label		Aquí se puede definir un nombre para la matriz.
Unit name	Alfanumérico, con un	Introducción del nombre de la unidad para la matriz variable.
	máx. de 20 caracteres	
Min. concentr.	0 100 %	Introducción de la concentración mínima permitida para la matriz variable.
Max. concentr.	0 100 %	Introducción de la concentración máxima permitida para la matriz variable.
Matrix 1 / 2	+ =	Selección del submenú "Matrix 1 / 2".
Enter matrix finish	★ + ▼	Termina la introducción de matrices. Los valores introducidos se almacenan o se borran
		automáticamente.

.../ Concentration / Variable Matrix / Configuration

Máscaras	Rango de valores	Descripción
Number matrices	1, 2	Introducción del número de matrices. Se pueden crear 2 matrices diferentes, como máximo.
Number temp.	2 20	Introducción del número de valores de temperatura de una matriz.
Number conc.	2 20	Introducción del número de valores de concentración de una matriz.
Enter conc. in %	Sí, no	Selección de la unidad para la concentración
		En el caso de que la unidad de la concentración sea distinta a %, se puede seleccionar
		adicionalmente la unidad %.
		¡Esto es absolutamente necesario para poder calcular los caudales másicos netos!
Reset matrix	+	Resetea la matriz introducida y restablece los valores por defecto.

.../ Concentration / Variable Matrix / Matrix 1 / 2

IMPORTANTE (NOTA)

Para información detallada sobre cómo introducir las matrices, véase el capítulo "Software de medida de concentración DensiMass".

Máscaras	Rango de valores	Descripción
Temperature		Introducción de los valores de temperatura para la matriz seleccionada (1 ó 2).
Concentration in unit		Introducción de los valores de concentración para la matriz seleccionada (1 ó 2).
Concentration in		Introducción de los valores de concentración [en %] para la matriz seleccionada (1 ó 2).
percent		
Density		Introducción de los valores de densidad para la matriz seleccionada (1 ó 2).
		Los valores entrados se marcan con "E"; los valores calculados por interpolación o extrapolación
		se marcan con "B".
Matrix calculation	* + *	Cálculo de la matriz a base de las entradas efectuadas. Los valores que falten se calcularán por
		interpolación o extrapolación.

7.4.5 Menú: Unit

.../ Unit

Máscaras	Rango de valores	Descripción
Unit Qm	g/s, g/min, g/h,	Selección de la unidad para el caudal másico.
	kg/s, kg/min, kg/h,	La unidad elegida es válida para los parámetros "QmMáx" y "QmMáx Tubería de medida" y para
	kg/d, t/min, t/h,	la indicación del caudal másico actual.
	t/d, lb/s, lb/min,	
	lb/h, lb/d, abc/s,	
	abc/min, abc/h,	
	abc/d	
Unit Qv	I/s, I/min, I/h,	Selección de la unidad para el flujo volumétrico.
	m3/s, m3/min,	La unidad elegida representa el flujo volumétrico y aparecerá, p. ej, durante la visualización del
	m3/h, m3/d, ft3/s,	flujo volumétrico o cuando se introducen los límites Mín y Máx. de la salida de corriente, siempre
	ft3/min, ft3/h, ft3/d,	que el valor del flujo volumétrico deba entregarse a la salida de corriente.
	ugl/s, ugl/min,	
	ugl/h, mgl/d, igps,	
	igpm, igph, igpd,	
	bbl/s, bbl/min,	
	bbl/h, bbl/d, abc/s,	
	abc/min, abc/h,	
	abc/d	
Density unit	g/ml, g/l, g/cm3,	Selección de la unidad para la densidad.
	kg/l, kg/m3, lb/ft3,	
	lb/ugl	
Totalizer Unit Volume	abc, I, m3, ft3, ugl, igl,	Selección de la unidad para el totalizador volumétrico.
	bbl	
Totalizer Unit Mass	g, kg, t, lb, abc	Selección de la unidad para el totalizador másico.
Prog. Unit Qm	* + *	Selección del submenú "Prog. Unit Qm" (unidad de masa programada).
Prog. Unit Qv	+ =	Selección del submenú "Prog. Unit Qv" (unidad de volumen programada).
Temp. unit	°C, K, °F	Selección de la unidad para la temperatura
Unit concentration	%, BRIX, Baume,	Selección de la unidad para la concentración Véase también el menú "Concentration".

.../ Unit / Prog. Unit Qm

Este menú permite definir una unidad de masa definida (programada) por el usuario. Esta unidad se puede seleccionar en los menús y parámetros correspondientes.

Máscaras	Rango de valores	Descripción
Unit name	ASCII, 3 caracteres,	Introducción del nombre para la unidad de masa definida por el usuario.
	como máximo.	
Units factor	0.00001 5000000 kg	Introducción del factor kg/unidad para la unidad de masa definida por el usuario.
		Este factor también puede utilizarse en la Prog. Unit Qm, para indicar el volumen normal
		comprobado, p. ej., durante la medida de gases. Para ello, basta determinar a través de la densidad
		normal el factor del caudal másico e introducirlo como previsto. Introducir el nombre de la unidad de
		volumen (p. ej.: "Nm3").
		Ejemplo: Gas con una densidad normal de 1,53 kg/m3
		Qm 1
		Qvn = Densidad
		Factor de caudal másico = 0,65359, nombre de la unidad de volumen: Nm3

.../ Unit / Prog. Unit Qv

Este menú permite fijar una unidad de volumen predefinida (programada) por el usuario. Esta unidad se puede seleccionar en los menús y parámetros correspondientes.

Máscaras	Rango de valores	Descripción
Unit name	ASCII, 3 caracteres,	Introducción del nombre para la unidad de volumen definida por el usuario.
	como máximo.	
Units factor	0.00001 5000000 I	Introducción del factor kg/unidad para la unidad de volumen definida por el usuario.

7.4.6 Menú: Flowmeter primary

.../ Flowmeter primary

Máscaras	Rango de valores	Descripción
Meter tube	sólo visualización	Indicación del diámetro nominal del aparato.
QmMax meter tube	sólo visualización	Indicación del valor QmMáx (caudal másico máximo) para el diámetro nominal del aparato
Order no.	sólo visualización	Indicación del número de pedido. El número de pedido indicado corresponde a los datos
		indicados en la placa de características y la memoria de datos externa.

7.4.7 Menú: QmMax

.../ QmMax

Máscaras	Rango de valores	Descripción
QmMax	0.01 1.0 x QmMax	Introducción del rango de medida.
	meter tube	Para determinar los límites del rango de medida se pueden entrar valores de entre 0,01 y 1,0
		QmMáxTubo de medida. El rango de medida ajustado es válido para ambas direcciones de flujo.
		QmMáx es el valor al cual se refieren el valor de corriente Qm, el caudal bajo y las alarmas Qm.
		(QmMáx = 20 mA para la salida corriente Qm).
		IMPORTANTE (NOTA)
		Al introducir un diámetro nominal nuevo, el parámemtro QmMax se pondrá
		automáticamente al valor 1,0 x QmMax meter tube.

7.4.8 Menú: Damping

.../ Damping

Máscaras	Rango de valores	Descripción
Damping (5 tau)	1 100 s	Introducción del valor de amortiguación
		El valor de amortiguación indica el tiempo dentro el cual el transmisor reacciona a un salto de
		escalón unitario (un 99% del valor final).

7.4.9 Menú: Low cutoff setting

.../ Low cutoff setting

Máscaras	Rango de valores	Descripción
Low cutoff setting	0 10 %	Introducción del valor para el caudal bajo, en % de QmMax.
		El caudal bajo máximo es del 10 %. La histéresis de conmutación es del 0,1 %. Si se introduce
		un caudal bajo de un 0 %, se desactivará también la histéresis de conmutación.

7.4.10 Menú: Field optimization

.../ Field optimization

Máscaras	Rango de valores	Descripción
D correction	-50 50 g/l	Introducción del factor de corrección para la densidad.
		Para obtener en la medida de densidad una precisión que equivalga aproximadamente a la
		reproducibilidad de 0.0001 g/ml, éste factor puede ser utilizado para realizar una optimización en
		el campo. Los límites de esta corrección se situan entre ± 0,50 g/ml (±0,05 g/ml).
Qm correction	-5 5 %	Introducción del factor de corrección para la medida de caudal.
		Para obtener en la medida de caudal una precisión que equivalga aproximadamente o sea incluso
		superior a una reproducibilidad de un mínimo del 0,1 % del valor medido, éste factor puede ser
		utilizado para realizar una optimización en el campo. Este valor tiene el efecto de corregir el valor
		medido del caudal másico actual. Se entra en forma de porcentajes del valor actual medido.
		Los valores límite correspondientes se situan entre un ±5 % del valor medido.
C correction tab. 1	-1000 1000 %	Introducción del factor de corrección para la medida de concentración.
C correction tab. 2		Para obtener en la medida de concentración una precisión que equivalga aproximadamente o sea
		incluso superior a la reproducibilidad, éste factor puede ser utilizado para realizar una
		optimización en el campo. Este valor tiene el efecto de corregir el valor medido de la
		concentración actual.
		Se introduce en forma de la unidad de concentración actualmente ajustada. El valor de
		corrección depende de la matriz de concentración actualmente seleccionada. Si se trata de una
		matriz fija, está disponible un solo valor de corrección. Las matrices variables soportan dos.

7.4.11 Menú: System Zero adj.

IMPORTANTE (NOTA)

Asegure los puntos siguientes antes de iniciar el ajuste del punto cero del sistema:

- La tubería de medida del sensor de caudal debe estar completamente llena.
- Asegúrese de que no circule ningún fluido por la tubería de medida del sensor (cierre las válvulas, dispositivos de cierre, etc.).
- No se deben producir golpes de presión en el fluido de medida.
- Asegúrese de que el sensor de caudal no esté expuesto a vibraciones.
- En el fluido de medida no deben encontrarse burbujas de gas.
- El ajuste del cero debe realizarse en condiciones normales de operación (temperatura de funcionamiento, presión de servicio etc.).

.../ System Zero adj.

Máscaras	Rango de valores	Descripción
System Zero adj.	★ + ▼	Selección del submenú "System Zero adj. Function automatic?".
Function automatic?		
System Zero adj.	* + *	Selección del submenú "System Zero adj. manual?".
manual?		

.../ System Zero adj. / System Zero adj. Function automatic?

Máscaras	Rango de valores	Descripción
System Zero adj. Slow?	* + *	Inicio del ajuste lento del cero del sistema.
System Zero adj. Fast?	* + *	Inicio del ajuste rápido del cero del sistema.

.../ System Zero adj. / System Zero adj. manual?

Máscaras	Rango de valores	Descripción
System Zero adj.	x.xxx %	Introducción del valor para el ajuste manual del cero.

7.4.12 Menú: Alarm

Introducción de los valores límite (mínimo y máximo) para las magnitudes Caudal másico, Densidad, Concentración y Temperatura. El contacto de salida digital 41 / 41 permite señalar si se sobrepasan los valores límite (mín., máx.) ajustados. La configuración se realiza a través del menú "... / Switch contacts / Contact output".

.../ Alarm

Máscaras	Rango de valores	Descripción
Min Alarm Qm 0 105 %		Introducción del valor límite inferior del caudal másico.
		El valor debe ser inferior a "Max Alarm Qm".
Max Alarm Qm	0 105 %	Introducción del valor límite superior del caudal másico.
		El valor debe ser superior a "Min Alarm Qm".
Min Alarm density	0.5 3.5 kg/l	Introducción del valor límite inferior de la densidad.
		El valor debe ser inferior a "Max Alarm density".
Max Alarm density	0.5 3.5 kg/l	Introducción del valor límite superior de la densidad.
		El valor debe ser superior a "Min Alarm density".
Min Alarm Temp.	-50 200 °C	Introducción del valor límite inferior de la temperatura.
		El valor debe ser inferior a "Max Alarm Temp.".
Max Alarm Temp.	-50 200 °C	Introducción del valor límite superior de la temperatura.
		El valor debe ser superior a "Min Alarm Temp.".
Min Alarm Concentr.	-5 105,0 %	Introducción del valor límite inferior de la concentración.
		El valor debe ser inferior a "Max Alarm Concentr.".
Max Alarm Concentr.	-5 105,0 %	Introducción del valor límite superior de la concentración.
		El valor debe ser superior a "Min Alarm Concentr.".

7.4.13 Menú: Display

Configuración del indicador de proceso del transmisor. Hay dos líneas para poder indicar por separado dos valores diferentes. Además, es posible activar el modo Multiplex. Cuando el modo Multiplex está activado, en cada línea se indican dos valores que se alternan automáticamente (cada 3 segundos).

.../ Display

Máscaras	Rango de valores	Descripción
1st Line	Veáse la tabla siguiente	Selección del valor indicado.
2nd Line		
1st Line Multiplex		
2nd Line Multiplex		

Valor	Descripción
Q [Bargraph]	Indicación del caudal en forma de barras.
Qm	Indicación del caudal másico [en forma de la unidad definida].
Qv	Indicación del flujo volumétrico [en forma de la unidad definida].
Q [%]	Indicación del caudal másico [en porcentajes].
Temperature	Indicación de la temperatura del fluido [en forma de la unidad definida].
Density	Indicación de la densidad [en forma de la unidad definida].
Concentr. Unit	Indicación de la concentración [en forma de la unidad definida].
Concentr. Percent	Indicación de la concentración [en porcentajes].
Qm Concentration	Indicación del caudal másico neto en función de la concentración actual.
TAG Nummer	Indicación del número TAG definido.
Totalizer Mass	Indicación de los totalizadores de caudal másico directo/inverso, en función del sentido de flujo
Totalizer Mass>F	Indicación del totalizador de caudal másico directo.
Totalizer Mass <r< td=""><td>Indicación del totalizador de caudal másico inverso.</td></r<>	Indicación del totalizador de caudal másico inverso.
Totalizer Volumes	Indicación de los totalizadores de flujo volumétrico directo/inverso, en función del sentido de flujo.
Totalizer Vol.>V	Indicación del totalizador de flujo volumétrico directo.
Totalizer Vol. <r< td=""><td>Indicación del totalizador de flujo volumétrico inverso.</td></r<>	Indicación del totalizador de flujo volumétrico inverso.
Totalizer Net Mass	Indicación del totalizador de caudal másico neto en función del caudal masíco neto.
Total. Net Mass >F	Indicación del totalizador de caudal másico neto directo.
Total. Net Mass <r< td=""><td>Indicación del totalizador de caudal másico neto inverso.</td></r<>	Indicación del totalizador de caudal másico neto inverso.
Pipe frequency	Frecuencia de la tubería de medida.
Blank	-
Off	Modo Multiplex desactivado (sólo para modo Multiplex).

IMPORTANTE (NOTA)

Las unidades de los valores indicados se corresponden con las indicadas en el menú "... / Unit".

7.4.14 Menú: Totalizer

Todos los cuatro/seis totalizadores cuentan hasta 10 milliones (en forma de la unidad elegida para el totalizador). Una vez que el totalizador llegue a 10 milliones, el valor del totalizador se trasladará al contador de desbordamiento correspondiente y el totalizador volverá a cero.

Para visualizar está operación en la pantalla del indicador de procesos aparecerá en la pantalla un aviso correspondiente. Se pueden contar hasta 65535 desbordamientos por cada totalizador.

Cada totalizador puede activarse o ponerse a cero por separado (entrando 0). Al activar (o poner a cero) un totalizador, el contador de desbordamiento correspondiente se pondrá automáticamente a cero.

Si en el menú "... / Mode of operation / Flow indication" se ha seleccionado la opción "Forward", en el menú "Totalizer" sólo aparecerán los parámetros de los totalizadores de caudal directo.

... / Totalizer

Máscaras	Rango de valores	Descripción	
Totalizer mass	* +*	Selección del submenú "Totalizer mass".	
Totalizer volume	* + *	Selección del submenú "Totalizer volume".	
Totalizer net. mass	* + *	Selección del submenú "Totalizer net. mass".	
Totalizer Reset	X + X	Puesta a cero de todos los totalizadores (después de confirmar la advertencia pulsando = +	
		E. Todos los totalizadores se pondrán a cero. Para poner a cero un totalizador individual hay	
		que poner a cero el parámetro correspondiente.	

... / Totalizer / Totalizer mass

... / Totalizer / Totalizer volume

... / Totalizer / Totalizer net. mass

Máscaras	Rango de valores	Descripción
Counter > F	0 10.000.000	Introducción e indicación del valor indicado por el totalizador de caudal directo.
Overflow > F	Sólo visualización	Indicación de los debordamientos del totalizador de caudal directo correspondiente. Un
		desbordamiento equivale a la cifra 10.000.000. Se pueden indicar 65.636 desbordamientos,
		como máximo.
Totalizer < R	0 10.000.000	Introducción e indicación del valor indicado por el totalizador de caudal inverso.
Overflow < R	Sólo visualización	Indicación de los debordamientos del totalizador de caudal inverso correspondiente. Un
		desbordamiento equivale a la cifra 10.000.000. Se pueden indicar 65.636 desbordamientos,
		como máximo.

7.4.15 Menú: Pulse Output

... / Pulse Output

Máscaras	Rango de valores	Descripción	
Output of	Mass	Selección del valor medido emitido en la salida de impulsos.	
	Volume	Mass: Indicación del caudal másico	
	Qm Concentration	Volume: Indicación del flujo volumétrico	
		— Qm Concentration: Indicación del caudal másico neto	
QvMax pulse		Indicación del caudal por impulso (sólo cuando se indica el flujo volumétrico).	
Qm% max pulse		Indicación de la masa por impulso (sólo cuando se indica el caudal másico).	
Pulse	0.001 1000	Introducción de los impulsos por unidad (valor de impulso).	
	imp/unidad	Si es necesario, el valor introducido se corregirá por el transmisor, ya que la frecuencia límite de	
		la salida de impulsos es de 5000 Hz.	
		IMPORTANTE (NOTA)	
		¡Un aumento del valor de impulso puede reducir el ancho de impulso!	
Pulse width	0.1 2000 ms	Introducción del ancho de impulso. El valor de impulso y ancho de impulso dependen uno del	
		otro y se corregirán por el transmisor, si es necesario.	

Ejemplos

Ejemplo 1

Ajustes	Introducción	Resultado
QmMáx = 24 kg/min = 0,4 kg/s	Ancho de impulso nuevo: 10 ms	0,4 kg/s x 100 impulsos/kg = 40 impulsos/s = 40 Hz
Unidad del totalizador: kg		Duración del período = 25 ms
Valor de impulso: 100 impulsos/kg		Ancho de impulso máximo = duración del período / 2 =
		12,5 ms
		Resultado: Se acepta el ancho de impulso introducido
		[10 ms].

Ejemplo 2

Ajustes	Introducción	Resultado
QmMáx = 6 kg/min = 0,1 kg/s = 100 g/s	Valor de impulso nuevo: 60	100g/s x 60 impulsos/g = 6000 impulsos/s = 6000 Hz
Unidad del totalizador: g	impulsos/g	Se ha sobrepasado la frecuencia límite de 5000 Hz. El
Ancho de impulso: 10 ms		transmisor pondrá el valor de impulso automáticamente a 50
		impulsos/g y la duración del período a 0,2 ms (5 kHz),
		porque ésto corresponde exactamente a 5000 Hz.
		Ancho de impulso máximo = duración del período /2 =
		0,1 ms
		Resultado: Es necesario reducir el valor de impulso
		introducido y, adicionalmente, el ancho de impulso.

IMPORTANTE (NOTA)

Si se utiliza un totalizador mecánico recomendamos utilizar un ancho de impulso de \geq 30 ms y una frecuencia límite [fmáx] de \leq 3 kHz.

7.4.16 Menú: Current output 1

... / Current output 1

Máscaras	Rango de valores	Descripción
Output of	Qm,, Qv,, Density,,	Selección del valor medido emitido en la salida de corriente 1 (31 / 32).
	Temperature,,	
	Concentration,	
Qv → I = 100 %	0.1 10.000.000	Introducción del caudal volumétrico a partir del cual la salida de corriente alcanza su valor
		máximo (20 mA) (sólo visible si el caudal volumétrico se transmite a través de la salida de
		corriente).
Density → I = 0 %	0.5 3.5 g/cm ³	Introducción de la densidad a partir de la cual la salida de corriente alcanza su valor mínimo
	gram	(0 mA) (sólo visible si la densidad se transmite a través de la salida de corriente).
Density → I = 100 %	0.5 3.5 g/cm ³	Introducción de la densidad a partir de la cual la salida de corriente alcanza su valor máximo
	gram	(20 mA) (sólo visible si la densidad se transmite a través de la salida de corriente).
Temp → I = 0 %	-50 200 °C	Introducción del valor de temperatura a partir del cual la salida de corriente alcanza su valor
71 = 0 70	00 200 0	mínimo (0 mA) (sólo visible si el valor de temperatura se transmite a través de la salida de
		corriente).
Temp → I = 100 %	-50 200 °C	Introducción del valor de temperatura a partir del cual la salida de corriente alcanza su valor
Temp → T = 100 /0	-50 200 0	máximo (20 mA) (sólo visible si el valor de temperatura se transmite a través de la salida de
		corriente).
Qm% → I = 100 %		Introducción del caudal másico neto a partir del cual la salida de corriente alcanza su valor
JIII% → I = 100 %	-	
		máximo (20 mA) (sólo visible si el caudal másico neto se transmite a través de la salida de
2		corriente).
Concentr. → I = 0 %		Introducción de la concentración a partir de la cual la salida de corriente alcanza su valor mínimo
2		(0 mA) (sólo visible si la concentración se transmite a través de la salida de corriente).
Concentr. \rightarrow I = 100 %		Introducción de la concentración a partir de la cual la salida de corriente alcanza su valor máximo
• • • •		(20 mA) (sólo visible si la concentración se transmite a través de la salida de corriente).
Current output	0 20 mA, 4 20 mA	Selección del modo de operación de la salida de corriente. Si está activada la comunicación
		HART, se debe elegir '4 20 mA'.
		IMPORTANTE (NOTA)
		La comunicación HART se realiza a través de la salida de corriente 1. Para poder
		utilizar la comunicación HART, hay que elegir el modo de operación 4 20 mA.
		 Si se utiliza el modo de operación 0 20 mA y se activa la comunicación HART,
		aparecerá un mensaje de error y el tipo de comunicación no puede modificarse.
		 Si se ha activado la comunicación HART y se activa el modo de operación 0
		20 mA, aparecerá un mensaje de error y la comunicación HART se desactivará
		automáticamente.
out for Alarm	Low, High	Selección del estado de la salida de corriente 1 en caso de fallo. El ajuste de la corriente emitida
		"Low" o "High" se realizará en los menúes siguientes.
_ow Alarm	2 3.6 mA	Selección de la corriente para alarma Low.
		El valor depende del rango de salida de corriente elegido.
		Para el rango de salida de corriente 0 20 mA, la corriente de alarma es de 0 mA.
		Para el rango de salida de corriente 4 20 mA, la corriente de alarma Low puede modificarse
		dentro de los límites 2 3,6 mA.
		Si se modifica el rango de salida de corriente, el transmisor modificará automáticamente la
		corriente de alarma Low adaptándola al rango de salida de corriente nuevo (el rango 0 20 mA
		cambiará a 0 mA y el rango 4 20 mA a 2 mA).
High Alarm	21 26 mA	Selección de la corriente para alarma High.
		El valor es independiente del rango de salida de corriente elegido, ya que el límite superior de
		ambos rangos es de 20 mA. El rango de corriente de alarma High comienza en 21 mA y acaba e
		26 mA.

7.4.17 Menú: Current output 2

A diferencia de la salida de corriente 1, la salida de corriente 2 no es apta para HART y dispone unicamente de un solo rango de salida de corriente (4 ... 20 mA).

... / Current output 2

Máscaras	Rango de valores	Descripción	
Output of	Qm, Qv, Density,	Selección del valor medido emitido en la salida de corriente 1 (31 / 32).	
	Temperature,		
	Concentration		
$Qv \rightarrow I = 100 \%$	0.1 10.000.000	Introducción del caudal volumétrico a partir del cual la salida de corriente alcanza su valor	
		máximo (20 mA)	
		(sólo visible si el caudal volumétrico se transmite a través de la salida de corriente).	
Density → I = 0 %	0.5 3.5 g/cm ³	Introducción de la densidad a partir de la cual la salida de corriente alcanza su valor mínimo	
		(0 mA) (sólo visible si la densidad se transmite a través de la salida de corriente).	
Density → I = 100 %	0.5 3.5 g/cm ³	Introducción de la densidad a partir de la cual la salida de corriente alcanza su valor máximo	
		(20 mA) (sólo visible si la densidad se transmite a través de la salida de corriente).	
Temp \rightarrow I = 0 %	-50 200 °C	Introducción del valor de temperatura a partir del cual la salida de corriente alcanza su valor	
		mínimo (0 mA) (sólo visible si el valor de temperatura se transmite a través de la salida de	
		corriente).	
Temp → I = 100 %	-50 200 °C	Introducción del valor de temperatura a partir del cual la salida de corriente alcanza su valor	
		máximo (20 mA) (sólo visible si el valor de temperatura se transmite a través de la salida de	
		corriente).	
Qm% → I = 100 %	-	Introducción del caudal másico neto a partir del cual la salida de corriente alcanza su valor	
		máximo (20 mA) (sólo visible si el caudal másico neto se transmite a través de la salida de	
		corriente).	
Concentr. → I = 0 %		Introducción de la concentración a partir de la cual la salida de corriente alcanza su valor mínimo	
		(0 mA) (sólo visible si la concentración se transmite a través de la salida de corriente).	
Concentr. → I = 100 %		Introducción de la concentración a partir de la cual la salida de corriente alcanza su valor máximo	
		(20 mA) (sólo visible si la concentración se transmite a través de la salida de corriente).	
lout for Alarm	Low, High	Selección del estado de la salida de corriente 1 en caso de fallo. El ajuste de la corriente emitida	
		"Low" o "High" se realizará en los menúes siguientes.	
Low Alarm	2 3.6 mA	Selección de la corriente para alarma Low.	
High Alarm	21 26 mA	Selección de la corriente para alarma High.	

7.4.18 Menú: Switch contacts

... / Switch contacts

Máscaras	Rango de valores	Descripción
Contact input	No function,	Selección de la función de la entrada de contacto digital (81 / 82).
	Totalizer reset. Concentr.	No function: Entrada de contacto sin función.
	Table,	Totalizer reset. Concentr. Table: Cambio de las tablas (Marix 1 / 2) para el cálculo de la
	Ext. output Shut-off,	concentración.
	Totalizer reset.	Ext. output Shut-off: La salida de corriente y salida de impulsos se ponen en cero. Los
		totalizadores se pararán.
		Totalizer reset.: Todos los totalizadores se ponen en cero.
Contact output	Veáse la tabla siguiente	Selección de la función de la salida de contacto digital (41 / 42).
		Para la función elegida, la salida puede configurarse opcionalmente como contacto de cierre o
		contacto de reposo.

Función Contact output	Descripción
No function	Sin función, salida abierta.
F/R-Signal _	Indicación del sentido de flujo; salida cerrada en caso de flujo inverso.
F/R-Signal /	Indicación del sentido de flujo; salida abierta en caso de flujo inverso.
General alarm _	Salida cerrada (no hay alarma colectiva). Abre en caso de fallo.
General alarm /	Salida abierta (no hay alarma colectiva). Cierra en caso de fallo.
MAX/MIN Alarm _	Salida cerrada (no hay alarma Mín / Máx). Abre en caso de alarma Mín / Máx.
MAX/MIN Alarm /	Salida abierta (no hay alarma Mín / Máx). Cierra en caso de alarma Mín / Máx.
MIN Alarm _	Salida cerrada (no hay alarma Mín). Abre en caso de alarma Mín.
MIN Alarm /	Salida abierta (no hay alarma Mín). Cierra en caso de alarma Mín.
MAX Alarm _	Salida cerrada (no hay alarma Máx). Abre en caso de alarma Máx.
MAX Alarm /	Salida abierta (no hay alarma Máx). Cierra en caso de alarma Máx.

7.4.19 Menú: Label

.../ Label

Máscaras	Rango de valores	Descripción
TAG number	ASCII, 8 caracteres,	Introducción de un número TAG para identificar el punto de medición (protocolo HART).
	como máximo.	
Descriptor	ASCII, 16 caracteres,	Introducción del descriptor HART.
	como máximo.	
Date	1.1.1900 31.12.2155	Fecha del fichero HART.
Unit number	Sólo visualización	Indicación del número de aparato.

7.4.20 Menú: Interface

.../ Interface

Máscaras	Rango de valores	Descripción
Communication	Off, HART	Selección del tipo de comunicación para la comunicación digital.
		Off: sin comunicación digital.
		- HART: comunicación HART activada, a través de la salida de corriente 1. Configurar antes el
		modo de operación poniendo la salida de corriente 1 en 4 20 mA.
Unit address	0 15	Introducción de la dirección HART. El protocolo HART permite la instalación de un bus con hasta
		15 equipos (1 15).
		IMPORTANTE (NOTA)
		Si la dirección ajustada es superior a 0, el aparato trabajará en modo Multidrop. La
		salida de corriente está fijado a 4 mA. A continuación, se realizará solamente la
		comunicación HART a través de la salida de corriente.

7.4.21 Menú: Function test

... / Function test

Máscaras	Rango de valores	Descripción
Function test pulse	+ =	Selección del submenú "Function test pulse Output".
Output		
Function test lout 1	+ =	Selección del submenú "Function test lout 1".
Function test lout 2	+ =	Selección del submenú "Function test lout 2".
Function test Contact	★ + ▼	Selección del submenú "Function test Contact input".
input		
Function test Contact	+ =	Selección del submenú "Function test Contact output".
output		
Function test HART	1200 Hz, 2200 Hz	Selección de la frecuencia HART simulada.
Transmitter		
Function test HART	Sólo visualización	Indicación del último comando HART recibido.
Command		
Function test Memory	+ =	Activación de la prueba de funcionamiento de la memoria.
Simulation	★ + ▼	Selección del submenú "Simulation".

\dots / Function test / Function test pulse Output

Máscaras	Rango de valores	Descripción
Pulse Output	0.001 5000 Hz	Introducción de la tasa de impulsos para la prueba funcional de la salida de impulsos. Para
		cancelar, pulsar una tecla cualquiera.

... / Function test / Function test lout 1

... / Function test / Function test lout 2

Máscaras	Rango de valores	Descripción
lout 1	0 26 mA	Introducción de la corriente de salida para la prueba funcional de la salida de corriente 1. Para
		cancelar, pulsar una tecla cualquiera.
lout 2	3.5 26 mA	

... / Function test / Function test Contact input

Máscaras	Rango de valores	Descripción
Contact input	On, Off	Prueba de funcionamiento de la entrada de contacto. Para cancelar, pulsar una tecla cualquiera.

... / Function test / Function test Contact output

Máscaras	Rango de valores	Descripción
Contact output	On, Off	Prueba funcional de la entrada de contacto. Para cancelar, pulsar una tecla cualquiera.

... / Function test / Simulation

El menú 'Simulación' contiene opciones que permiten poner en valores programables las magnitudes de medida individuales o todas las magnitudes de medida del transmisor. Cuando la simulación está activada aparecen las opciones adicionales del submenú 'Simulación'.

Éstas permiten definir para cada magnitud individual si la magnitud se debe medir o simular, así como el valor que la misma debe tener. Para ello, se puede elegir entre las posibilidades siguientes:

Valor	Descripción			
Medida	Se indicará el valor real medido de la magnitud correspondiente.			
Introducción	El valor de la magnitud se	e simulará. A continuación, se puede seleccionar un menú para ponerlo en un valor fijo.		
Step	La magnitud se simulará	y se podrá aumentar o reducir gradualmente a través de las teclas STEP y DATA siempre que		
	aparezca el indicador de	aparezca el indicador de procesos.		
Máscaras	Rango de valores	Descripción		
Simulation	On, Off	Activación de las funciones de simulación.		
Qm	Medición, introducción,	Selección de la función de simulación.		
	Step			
Qm	-115 +115 %	Introducción del caudal másico a simular [en %].		
Density	Medición, introducción,	Selección de la función de simulación.		
	Step			
Density	0,001 g/ml	Introducción de la densidad a simular [en g/ml].		
Temperature	Medición, introducción,	Selección de la función de simulación.		
	Step			
Temp. housing	Medición, introducción,	Selección de la función de simulación.		
	Step			
Temperature	-60 210 °C	Introducción de la temperatura a simular [en °C]		
Temp. housing	-60 210 °C	Introducción de la temperatura a simular [en °C]		

7.4.22 Menú: Status

... / Status

Máscaras	Rango de valores	Descripción
Error log Number: 3	* + *	Indicación del número de mensajes de error almacenados y selección del submenú "Memoria de
		errores".
Warning Register	* + *	Indicación del número de mensajes de advertencia almacenados y selección del submenú
Number: 1		"Memoria de advertencias".
Power outage	Sólo visualización	Indicación del número de fallos de red.
Status Reset	X + X	Puesta a cero de todos los totalizadores de errores, advertencias y fallos de red (después de
		confirmar la advertencia pulsando = + =. Todos los totalizadores se pondrán a cero.

... / Status / Memoria de errores

Máscaras	Rango de valores	Descripción
7 (Set) Temp.	Sólo visualización	Indicación del último error ocurrido, con número de error y estado (actual o puesto).
Measurement	(ejemplo)	Si hay otros errores, se pueden utilizar las teclas a para hojear en la lista de errores.
9a (current) Density		IMPORTANTE (NOTA)
measurement		¡El orden en el que los errores aparecen en la lista no responde a su prioridad!

... / Status / Memoria de advertencias

Máscaras	Rango de valores	Descripción
4 (Set) Ext. Cut-off	Sólo visualización	Indicación del último error ocurrido, con número de error y estado (actual o puesto).
	(ejemplo)	Si hay otros errores, se pueden utilizar las teclas a para hojear en la lista de errores.
		IMPORTANTE (NOTA)
		¡El orden en el que los errores aparecen en la lista no responde a su prioridad!

7.4.23 Menú: Versión del software

.../ Versión del software

Máscaras	Rango de valores	Descripción
CoriolisMaster 03.2012	Sólo visualización	Indicación de la versión del software
FCB FW	(ejemplo)	En la primera línea se indican el código de identificación del aparato y la fecha de revisión del
		software. En la segunda línea se indican el número de identificación y nivel de revisión del
		software.

Además de la versión del software indicada en el menú, en el lado superior de la unidad de transmisor enchufable se encuentra una placa indicadora con el número de identificación del software.

7.5 Medida de concentraciones DensiMass (sólo disponible para FCB350)

El transmisor puede calcular la concentración actual partiendo de la densidad y temperatura medidas y utilizando las matrices de concentración.

El transmisor viene configurado con las siguientes matrices de concentración predefinidas:

- Concentración de hidróxido de sodio en agua
- Concentración de alcohol en agua
- Concentración de hidratos de carbono en agua
- Concentración de almidón de maíz en agua
- Concentración de almidón de trigo en agua

Además, se pueden introducir dos matrices (de hasta 100 valores) especificadas por el usuario.

7.5.1 Precisión de la medida de concentraciones

La precisión de la medida concentraciones depende primero de la calidad de las matrices introducidas.

Sin embargo, como el cálculo se basa en las magnitudes iniciales Densidad y Temperatura, la precisión de la medida de concentraciones se determina, en fin de cuentas, por la precisión de la medida de la temperatura y densidad.

Ejemplo:

densidad: un 0% de alcohol en agua, temperatura: 20 °C [68 °F] = 998,23 g/l densidad: un 100 % de alcohol en agua, temperatura: 20 °C [68 °F] = 789,30 g/l

Concentración	Densidad	
100 %	208,93 g/l	
0,48 %	1 g/l	
0,69 %	2 g/l	

Por consiguiente, la clase de precisión de la medida de densidad determina directamente la precisión de la medida de concentraciones.

Para información detallada, véase el manual de instrucciones del aparato correspondiente.

7.5.2 Introducción de la matriz de concentraciones

La matriz de concentraciones se introduce a través del menú "... / Concentration / Variable Matrix". Los datos de la matriz deben estar disponibles (véase el capítulo "Estructura de la matriz de concentraciones").

Paso 1:

Menú "... / Concentration / Variable Matrix".

Introducción del nombre de la unidad para la matriz variable, introducción de los valores límite superior e inferior para la concentración.

Paso 2:

Introducción de los ajustes básicos de la matriz en el menú "... / Concentration / Variable Matrix / Configuration". Aquí se fija el número de matrices (1 ó 2), el número de valores de temperatura y el número de valores de concentración.

Paso 3:

Introducción de los datos de las matrices en el menú "... / Concentration / Variable Matrix / Matrix 1 / 2".

Aquí se introducen los valores de temperatura, valores de concentración (en la unidad deseada o en %) y los valores de densidad.

Una vez introducidos los datos, la matriz se calculará a través de la opción de menú "**Matrix calculation**". Los valores que falten se calcularán por interpolación o extrapolación.

Paso 4:

Almacenamiento de las matrices en el menú "... / Concentration / Variable Matrix" (a través de la opción de menú "Enter matrix finish").

La introducción de las matrices ha terminado.

7.5.3 Estructura de la matriz de concentraciones

Respecto al software, se distinguen dos valores de concentración diferentes:

1. concentración indicada en unidades (p. ej.: % o °Bé)

El rango de valores no está limitado; el valor puede transmitirse a la salida de corriente; el valor puede seleccionarse en el submenú Unidades.

2. Concentración en porcentajes (%)

El rango de valores está limitado al 0 ... 103,125 %. Este valor sólo se utiliza para el cálculo interno del caudal másico neto. El valor del caudal másico neto puede transmitirse a la salida de corriente y la salida de impulsos.

Límites de concentración MIN / MAX: -5.0 ... 105,0.

La matriz para el cálculo de concentraciones tiene la siguiente estructura:

		Temperatura 1	 Temperatura n
Valor 1 Concentración en	Valor 1 Concentración	Valor 1,1 Densidad	 Valor n,1 Densidad
%	indicada en unidades		
	(p. ej. % o °Bé)		
Valor m Concentración en	or m Concentración en Valor m Concentración		 Valor n,m Densidad
%	indicada en unidades		
	(p. ej. % o °Bé)		

Al entrar los valores en la matriz deben observarse las siguientes reglas:

- si se utiliza una sola matriz: $2 \le N \le 20$; $2 \le M \le 20$; N * M ≤ 100
- si se utilizan dos matrices: $2 \le N \le 20$; $2 \le M \le 20$; N * M ≤ 50

Los valores de densidad de una columna deben estar odenados de forma ascendente debido al algoritmo utilizado en el software del transmisor.

Density x, 1 < ... < Density x, 2 < ... < Density x, M para $1 \le x \le M$

Los valores de temperatura deben estar ordenados de forma ascendente de la izquierda a la derecha debido al algoritmo utilizado en el software del transmisor.

Temperatura 1 <... < Temperatura x < ... < Temperatura N para $1 \le x \le N$

Los valores de concentración deben estar ordenados de forma monótonamente ascendente o descendiente desde arriba hacia abajo debido al algoritmo utilizado en el software del transmisor.

Concentr. 1 <...
 Concentr. x < ... < Concentr. N para $1 \le x \le N$

Concentr. 1 >... > Concentr. x > ... > Concentr. N para $1 \le x \le N$

Ejemplo:

		10 °C (50 °F)	20 °C (68 °F)	30 °C (86 °F)
0 %	0 °BRIX	0,999 kg/l	0,982 kg/l	0,979 kg/l
10 %	10 °BRIX	1,010 kg/l	0,999 kg/l	0,991 kg/l
40 %	30 °BRIX	1,016 kg/l	1,009 kg/l	0,999 kg/l
80 %	60 °BRIX	1,101 kg/l	1,018 kg/l	1,011 kg/l

7.6 Historia de versiones del software

Según la recomendación NAMUR NE53, ABB ofrece una historia transparente y fácilmente comprensible del software.

Versión estándar y versión HART

Software FCB FW

Versión del software	Fecha de revisión	Tipo de modificación	Descripción
00.01.00	03.2012	Versión nueva	-

8 Mensajes de error

8.1 Generalidades

Los listados de alarmas indicados en forma de tabla en las páginas siguientes describen el comportamiento del transmisor en caso de errores y fallos funcionales.

La tabla lista todos los fallos posibles del transmisor, así como su influencia sobre los valores de las magnitudes medidas, el comportamiento de las salidas de corriente y la salida de alarma.

Las celdas vacías de la tabla indican que el fallo no tiene efecto sobre la magnitud medida o la señalización de alarmas por la salida correspondiente. Si las celdas de la columna 'Salida de corriente' sólo indican 'Alarma', la alarma se señalará solamente como 'alarma alta' o 'alarma baja', según la opción seleccionada en el menú de salidas de corriente.

El orden de los errores en la tabla corresponde a su prioridad.

El asiento primero tiene la prioridad más alta, el último la prioridad mas baja.

Si se producen varios errores al mismo tiempo, el error con la prioridad más alta determinará el estado de alarma de la magnitud medida y de la salida de corriente, respectivamente. En cambio, si un error de alta prioridad no tiene influencia sobre una salida o magnitud medida, el estado de las mismas será determinado por el error con la próxima prioridad más baja.

Ejemplo:

Si se produce el error 7a "T Pipe measurement", se puede ver en la tabla que este error cambia la magnitud Temperatura (temp. constante 20 °C [68 °F]).

Como la medida de temperatura es elemental para calcular la densidad y, por consiguiente, el valor Qv, las salidas de corriente asignadas a estos parámetros cambiarán al estado de alarma programado (alarma High o Low).

8.2 Sinopsis

				Ma	gnitu	des de	e med	ida		To	otalizad	lor			Salida	de co	rriente		
Prioridad	N°. de error	Texto de error	Qm [%]	Qv [%]	Densidad [g/cm³]	Temperatura [°C]	Concentración [%]	Concentración [unidad]	Caudal másico neto	Masa	Volumen	Masa neta	Qm	Qv	Densidad	Temperatura	Concentración [unidad]	Caudal másico neto	Salida de alarma
1	5a	Internal FRAM	0	0	1	20	0	0	0	_	_	_	\triangle	Â	Â	Â	\triangle	Â	\triangle
2	5b	External FRAM	0	0	1	20	0	0	0	_	_	_	Â	1	1	$\hat{\Lambda}$	A	1	<u> </u>
3	10	DSP communication	0	0	1	20	0	0	0	_	_	_	Â			$\hat{\Lambda}$	A		<u> </u>
4	1	AD Transmitter	0	0	1	20	0	0	0	_	_	_	\triangle			\triangle	\triangle		\triangle
5	11d	Sensor	0	0	1	_	0	0	0	_	_	_	A	A	A	_	A	Â	A
6	0	Sensor amplitude	0	0	1	_	0	0	0	_	_	_	\triangle		\triangle	_	A		Â
7	2a	Driver	0	0	1	_	0	0	0	_	_	_	Â	1	1	_	A	1	<u> </u>
8	2b	Driver current	0	0	1	_	0	0	0	_	_	_	Â			_	A		<u> </u>
9	9a	Density measurement	_	0	4	_	0	0	0	_	_	_	_	\triangle	\triangle	_	\triangle	\triangle	Â
11	7a	T Pipe measurement	_	_	_	20	0	0	0	_	_	_	_	\triangle	\triangle	\triangle	Λ	\triangle	Â
12	7b	T Housing measurement	_	_	_	20	_	_	_	_	_	_	_	_	_	Â	_	_	<u> </u>
13	3	Flowrate >103.25 %	103	Qm = 103	_	_	_	_	Qm = 103	-	_	_	⚠ ↑	<u> </u>	_	_	_	<u> </u>	<u> </u>
14	12	Concentration (Percent)	_	_	_	_	0	_	0	_	_	_	_	_	_	_	_	Â	\triangle
15	4	Ext. zero return	_	_	_	_	_	_	_	STOP	STOP	STOP	<u> </u>	<u> </u>	_	_	_	<u> </u>	1
16	8a	lout 1 to large	_	_	_	_	_	_	_	_	_	_	△	⚠ ↑	⚠	⚠ ↑	△	⚠ ↑	<u> </u>
17	8b	lout 1 to small	_	_	_	_	_	_	_	_	_	_	1 •	⚠	⚠	⚠	<u>1</u> \	⚠	<u> </u>
18	8c	lout 2 to large	_	_	_	_	_	_	_	_	_	_	<u>^</u> 1\↑	<u>^</u>	<u>^</u>	<u>^</u>	<u>^</u> 1\↑	<u>^</u>	Λ
19	8d	lout 2 to small	_	_	_	_	_	_	_	_	_	_	1 1 1 1 1 1 1 1 1 1	\triangle	\triangle	⚠	1 ↓	\triangle	1
20	6a	Totalizer Mass -> V	_	_	_	_	_	_	_	1)	_	_	_	_	_	_	_	_	1
21	6b	Totalizer Mass <- R	_	_	_	_	_	_	_	1)	_	_	_			_	_		$\overline{\Lambda}$
22	6c	Totalizer Vol> V	_	_	_	_	_	_	_	_	1)	_	_	-	-	_	_	-	1
23	6d	Totalizer Vol.<- R	_	_	_	_	_	_	_	_	1)	_	_	-	-	_	_	-	1
24	6e	Totalizer Net Mass -> V	_		_		_	_	_	_	_	1)	_	-	-	_	_	-	
25	6f	Totalizer Net Mass <- R	_		_	_	_	_	_	_	_	1)			-	_			
26	11a	Sensor A	0	0	1	_	0	0	0	_	_	_	$\overline{\Lambda}$	$\overline{\Lambda}$	1	_	Λ	Â	Δ
27	11b	Sensor B	0	0	1	_	0	0	0	_	_	_	Λ	A	Â	_	<u> </u>	A	<u> </u>

Los estados actuales de los totalizadores, salidas de corriente y de la salida de alarma se representan por símbolos (véase la tabla siguiente).

Símbolo	Descripción
STOP	Parada del totalizador
	Sin modificación
1)	Al producirse el error, el totalizador correspondiente vuelve a contar partiendo de cero.
\triangle	Alarma (general)
<u> </u>	Alarma High
$\triangle\!$	Alarma Low

8.3 Mensajes de error

Mensaje de error	Prioridad	Descripción	Causa posible	Indicaciones para la corrección
Error: 0	6	La amplitud del sensor, que depende	¿El error se produce sólo cuando la	Reducir la concentración de gas;
Sensor amplitude		del diámetro nominal, es inferior a 10	tubería de medida está llena?	cambiar el fluido
		mV.	"Fluido absorbente de energía" en la	
			tubería de medida (p. ej. alta	
			concentración de gas, fluidos muy	
			viscosos). La corriente de excitación	
			es insuficiente.	
			Perturbaciones mecánicas o	Desacoplar la tubería de medida
			hidráulicas muy intensas en la tubería	para aislarla de las fuentes perturbadoras
			Versión Ex y modelo de diseño	Utilizar un cable más corto, reducir la
			remoto:	resistencia mediante conexión en
			La resistencia eléctrica del cable del	paralelo o un cable de bajo ohmiaje
			excitador es demasiado alta	
Error: 1	4	El convertidor AD está saturado y no	Tensión demasiado alta del sensor	Controlar las amplitudes del sensor;
AD Transmitter		responde.		controlar si la amplitud ajustada es
		·		correcta.
			Convertidor A/D defectuoso	Cambiar la placa DSP.
Error: 2a	7	La tubería de medida no vibra	Interrupción del circuito de	En caso de diseño remoto: Controlar
Driver			regulación; el sensor no es	el cableado entre el sensor y el
			compatible con el transmisor	transmisor
Error: 2b	8	Reacción del limitador de corriente	ver Error 0	ver Error 0
Driver current		del excitador, debido a insuficiencia		
		de la corriente de excitación		
Error: 3	13	El valor ajustado bajo QmMáx se	Rango de medida demasiado	Aumentar el rango de medida
Flowrate >103.25 %		excede en más del 5 %.	pequeño	(QmMáx)
			Caudal excesivo	Reducir el caudal
Error: 4	14	El caudal se pone en cero, por lo que	La entrada de contacto externa está	Poner en "Low" la entrada de
Ext. zero return		los totalizadores se paran	puesta en "High"	contacto externa
		automáticamente		
Error: 5b	2	Pérdida de la base de datos externa	Base de datos defectuosa	Desconectar y reconectar el aparato;
External FRAM				realizar un ensayo de funcionamiento
				del transmisor
			Falta la memoria de datos externa	Instalar la memoria de datos externa
			La memoria de datos externa está	Cargar la memoria de datos externa
			vacía	
Error: 6a	19	El totalizador de caudal másico		Reprogramar el totalizador
Totalizer Mass -> V		directo está roto.		
Error: 6b	20	El totalizador de caudal másico		Reprogramar el totalizador
Totalizer Mass <- R		inverso está roto.		
Error: 6c	21	El totalizador de flujo volumétrico		Reprogramar el totalizador
Totalizer Vol> V		directo está roto.		
Error: 6d	22	El totalizador de flujo volumétrico		Reprogramar el totalizador
Totalizer Vol.<- R		inverso está roto.		
Error: 6e		El totalizador de caudal másico neto		Reprogramar el totalizador
Totalizer Net Mass ->		está roto.		
V				
Error: 6f		El totalizador de caudal másico neto		Reprogramar el totalizador
Totalizer Net Mass <-		está roto.		_
R				

Mensaje de error	Prioridad	Descripción	Causa posible	Indicaciones para la corrección
Error: 7a	11	Error durante la medida de	Cableado incorrecto	Controlar el cableado entre el
T Pipe measurement		temperatura.	(sólo en caso de diseño remoto)	transmisor y el sensor de caudal
		Para la compensación de	El Pt 100 tiene un defecto	Controlar en el sensor la resistencia
		temperatura de los valores de		del Pt 100
		medida Qm y Densidad, se parte		
		ahora de 20°C, es decir, la medida		
		sigue funcionando correctamente a		
		una temperatura del fluido de ~20		
		°C.		
Error: 7b	12	Error durante la medida de	Cableado incorrecto	Controlar el cableado entre el
T Housing		temperatura.	(sólo en caso de diseño remoto)	transmisor y el sensor de caudal
measurement		Para la compensación de	El Pt 100 tiene un defecto	Controlar en el sensor la resistencia
		temperatura de los valores de		del Pt 100
		medida Qm y Densidad, se parte		
		ahora de 20°C, es decir, la medida		
		sigue funcionando correctamente a		
		una temperatura del fluido de ~20		
Error: 8a	15	°C.	Danga damasinda astropha	Amplier of renge
	15	Se ha sobrepasado el rango máximo programado para la Salida de	Rango demasiado estrecho	Ampliar el rango
lout 1 to large		corriente 1		
Error: 8b	16	El valor de medida ha bajado por	Rango demasiado estrecho	Ampliar el rango
lout 1 to small	10	debajo del rango mínimo	Trango demasiado estrecho	Ampilar er rango
lout i to siriai		programado para la Salida de		
		corriente 1		
Error: 8c	17	Se ha sobrepasado el rango máximo	Rango demasiado estrecho	Ampliar el rango
lout 2 to large		programado para la Salida de		
		corriente 2		
Error: 8d	18	El valor de medida ha bajado por	Rango demasiado estrecho	Ampliar el rango
lout 2 to small		debajo del rango mínimo		
		programado para la Salida de		
		corriente 2		
Error: 9a	9	La densidad del fluido en el tubo de	Este error va acompañado	Véase los errores 1 y 9.
Density measurement		medida está fuera de la	normalmente por los errores 1 y 9.	
		especificación.	Véase los errores 1 y 9	
Error: 11a	23	Falta la señal del Sensor A	Sensor A defectuoso o interrupción	Medir la resistencia del Sensor A.
Sensor A			del circuito de regulación de	En caso de diseño remoto: Controlar
			amplitud	el cableado entre el sensor y el
Firm 441	0.4	F-14-1	Operator District	transmisor
Error: 11b	24	Falta la señal del Sensor B	Sensor B defectuoso o interrupción	Medir la resistencia del Sensor B.
Sensor B			del circuito de regulación de	En caso de diseño remoto: Controlar
			amplitud	el cableado entre el sensor y el
Error: 11d	5	Faltan las señales de al menos dos	Existen al menos dos sensores	transmisor Medir la resistencia de los sensores.
Sensor	3	sensores	defectuosos o el circuito de	En caso de diseño remoto: Controlar
23/100/		33.130.00	regulación de amplitud está	el cableado entre el sensor y el
			interrumpido	transmisor
Error: 12		Concentración en porcentajes < 0 %	Concentración en porcentajes < 0 %	Adaptación de los datos de la matriz
Concentration		o > 103,125 %.	o > 103,125 %.	en el submenú Concentración
(Percent)				
Error		No es posible cambiar los	Está activado el interruptor de	Desactivar el interruptor de
Operating protection		parámetros	protección contra modificaciones no	protección contra modificaciones no
			autorizadas	autorizadas

8.4 Mensajes de advertencia

Advertencia	Prioridad	Descripción	Causa posible	Indicaciones para la corrección
Advertencia: 1	16	El modo de simulación está activado.	En el submenú Prueba de	Desactivar el modo de simulación.
Simulation			funcionamiento está activado el	
			modo de simulación.	
Advertencia: 2	1	Puesta a cero de un totalizador	-	-
totalizer reset				
Advertencia: 3	3	El valor Qm baja por debajo del	El valor Qm baja por debajo del	Reducir el umbral de alarma MIN
Min Alarm Qm		umbral de alarma MIN.	umbral de alarma MIN.	
Advertencia: 4	5	La densidad baja por debajo del	La densidad baja por debajo del	Reducir el umbral de alarma MIN
Min Alarm Density		umbral de alarma MIN.	umbral de alarma MIN.	
Advertencia: 5	7	La temperatura baja por debajo del	La temperatura baja por debajo del	Reducir el umbral de alarma MIN.
Min Alarm Temp.		umbral de alarma MIN.	umbral de alarma MIN.	
Advertencia: 6		La concentración baja por debajo del	La concentración baja por debajo del	Reducir el umbral de alarma MIN.
Min Alarm Conc.		umbral de alarma MIN. La histéresis	umbral de alarma MIN.	
		de conmutación es del ± 0,1 de la		
		unidad de concentración ajustada.		
Advertencia: 7	2	El valor Qm sobrepasa el umbral de	El valor Qm sobrepasa el umbral de	Aumentar el umbral de alarma MAX
Max Alarm Qm		alarma MAX.	alarma MAX.	
Advertencia: 8	4	La densidad sobrepasa el umbral de	La densidad sobrepasa el umbral de	Aumentar el umbral de alarma MAX
Max Alarm Density		alarma MAX.	alarma MAX.	
Advertencia: 9	6	La temperatura sobrepasa el umbral	La temperatura sobrepasa el umbral	Aumentar el umbral de alarma MAX
Max Alarm Temp.		de alarma MAX.	de alarma MAX.	
Advertencia: 10		La concentración sobrepasa el	La concentración sobrepasa el	Aumentar el umbral de alarma MAX
Max Alarm Conc.		umbral de alarma MAX. La histéresis	umbral de alarma MAX.	
		de conmutación es del ± 0,1 de la		
		unidad de concentración ajustada.		
Advertencia: 11	9	Aparecerá en display durante 1 min.	Se ha cambiado la memoria de datos	-
Ext. Data loaded		después de conectar el aparato	externa (FRAM)	
Advertencia: 12	10	Aparecerá en display durante 1 min.	Actualización del software	-
Update int. data		después de conectar el aparato	Se ha cambiado la memoria de datos	
			externa (FRAM)	
Advertencia: 13	11	Aparecerá en display durante 1 min.	Actualización del software	-
Update ext. data		después de conectar el aparato	Se ha cambiado la memoria de datos	
			externa (FRAM)	

Advertencia	Prioridad	Descripción	Causa posible	Indicaciones para la corrección
Advertencia: 14	12	Desbordamiento del totalizador de	Desbordamiento del totalizador de	Puesta a cero del totalizador
Overflow -> F Mass		caudal másico directo	caudal másico directo	Nota: aumentando la unidad se
Advertencia: 15	13	Desbordamiento del totalizador de	Desbordamiento del totalizador de	puede prolongar el tiempo hasta el
Overflow <- R Mass		caudal másico inverso	caudal másico inverso	próximo desbordamiento
Advertencia: 16	14	Desbordamiento del totalizador de	Desbordamiento del totalizador de	
Overflow -> F Volume		caudal másico directo	caudal másico directo	
Advertencia: 17	14	Desbordamiento del totalizador de	Desbordamiento del totalizador de	
Overflow <- R		flujo volumétrico inverso	flujo volumétrico inverso	
Volume				
Advertencia: 18		Desbordamiento del totalizador de	Desbordamiento del totalizador de	
Overflow -> F %M		caudal másico neto directo	caudal másico neto directo	
Advertencia: 19		Desbordamiento del totalizador de	Desbordamiento del totalizador de	
Overflow <- R %M		caudal másico inverso	caudal másico inverso	
Advertencia: 20	17	El aparato marcha en sentido inverso	El aparato trabaja en modo Caudal	-
Reverse Q			directo, pero el fluido en el sensor de	
			caudal fluye en sentido inverso.	

9 Mantenimiento / Reparación

9.1 Generalidades

ADVERTENCIA - ¡Peligro por corriente eléctrica!

Cuando la caja está abierta, la protección CEM no funciona y el usuario no está protegido contra el riesgo de contacto accidental.

Antes de abrir la caja hay que desconectar la alimentación eléctrica.

AVISO - ¡Daño de los componentes!

Los componentes electrónicos en las placas de circuitos impresos pueden dañarse por electricidad estática (observar las directivas sobre componentes expuestos a riesgos por electricidad estática (ESD)).

Antes de tocar los componentes electrónicos, asegurarse de que la electricidad estática de su cuerpo se descargue.

Todos los trabajos de reparación y mantenimiento deberán realizarse, exclusivamente, por el personal técnico cualificado del servicio posventa.

Si se cambian o se reparan componentes individuales, se deberán instalar repuestos originales.

9.2 Limpieza

Al limpiar la superficie de las cajas de los aparatos de medida, asegurarse de que el agente limpiador utilizado no dañe las juntas y la superficie de la cajas.

Para la limpieza únicamente debe utilizarse un paño humedecido, para impedir cargas electrostáticas que dañen el aparato.

9.3 Sensor de caudal

El sensor casi no necesita mantenimiento.

Se recomienda controlar anualmente los siguientes puntos:

- Condiciones ambientales (ventilación, humedad)
- Estanqueidad de las conexiones a proceso
- Entradas de cables y tornillos de la tapa,
- Seguridad funcional de la alimentación de corriente, la protección contra los rayos y la tierra de la red.

Reparación del sensor de caudal

En el caso de que sea necesario reparar el sensor de caudal, se deberán observar y seguir las indicaciones del capítulo "Seguridad / Devolución del aparato".

IMPORTANTE (NOTA)

El uso de medidores desarrollados para zonas potencialmente explosivas está sujeto a las normas vigentes en el lugar de destino. Véase al respecto también los capítulos 6.6, 6.7, 12 y 13.

9.4 Transmisor

9.4.1 Cambio

Todos los parámetros de ajuste se almacenan en una memoria de datos externa. En caso de cambio de transmisor, los parámetros de ajuste se extraen por lectura de la memoria de datos externa y se transfieren al transmisor nuevo.

Los datos del sensor de caudal y los parámetros de ajuste del cliente se importan automáticamente.

Al cambiar el transmisor el usuario deberá asegurarse de que el número de serie de la memoria de datos externa corresponda exactamente con el número de serie del sensor de caudal.

Cuando sea necesario cambiar el transmisor, nuestro servico técnico estará siempre a su disposición para asesorarle y contestar sus preguntas.

Para cambiar un transmisor por otro con una versión anterior del software, recomendamos contactar siempre con nuestro servicio posventa.

Posición de la memoria de datos externa (FRAM)

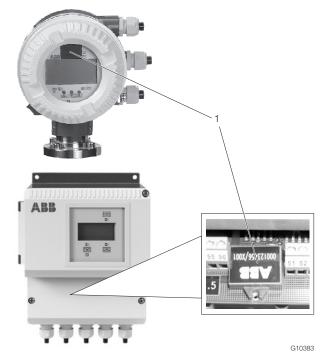


Fig. 34: Posición del módulo FRAM 1 FRAM (enchufable)

La memoria de datos externa (FRAM) del sensor de caudal se encuentra en la posición indicada en la figura (depende del diseño – compacto o remoto).

ADVERTENCIA - ¡Peligro por corriente eléctrica!

Cuando la caja está abierta, la protección CEM no funciona y el usuario no está protegido contra el riesgo de contacto accidental.

Antes de abrir la caja hay que desconectar la alimentación eléctrica.

10 Datos técnicos - Sensor de caudal

10.1 Diseños

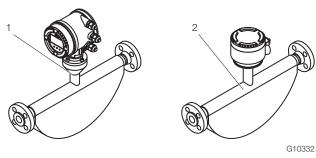


Fig. 35: Sensor de caudal – FCB300

1 Diseño compacto | 2 Diseño remoto (sin transmisor)

10.2 Diámetro nominal y rango de medida

Diámetro nominal	Q _{max} en kg/h (lb/h)
DN 15 (1/2")	0 8.000 (0 17637)
DN 25 (1")	0 35.000 (0 77162)
DN 50 (2")	0 90.000 (0 198416)

10.2.1 Rango de caudal recomendado

Líquidos:

- El rango de caudal recomendado es de entre un $5 \dots 100 \%$ del valor Q_{max} .
- $-\,\,$ Se recomienda evitar caudales inferiores al 1 % del valor ${\rm Q}_{\rm max}.$

Gases:

- El caudal de gases en la tubería de medida (velocidad de flujo) no debe exceder de 0,3 Mach (~100 m/s (328 ft/s)).
- El rango de caudal máximo de los gases depende de la densidad de operación. En la página www.abb.com/flow se encuentran ayudas correspondientes para el diseño y dimensionamiento.

10.3 Precisión

10.3.1 Condiciones de referencia

Medio de calibración	Agua — Temperatura: 25 °C (77 °F) ±5 K — Presión: 2 4 bar (29 58 psi)	
	- Flesion. 2 4 bai (29 36 psi)	
Temperatura ambiente	25 °C (77 °F) +10 K / -5 K	
Alimentación eléctrica	Tensión de alimentación según la	
	placa de características U _N ±1 %	
Fase de calentamiento	30 minutos	
Instalación	 Instalación según se describe en "Instrucciones de montaje" y "Posiciones de montaje" Sin fase gaseosa visible Sin trastornos mecánicos o hidráulicos exteriores, especialmente: cavitación 	
Calibración de la salida	Salida de impulsos	
Influencia de la salida	Igual que la salida de impulsos ±	
analógica sobre la precisión de	0,1 % del valor medido	
medida		

10.3.2 Precisión de medida

La precisión de la medida de caudal se calcula como sigue:

Caso 1:

Si

se considera que la

- desviación máxima de medida es:
 - ± precisión básica en % del valor medido
- reproducibilidad es:
 - ± 1/2 x precisión básica en % del valor medido

Caso 2:

Si

se considera que la

- desviación máxima de medida es:
 - \pm (estabilidad del cero / valor medido) x 100% del valor medido
- reproducibilidad es:
 - \pm 1/2 x (estabilidiad del cero / valor medido) x 100% del valor medido

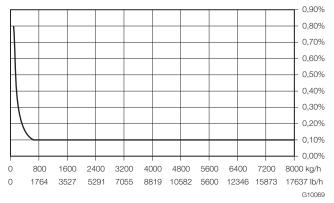


Fig. 36: Cálculo de la desviación de medida -FCB350 DN15 (ejemplo)

Dinámica de medida	Caudal	Desviación máxima de medida
100:1	80 kg/h (176,4 lb/h)	0,8 % del valor medido
50:1	160 kg/h (352,7 lb/h)	0,4 % del valor medido
10:1	800 kg/h (1763,7 lb/h)	0,1 % del valor medido
2:1	4000 kg/h (8818,5 lb/h)	0,1 % del valor medido
1:1	8000 kg/h (17637 lb/h)	0,1 % del valor medido

Desviación de medida y precisión básica para líquidos

	FCB330	FCB350
Caudal másico	± 0,4 % del valor medido	± 0,15 % del valor
	± 0,25 % del valor	medido
	medido	± 0,1 % del valor medido
		(opcional)
Flujo volumétrico	± 0,4 % del valor medido	± 0,15 % del valor
	± 0,25 % del valor	medido
	medido	
Densidad	0,010 kg/l ¹⁾	0,002 kg/l ¹⁾
		0,001 kg/l ²⁾
		0,0005 kg/l (opcional) 3)
Reproducibilidad	0,002 kg/l	0,002 kg/l ¹⁾
para la densidad		0,001 kg/l ²⁾
		0,00025 kg/l (opcional) 3)
Temperatura	1 K	0,5 K

Desviación de medida y precisión básica para gases

	FCB330	FCB350
Caudal másico	± 1 % del valor	± 0,5 % del valor
	medido	medido
Temperatura	1 K	0,5 K

10.3.3 Estabilidad del cero

Diámetro nominal	kg/h (lb/h)
DN 15 (1/2")	0,64 (1,41)
DN 25 (1")	2,16 (4,76)
DN 50 (2")	7,20 (15,87)

10.3.4 Influencia de la temperatura del fluido

Para el caudal, inferior al \pm 0,0015 % del valor $Q_{max}\,/$ 1 K. Para la densidad, inferior a 0,0001 kg/dm³ / 1 K.

10.3.5 Influencia de la presión de servicio

Diámetro nominal	Caudal [% del valor	Densidad
	medido / bar]	[kg/dm ³ / bar]
DN 15 (1/2")	Sin influencia	Sin influencia
DN 25 (1")	Sin influencia	Sin influencia
DN 50 (2")	0,01 %	0,0004

Para el rango de densidad de 0,5 ... 1,8 kg/dm³
 Igual que la indicada bajo 1 y para el rango de temperatura del fluido -10 ... 50 °C (14 ... 122 °F)

Igual que la indicada bajo 2 y después del ajuste de campos en condiciones de servicio

10.4 Datos técnicos

10.4.1 Pérdida de presión

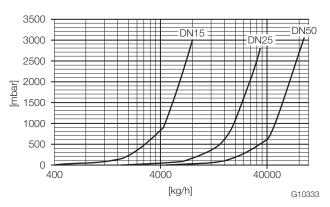


Fig. 37: Curva de pérdida de presión (medida con agua, viscosidad: 1 mPas)

10.4.2 Rango de viscosidad

Viscosidad dinámica máxima: ≤ 1 Pas (1000 mPas = 1000 cP)

Para viscosidades más elevadas, por favor consulte con ABB.

10.4.3 Límites de temperatura °C (°F)

IMPORTANTE (NOTA)

Si el aparato se utiliza en zonas potencialmente explosivas, se deberán observar las especificaciones de temperatura adicionales indicadas en el capítulo "Datos técnicos relevantes para la protección Ex".

Rango de temperatura del fluido

FCB330: -50 ... 160 °C (-58 ... 320 °F) FCB350: -50 ... 200 °C (-58 ... 392 °F)

Rango de temperatura ambiente

Estándar: -20 ... 60 °C (-4 ... 140 °F) Opcional: -40 ... 60 °C (-40 ... 140 °F)

10.4.4 Conexiones a proceso

- Diseño bridado según EN / ASME
- Tri-Clamp según DIN 32676 (ISO 2852)
- DN 15 ... 50 (1/2 ... 2"): línea 3
- BPE Tri-Clamp
- DN 15 ... 50 (1/2 ... 2")

10.4.5 Presión nominal

PN 16, PN 40, PN 100 CL 150, CL 300, CL 600

La presión de servicio máxima permitida depende de la conexión a proceso utilizada, la temperatura del fluido, los tornillos y del material de las juntas.

10.4.6 Carcasa como dispositivo de protección (opcional)

Máx. 60 bar (870 psi)

10.4.7 Directiva de equipos apresión

Evaluación de conformidad según la categoría III, grupo de fluidos 1, gas

Asegúrese de que el material de la tubería de medida sea resistentes a los efectos corrosivos del fluido.

10.4.8 Notas sobre la conformidad EHEDG

Las tuberías y fluidos pueden contaminarse por bacterias y sustancias químicas tóxicas.

Para un montaje conforme a la normativa EHEDG es imprescindible que se cumplan las condiciones de instalación correspondientes.

Para instalaciones según la normativa EHEDG es absolutamente necesario que la combinación de conexión a proceso y juntas realizada por el cliente o propietario cumplen la normativa EHEDG.

Sírvase observar al respecto las indicaciones de la versión actual del documento:

EHEDG Position Paper: "Hygienic Process connections to use with hygienic components and equipment".

10.4.9 Materiales para el transmisor

Caja	
Metal ligero fundido, pintado	
Color de la carcasa	
Parte central:	RAL 7012
_ – Тара:	RAL 9002
Espesor de la capa de pintura:	80 120 μm

10.4.10 Material del sensor de caudal

Partes mojadas

Acero inoxidable

- 1.4404 (AISI 316L)
- 1.4435 (AISI 316L) (certificado según EHEDG con material para sensor de caudal (AISI 316L))

Hastelloy C4 (2.4610) (en preparación)

Opcional: fabricación según NACE MR0175 y MR0103 (ISO 15156)

Caja

Acero inoxidable 1.4404 (AISI 316L),1.4301 (AISI 304), 1.4308 (ASTM CF8)

10.4.11 Cargas del material de las conexiones a proceso

Diseño	Diámetro nominal	PS _{max}	TS _{max}	TS _{min}
Racor roscado	DN 15 40	40 bar	140 °C	-40 °C
(DIN 11851)	(1/2 1 1/2")	(580 psi)	(284 °F)	(-40 °F)
	DN 50 100	25 bar	140 °C	-40 °C
	(2 4")	(363 psi)	(284 °F)	(-40 °F)
Tri-Clamp	DN 15 50	16 bar	120 °C	-40 °C
(DIN 32676)	(1/2 2")	(232 psi)	(248 °F)	(-40 °F)
	DN 65 100	10 bar	120 °C	-40 °C
	(2 1/2 4")	(145 psi)	(248 °F)	(-40 °F)

10.4.12 Curvas de carga del material de los aparatos bridados

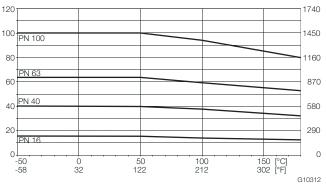


Fig. 38: Brida DIN de acero inoxidable 1.4571 / 1.4404 (316Ti / 316L) hasta DN 150 (6")

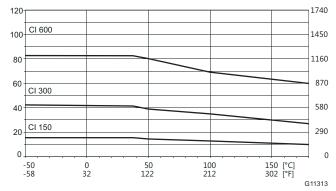


Fig. 39: Brida DIN de acero inoxidable 1.4571 / 1.4404 (316Ti / 316L) hasta DN 150 (6")

11 Datos técnicos - Transmisor

11.1 Generalidades

G10320

Fig. 40: Transmisor FCB300 en caja de campo

11.2 Datos técnicos

11.2.1 Rango de medida

El rango de medida es ajustable entre 0,01 ... 1 Qmáx.

11.2.2 Modo de protección

IP 65 / IP 67, NEMA 4X

11.2.3 Conexión eléctrica

Racor atornillado para cables M20 x 1,5 o 1/2" NPT.

En caso del modelo de diseño remoto, la longitud máxima del cable de señal no debe ser superior a 10 m (33 ft) (cables más largos: bajo demanda).

11.2.4 Alimentación eléctrica

Voltaje de alimentación	100 230 V AC, 47 63 Hz
	(Tolerancia -15 % / +10 %)
	20,4 26,4 V AC, 47 63 Hz
	20,4 31,2 V DC
	(Ondulación armónica: ≤ 5 %)
Consumo de potencia	S ≤ 25 VA

11.2.5 Tiempo de reacción

Como función escalonada del 0 a 99 % (corresponde a 5 τ) \geq 1 s

11.2.6 Temperatura ambiente

Estándar: -20 ... 60 °C (-4 ... 140 °F) Opcional: -40 ... 60 °C (-40 ... 140 °F)

En el caso de uso a temperaturas inferiores a -20 °C (-4 °F) ya no se puede leer la pantalla y se recomienda utilizar el sistema electrónico de manera que las vibraciones se reduzcan al minimo posible.

La plena funcionalidad se obtiene a temperaturas superiores a $-20~^{\circ}\text{C}$ (-4 $^{\circ}\text{F}$).

11.2.7 Versión de caja

Caja	
Metal ligero fundido, pintado	
Color de la carcasa	
Parte central:	RAL 7012
_ Тара:	RAL 9002
Espesor de la capa de pintura:	80 120 μm

11.2.8 Medida de caudal directo / inverso

El sentido de flujo se indica mediante flechas (en la pantalla LCD del transmisor) y la salida de contacto digital (si está programada).

11.2.9 Indicador LCD

Indicador LCD, 2 líneas, con pantalla retroiluminada. Ambas líneas de la pantalla LCD se pueden configurar libremente.

Se pueden indicar los siguientes valores:

- Caudal másico
- Flujo volumétrico
- Densidad y temperatura
- Totalización de caudal, 7 dígitos con contador de desbordamiento e indicación de la unidad física para la masa o el volumen.

En el caso de los modelos de diseño remoto, la caja del transmisor puede girarse unos 180° en cada dirección. El indicador LCD puede girarse en cuatro posiciones para optimizar la legibilidad de la pantalla.

11.2.10 Mando

El control del transmisor y la introducción de los paramétros se efectúan a través de las tres teclas de control del transmisor. Alternativamente, es posible programar el aparato con un puntero magnético cuando la caja del transmisor está cerrada.

Fig. 41: Control mediante puntero magnético 1 FRAM (enchufable) | 2 Puntero magnético

11.2.11 Seguridad de datos

El almacenamiento de datos se realiza mediante la memoria FRAM interna del transmisor. Los datos se almacenan durante un período de tiempo de más de 10 años, sin alimentación eléctrica adicional.

El reconocimiento de hardware y software se realiza de acuerdo con la recomendación NAMUR NE53.

IMPORTANTE (NOTA)

El aparato cumple la Directiva CEM 2004/108/CE y la Directiva de baja tensión 2006/95/CE (EN 61010-1).

11.3 Especificaciones eléctricas

11.3.1 Salidas de corriente

Salida de corriente 1, a	ctiva
Señal de salida	activa, 0 20 mA ó 4 20 mA, conmutable
Carga	0 Ω ≤ R _B ≤560 Ω
Inseguridad de	< 0,1 % del valor medido
medición	
Terminales	31 / 32
Valores medidos	Caudal másico, flujo volumétrico, densidad y
	temperatura (libremente programable
	mediante el software)

Salida de corriente 1 pa	siva
Señal de salida	Pasiva, 4 20 mA
Carga	0 Ω ≤ R _B ≤600 Ω
Tensión de fuente	12 V ≤ U _q ≤ 30 V
Inseguridad de	< 0,1 % del valor medido
medición	
Terminales	31 / 32
Valores medidos	Caudal másico, flujo volumétrico, densidad y
	temperatura (libremente programable
	mediante el software)

Salida de corriente 2 pasiva					
Señal de salida	Pasiva, 4 20 mA				
Carga	0 Ω ≤ R _B ≤600 Ω				
Tensión de fuente	12 V ≤ U _q ≤ 30 V				
Inseguridad de	< 0,1 % del valor medido				
medición					
Terminales	33 / 34				
Valores medidos	Caudal másico, flujo volumétrico, densidad y				
	temperatura (libremente programable				
	mediante el software)				

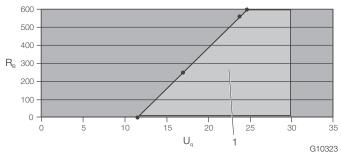


Fig. 42: Tensión de fuente permitida en función de la resistencia de la carga a $I_{\rm max}$ = 22 mA

1 Rango permitido

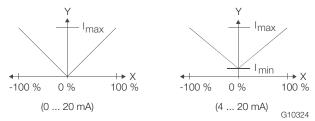


Fig. 43

IMPORTANTE (NOTA)

Información de fallo según la recomendación NAMUR NE43

11.3.2 Salida de impulsos

Salida de impulsos normalizada (máx. 5 kHz) con valor de impulso ajustable entre 0,001 ... 1000 impulsos por unidad. El ancho de impulso es ajustable entre 0,1 ... 2000 ms. La salida está separada galvánicamente de las salidas de corriente.

	Pasiva	Activa
Tensión de servicio	16 V ≤ U _{CEH} ≤ 30 V DC	16 V ≤ U ≤ 30 V DC
	0 V ≤ U _{CEL} ≤ 2 V	Carga ≥ 150 Ω
Corriente de servicio	$0 \text{ mA} \le I_{\text{CEH}} \le 0.2 \text{ mA}$	-
	2 mA ≤ I _{CEL} ≤ 220 mA	
fmáx	5 kHz	5 kHz
Ancho de impulso	0,1 2000 ms	0,1 2000 ms
Terminales	51 / 52	51 / 52

IMPORTANTE (NOTA)

Si se utiliza un totalizador mecánico recomendamos utilizar un ancho de impulso de \geq 30 ms y una frecuencia límite [fmáx] de \leq 3 kHz.

11.3.3 Salidas de contacto digitales

La función de conmutación puede programarse mediante el software.

Función de	Control del sistema (contacto de reposo o
conmutación	contacto de cierre).
	Directo / Inverso (cerrada en el caso de
	caudal directo)
	 Alarma Mín./Máx. (contacto de reposo o
	contacto de cierre)
Salida "cerrada"	0 V ≤ U _{CEL} ≤ 2 V
	2 mA ≤ I _{CEL} ≤ 220 mA
Salida "abierta"	16 V ≤ U _{CEH} ≤ 30 V DC
	$0 \text{ mA} \le I_{CEH} \le 0.2 \text{ mA}$
Terminales	41 / 42

11.3.4 Entradas de contacto digitales

La función de conmutación puede programarse mediante el software.

Función de	Desconexión externa de la salida
conmutación	Puesta a cero externa del totalizador
Entrada "On"	16 V ≤ U _{KL} ≤ 30 V
Entrada "Off"	0 V ≤ U _{KL} ≤ 2 V
Resistencia interna	Ri = 2 kΩ
Terminales	81 / 82

Todas las entradas y salidas están separadas galvánicamente entre sí.

12 Datos técnicos relevantes para la protección Ex según ATEX / IECEx

12.1 Especificaciones eléctricas

12.1.1 Sinopsis de las diferentes opciones de salida

Versiones	ATEX Zona 2	ATEX Zona 1
Versión I	Salida de corriente 1: activa	Salida de corriente 1: activa
Opción de salida A / B	 Salida de corriente 2: pasiva 	 Salida de corriente 2: pasiva
en la referencia de pedido	 Salida de impulsos: activa / pasiva, conmutable 	 Salida de impulsos: pasiva,
	Entrada y salida de contacto: pasiva	Entrada y salida de contacto: pasiva
Versión II		Salida de corriente 1: pasiva
Opción de salida D		 Salida de corriente 2: pasiva
en la referencia de pedido		Salida de impulsos: pasiva
		Entrada y salida de contacto: pasiva

12.1.2 Versión I: salidas de corriente activa / pasiva

	Tipo de protección Valores generales				Tipo de p	rotección	Tipo de protección "ib"					
	"nA"(Z	Zona 2)	de funcionamiento		"e" (Zona 1)		(Zona 1)					
Salida de corriente 1, activa	U _i (V)	I _i (mA)	U _b (V)	I _b (mA)	U (V)	I (mA)	U_{o}	Io	Po	Co	C _o pa	Lo
Terminales 31 / 32							(V)	(mA)	(mW)	(nF)	(nF)	(mH)
El terminal 32 está							20	100	500	217	0	3,8
conectado al "PA".	30	30	30	30	60	35	Ui	l _i	Pi	Ci	C _i pa	Li
							(V)	(mA)	(mW)	(nF)	(nF)	(mH)
							60	100	500	2,4	2,4	0,17
Salida de corriente 2 pasiva	30	30	30	30	60	35	30	100	760	2,4	2,4	0,17
Terminales 33 / 34												
El terminal 34 está												
conectado al "PA".												
Salida de impulsos, pasiva	30	65	30	65	60	35	15	30	115	2,4	2,4	0,17
Terminales 51 / 52												
Salida de contacto, pasiva	30	65	30	65	60	35	15	30	115	2,4	2,4	0,17
Terminales 41 / 42												
Entrada de contacto, pasiva	30	10	30	10	60	35	30	60	500	2,4	2,4	0,17
Terminales 81 / 82												

Todas las entradas y salidas están separadas galvánicamente entre sí y de la alimentación de corriente. Sólo las salidas de corriente 1 y 2 no están separadas galvánicamente entre sí, si se utiliza la versión para la zona 1.

Modelo: FCB3xx-A1, FC	CT3xx-A1 o F	CB3xx-A2, I	FCT3xx-A2									
	Tipo de p	rotección	Valores (generales	Tipo de l	orotección		Tij	po de pro	otección	"ia"	
	"nA" (2	Zona 2)	de funcio	namiento	"e" (2	Zona 1)			(Zo	na 1)		
	U _i (V)	I _i (mA)	U _b (V)	I _b (mA)	U (V)	I (mA)	Ui	I _i	Pi	Ci	C _i pa	L _i
							(V)	(mA)	(mW)	(nF)	(nF)	(mH)
Salida de corriente 1	30	30	30	30	60	35	60	300	2000	0,47	0,47	0,17
pasiva												
Terminales 31 / 32												
Salida de corriente 2	30	30	30	30	60	35	60	300	2000	0,47	0,47	0,17
pasiva												
Terminales 33 / 34												
Salida de impulsos,	30	65	30	65	60	35	60	300	2000	0,47	0,47	0,17
pasiva												
Terminales 51 / 52												
Salida de contacto,	30	65	30	65	60	35	60	300	2000	0,47	0,47	0,17
pasiva												
Terminales 41 / 42												
Entrada de contacto,	30	10	30	10	60	35	60	300	2000	0,47	0,47	0,17
pasiva												
Terminales 81 / 82												

Todas las entradas y salidas están separadas galvánicamente entre sí y de la alimentación de corriente.

12.1.4 Condiciones especiales de conexión

Los circuitos eléctricos de salida están diseñados de manera que puedan conectarse a circuitos con o sin seguridad intrínseca.

No están permitidas combinaciones de circuitos eléctricos con y sin seguridad intrínseca. Al cambiar el tipo de protección 'e' se deben seguir las instrucciones del capítulo 6.6.7.

A lo largo de la sección de la línea de los circuitos intrínsicamente seguros deberá establecerse una conexión equipotencial.

La tensión de cálculo de los circuitos sin seguridad intrínseca es $U_{\rm M}$ = 60 V.

Para conectar un amplificador NAMUR, la salida de contacto y la salida de impulsos (terminales 41 / 42, 51 / 52) pueden conectarse internamente de manera que funcionen como contacto NAMUR.

En el estado de entrega, los racores atornillados para cables están diseñados en color negro. En caso de que las salidas de señal se conecten a circuitos intrínsicamente seguros, se recomienda que para las entradas de cable correspondientes se utilicen las tapas de color azul claro suministradas.

IMPORTANTE (NOTA)

Si el conductor protector (PE) se conecta en el espacio de conexión del caudalímetro, debe asegurarse de que en la zona potencialmente explosiva no pueda producirse una diferencia de potencial peligrosa entre el conductor protector (PE) y la conexión equipotencial (PA).

12.2 Sensor de caudal - modelo FCB300

12.2.1 Clase de temperatura

Modelo FCB3xx-A1Y Zona 1			
Temperatura ambiente	≤40 °C (≤104 °F)	≤50 °C (≤122 °F)	≤60 °C (≤140 °F)
Clase de temperatura			
T1	200 °C (392 °F)	200 °C (392 °F)	200 °C (392 °F)
T2	200 °C (392 °F)	200 °C (392 °F)	200 °C (392 °F)
Т3	185 °C (365 °F)	180 °C (356 °F)	180 °C (356 °F)
T4	125 °C (257 °F)	120 °C (248 °F)	120 °C (248 °F)
T5	85 °C (185 °F)	85 °C (185 °F)	75 °C (167 °F)
Т6	65 °C (149 °F)	65 °C (149 °F)	60 °C (140 °F)
Modelo FCB3xx-A2Y Zona 2 Temperatura ambiente	≤40 °C (≤104 °F)	≤50 °C (≤122 °F)	≤60 °C (≤140 °F)
Clase de temperatura			
T1	200 °C (392 °F)	200 °C (392 °F)	180 °C (356 °F)
T2	200 °C (392 °F)	200 °C (392 °F)	180 °C (356 °F)
Т3	180 °C (356 °F)	180 °C (356 °F)	180 °C (356 °F)
T4	115 °C (239 °F)	115 °C (239 °F)	115 °C (239 °F)
T5	80 °C(176 °F)	80 °C(176 °F)	75 °C (167 °F)
T6	60 °C (140 °F)	60 °C (140 °F)	60 °C (140 °F)

Condiciones ambientales y de proceso:

-20 ... 60 °C (-4 ... 140 °F) T_{amb}

-40 ... 60 °C (-40 ... 140 °F) (sólo para modelos de diseño compacto) T_{amb, optional}

-50 ... 200 °C (-58 ... 392 °F) T_{medium} Clase de protección IP 65, IP 67 y NEMA 4X

12.2.2 Homologación Ex ATEX / IECEx

Según la versión del sensor de caudal (diseño compacto o remoto) se aplicará una codificación específica según ATEX o IECEx.

IMPORTANTE (NOTA)

ABB se reserva modificaciones de la codificación Ex. La codificación exacta se indica en la placa de características de los aparatos suministrados.

MODOLO I OBOXX 712	A (diseño remoto en Zona 2)	
Homologación	Marca	Observación
ATEX	II 3 G Ex nA IIC T6 T2	-
	II 2 D Ex tD IIIC T85°C Tmedium	
IECEx	Ex nA IIC T6 T2 Gc	-
	Ex tb IIIC T85°C Tmedium	
Modelo FCB3xx-A1	A (diseño remoto en Zona 1)	
Homologación	Marca	Observación
ATEX	II 1 G Ex ia IIC T6 T2	-
	II 1 D Ex ia IIIC T85°C Tmedium	
IECEx	T2 Ga	-
	Ex ia IIIC T85°C Tmedium Da	
Modelo FCB3xx-A1	Y (diseño compacto en Zona 1)	
Modelo FCB3xx-A1 Homologación	Y (diseño compacto en Zona 1) Marca	Observación
		Observación
Homologación		Observación 2 salidas analógicas pasivas, salidas "ia" / "e", según el modo
Homologación ATEX	Marca	
Homologación ATEX	Marca II 1/2 G Ex d e ia IIC T6 T2	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo
Homologación ATEX Versión II	Marca II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia tb IIIC T85°C Tmedium	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo de conexión especificado por el usuario.
Homologación ATEX Versión II	Marca II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia tb IIIC T85°C Tmedium II 1/2 G Ex d e ia ib IIC T6 T2 or II 1/2 G Ex d e ia IIC	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo de conexión especificado por el usuario. Salidas analógicas activas / pasivas, salidas "ib" / "e", según
Homologación ATEX Versión II	Marca II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia tb IIIC T85°C Tmedium II 1/2 G Ex d e ia ib IIC T6 T2 or II 1/2 G Ex d e ia IIC T6 T2	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo de conexión especificado por el usuario. Salidas analógicas activas / pasivas, salidas "ib" / "e", según
Homologación ATEX Versión II	Marca II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia tb IIIC T85°C Tmedium II 1/2 G Ex d e ia ib IIC T6 T2 or II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia ia tb IIIC T85°C Tmedium or II 2 D Ex ia tb IIIC	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo de conexión especificado por el usuario. Salidas analógicas activas / pasivas, salidas "ib" / "e", según
Homologación ATEX Versión II Versión I	Marca II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia tb IIIC T85°C Tmedium II 1/2 G Ex d e ia ib IIC T6 T2 or II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia ia tb IIIC T85°C Tmedium or II 2 D Ex ia tb IIIC	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo de conexión especificado por el usuario. Salidas analógicas activas / pasivas, salidas "ib" / "e", según
Homologación ATEX Versión II Versión I	Marca II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia tb IIIC T85°C Tmedium II 1/2 G Ex d e ia ib IIC T6 T2 or II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia ia tb IIIC T85°C Tmedium or II 2 D Ex ia tb IIIC T85°C Tmedium	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo de conexión especificado por el usuario. Salidas analógicas activas / pasivas, salidas "ib" / "e", según el modo de conexión especificado por el usuario
Homologación ATEX Versión II Versión I	Marca II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia tb IIIC T85°C Tmedium II 1/2 G Ex d e ia ib IIC T6 T2 or II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia ia tb IIIC T85°C Tmedium or II 2 D Ex ia tb IIIC T85°C Tmedium Ex d e ia IIC T6 T2 Ga/Gb	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo de conexión especificado por el usuario. Salidas analógicas activas / pasivas, salidas "ib" / "e", según el modo de conexión especificado por el usuario 2 salidas analógicas pasivas, salidas "ia" / "e", según el modo
Homologación ATEX Versión II Versión I IECEx Versión II	Marca II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia tb IIIC T85°C Tmedium II 1/2 G Ex d e ia ib IIC T6 T2 or II 1/2 G Ex d e ia IIC T6 T2 II 2 D Ex ia ia tb IIIC T85°C Tmedium or II 2 D Ex ia tb IIIC T85°C Tmedium Ex d e ia IIC T6 T2 Ga/Gb Ex ia tb IIIC T85°C Tmedium	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo de conexión especificado por el usuario. Salidas analógicas activas / pasivas, salidas "ib" / "e", según el modo de conexión especificado por el usuario 2 salidas analógicas pasivas, salidas "ia" / "e", según el modo de conexión especificado por el usuario

12.3 Transmisor de diseño remoto - Modelo FCT300

Condiciones ambientales y de proceso:

T_{amb} -20 ... 60 °C (-4 ... 140 °F)

Clase de protección IP 65, IP 67 y NEMA 4X / Type 4X

12.3.1 Homologación Ex ATEX / IECEx

Según la versión del sensor de caudal (diseño compacto o remoto) se aplicará una codificación específica según ATEX o IECEx.

IMPORTANTE (NOTA)

ABB se reserva modificaciones de la codificación Ex. La codificación exacta se indica en la placa de características de los aparatos suministrados.

Modelo FCT3xx-Y0	(transmisor montado fuera de la zona Ex, sensor de caudal	en la zona 0, 1 ó 2)
Homologación	Marca	Observación
ATEX	II (1) G [Ex ia] IIC	-
IECEx	[Ex ia Ga] IIC	-
		2.1.(2)
	(transmisor instalado en Zona 1, sensor de caudal en la zona	
Homologación	Marca	Observación
ATEX		
Versión II	II 2 (1) G Ex d e ia IIC T6	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo
	II 2 (1) D Ex ia tb IIIC T85°C	de conexión especificado por el usuario.
Versión I	II 2 (1) G Ex d e ib [ia] IIC T6 or II 2 (1) G Ex d e [ia] IIC T6	Salidas analógicas activas / pasivas, salidas "ib" / "e", según
	II 2 (1) D Ex ib tb [ia] IIIC T85°C or II 2 (1) D Ex tb [ia] IIIC	el modo de conexión especificado por el usuario
	T85°C	
IECEx		
Versión II	Ex d e ia IIC T6 Gb (Ga)	2 salidas analógicas pasivas, salidas "ia" / "e", según el modo
	Ex ia tb IIIC T85°C Db (Da)	de conexión especificado por el usuario.
Versión I	Ex d e ib [ia Ga] IIC T6 Gb or Ex d e [ia Ga] IIC T6 Gb	Salidas analógicas activas / pasivas, salidas "ib" / "e", según
	Ex ib tb [ia Da] IIIC T85°C Db or Ex tb [ia Da] IIIC T85°C Db	el modo de conexión especificado por el usuario

13 Datos técnicos relevantes para la protección Ex según cFMus

13.1 Sinopsis de las diferentes opciones de salida

Versiones	Class I Div. 2	Class I Div. 1
Versión I	 Salida de corriente 1: activa 	Salida de corriente 1: activa
Opción de salida A / B	 Salida de corriente 2: pasiva 	 Salida de corriente 2: pasiva
en la referencia de pedido	 Salida de impulsos: activa / pasiva, conmutable 	 Salida de impulsos: pasiva
	 Entrada y salida de contacto: pasiva 	Entrada y salida de contacto: pasiva
Versión II		 Salida de corriente 1: pasiva
Opción de salida D		 Salida de corriente 2: pasiva
en la referencia de pedido		 Salida de impulsos: pasiva
		Entrada y salida de contacto: pasiva

13.2 Datos eléctricos para Div. 2 / Zona 2

13.2.1 Versión I: salidas de corriente activa / pasiva, y versión II: salidas de corriente pasiva / pasiva

	Tipo de pro	otección NI
	Umáx _o (V)	Imáx _o (mA)
Salida de corriente 1	30	30
Terminales 31 / 32		
Salida de corriente 2	30	30
Terminales 33 / 34		
Salida de impulsos	30	65
Terminales 51 / 52		
Salida de contacto	30	65
Terminales 41 / 42		
Entrada de contacto	30	10
Terminales 81 / 82		

Todas las entradas y salidas están separadas galvánicamente entre sí y de la alimentación de corriente.

13.3 Datos eléctricos para Div. 1 / Zona 1

13.3.1 Versión I: salidas de corriente activa / pasiva

Modelo FCB3xx-F1, FCT3xx-F1: HA	ART activa							
	Tipo de pro	tección non IS			Tipo de pr	otección IS		
	Umáx _o (V)	Imáx _o (mA)	Umáx _o (V)	Imáx _o (mA)	P _o (mW)	C _o (nF)	C _{o PA} (nF)	L ₀ (mH)
Salida de corriente 1, activa	30	30	20	100	500	217	0	3,8
Terminales 31 / 32			U _{Máx} (V)	I _{Máx} (mA)	P _i (mW)	C _i (nF)	C _{i PA} (nF)	L _i (mH)
			60	100	500	2,4	2,4	0,17
Salida de corriente 2 pasiva	30	30	30	100	760	2,4	2,4	0,17
Terminales 33 / 34								
Salida de impulsos, activa o pasiva	30	65	15	30	115	2,4	2,4	0,17
Terminales 51 / 52								
Salida de contacto, pasiva	30	65	15	30	115	2,4	2,4	0,17
Terminales 41 / 42								
Entrada de contacto, pasiva	30	10	30	60	500	2,4	2,4	0,17
Terminales 81 / 82								

Todas las entradas y salidas están separadas galvánicamente entre sí y de la alimentación de corriente. Sólo las salidas de corriente 1 y 2 no están separadas galvánicamente entre sí.

13.3.2 Versión II: salidas de corriente pasiva / pasiva

Modelo FCB3xx-F1, FCT3xx-F1: HA	ART pasiva							
	Tipo de pro	tección non IS			Tipo de pr	otección IS		
	Umáx (V)	Imáx (mA)	Umáx (V)	Imáx (mA)	P _i (mW)	C _i (nF)	C _{i PA} (nF)	L _i (mH)
Salida de corriente 1 pasiva	30	30	60	300	2000	0,47	0,47	0,17
Terminales 31 / 32								
Salida de corriente 2 pasiva	30	30	60	300	2000	0,47	0,47	0,17
Terminales 33 / 34								
Salida de impulsos, activa o pasiva	30	65	60	300	2000	0,47	0,47	0,17
Terminales 51 / 52								
Salida de contacto, pasiva	30	65	60	300	2000	0,47	0,47	0,17
Terminales 41 / 42								
Entrada de contacto, pasiva	30	10	60	300	2000	0,47	0,47	0,17
Terminales 81 / 82								

Todas las entradas y salidas están separadas galvánicamente entre sí y de la alimentación de corriente.

13.3.3 Condiciones especiales de conexión

equipotencial.

Los circuitos eléctricos de salida están diseñados de manera que puedan conectarse a circuitos con o sin seguridad intrínseca.

No están permitidas combinaciones de circuitos eléctricos con y sin seguridad intrínseca. Al cambiar el tipo de protección 'e' se deben seguir las instrucciones del capítulo 6.7.5. A lo largo de la sección de la línea de los circuitos intrínsicamente seguros deberá establecerse una conexión

La tensión de cálculo de los circuitos sin seguridad intrínseca es $U_{\rm M} = 60~{\rm V}.$

La seguridad intrínseca se mantiene siempre que durante la conexión de circuitos eléctricos externos sin seguridad intrínseca no se supere la tensión de cálculo UM = 60 V.

IMPORTANTE (NOTA)

La caja del transmisor y del sensor de caudal debe conectarse al conductor de conexión equipotencial PA. El propietario debe asegurar que cuando se conecte el conductor protector PE, no se produzcan diferencias de potencial entre el conductor protector PE y la conexión equipotencial PA.

13.4 Sensor de caudal - modelo FCB300

13.4.1 Clases de temperatura

Temperatura ambiente	≤40 °C (≤104 °F)	≤50 °C (≤122 °F)	≤60 °C (≤140 °F)
, , , , , , , , , , , , , , , , , , ,	/		
Clase de temperatura			
T1	200 °C (392 °F)	200 °C (392 °F)	200 °C (392 °F)
T2	200 °C (392 °F)	200 °C (392 °F)	200 °C (392 °F)
Т3	185 °C (365 °F)	180 °C (356 °F)	180 °C (356 °F)
Т4	125 °C (257 °F)	120 °C (248 °F)	120 °C (248 °F)
Т5	85 °C (185 °F)	85 °C (185 °F)	75 °C (167 °F)
T6	65 °C (149 °F)	65 °C (149 °F)	60 °C (140 °F)
Temperatura ambiente	≤40 °C (≤104 °F)	≤50 °C (≤122 °F)	≤60 °C (≤140 °F)
,	≤40 °C (≤104 °F)	≤50 °C (≤122 °F)	≤60 °C (≤140 °F)
Temperatura ambiente Clase de temperatura	≤40 °C (≤104 °F) 200 °C (392 °F)	≤50 °C (≤122 °F)	≤60 °C (≤140 °F)
Clase de temperatura			,
Clase de temperatura	200 °C (392 °F)	200 °C (392 °F)	180 °C (356 °F)
Clase de temperatura T1 T2	200 °C (392 °F) 200 °C (392 °F)	200 °C (392 °F) 200 °C (392 °F)	180 °C (356 °F)
Clase de temperatura T1 T2 T3	200 °C (392 °F) 200 °C (392 °F) 180 °C (356 °F)	200 °C (392 °F) 200 °C (392 °F) 180 °C (356 °F)	180 °C (356 °F) 180 °C (356 °F) 180 °C (356 °F)

Condiciones ambientales y de proceso:

T_{amb} -20 ... 60 °C (-4 ... 140 °F)

 $T_{amb,\ optional}$ -40 ... 60 °C (-40 ... 140 °F) (sólo para modelos de diseño compacto)

 T_{medium} -50 ... 200 °C (-58 ... 392 °F) Clase de protección IP 65, IP 67 y NEMA 4X / Type 4X

IMPORTANTE (NOTA)

En la versión con diseño remoto, la longitud del cable de señal entre el sensor y el transmisor deberá ser de 5 m (16,4 ft) como mínimo. Las "conduit seals" deben montarse dentro de 18 pulgadas (inch, 45 cm).

13.4.2 Homologación Ex cFMus

Según el diseño del sensor de caudal (compacto o remoto) se aplicará una codificación específica según la norma FM (Factory Mutual System).

IMPORTANTE (NOTA)

ABB se reserva modificaciones de la codificación Ex. La codificación exacta se indica en la placa de características de los aparatos suministrados.

Modelo FCB3xx-F2A (di	iseño remoto en Zona 2, Div 2)		
Homologación	Marca	Observación	
FM (marking US)	NI: CL I,II,III, DIV 2, GPS ABCDEFG	-	
	CL I, ZN2, AEx nA IIC T6 T2		
	ZN 21 AEx tb IIIC T85°C T165°C		
FM (marking Canada)	NI: CL I, II, III, Div 2 GPS ABCDEFG	-	
	Ex nA IIC T6 T2		
Modelo FCB3xx-F2Y (di	seño compacto en Zona 2, Div 2)		
Homologación	Marca	Observación	
FM (marking US)	NI: CL I, II, III, Div 2 GPS ABCDEFG	-	
	DIP: CL II Div 1 GPS EFG		
	DIP: CL III, Div 1,2		
	CL I, ZN 2, AEx nA nR IIC T6 T2		
	ZN 21 AEx tb IIIC T85°C T165°C		
FM (marking Canada)	NI: CL I, II, III, Div 2 GPS ABCDEFG	-	
	DIP: CL II Div 1 GPS EFG		
	DIP: CL III, Div 1,2		
	Ex nA nR IIC T6 T2		
Modelo FCB3xx-F1A (di	iseño remoto en Zona 1, Div 1)		
Homologación	Marca	Observación	
FM (marking US)	CL I, II, III, Div 1, GPS ABCDEFG	-	
	CL I, ZNO, AEx ia IIC T6 T2		
	ZN 20 AEx ia IIIC T85°C T165°C		
FM (marking Canada)	CL I, II, III, Div 1, GPS ABCDEFG	-	
	Ex ia IIC T6 T2		

Homologación	Marca	Observación
FM (marking US)		
Versión II	IS: CL I, Div 1, GPS ABCD	2 salidas analógicas pasivas, salidas "ia" / "e", según el
	NI: CL I,II,III, DIV2, GPS ABCDEFG	modo de conexión especificado por el usuario.
	XP: CL I, Div 1, GPS ABCD	
	DIP: CL II, Div 1, GPS EFG	
	DIP: CL III, Div 1, 2	
	CL I, ZN1, AEx d ia IIC T6	
	ZN 21 AEx ia tb IIIC T85°C to T165°C	
Versión I	IS: CL I, Div 1, GPS ABCD	Salidas analógicas activas / pasivas, salidas "ib" / "e",
	NI: CL I, II, III, DIV2, GPS ABCDEFG	según el modo de conexión especificado por el usuario
	XP: CL I, Div 1, GPS ABCD	
	DIP: CL II, Div 1, GPS EFG	
	DIP: CL III, Div 1, 2	
	CL I, ZN 1, AEx d ia ib IIC T6 or CL I, ZN 1, AEx d ia IIC T6	
	ZN 21 AEx ib ia tb IIIC T85°C or ZN21 AEx tb ia IIC T6	
FM (marking Canada)		-
Versión II	IS: CL I, Div 1, GPS ABCD	2 salidas analógicas pasivas, salidas "ia" / "e", según el
	NI: CL I,II,III, Div 2, GPS ABCDEFG	modo de conexión especificado por el usuario.
	XP: CL I, Div 1, GPS BCD	
	DIP CL II, Div 1, GPS EFG	
	DIP CL III, Div 1, 2	
	Ex d ia IIC T6	
Versión I	IS: CL I, Div 1, GPS ABCD	Salidas analógicas activas / pasivas, salidas "ib" / "e",
	NI: CL I, II, III, Div 2, GPS ABCDEFG	según el modo de conexión especificado por el usuario
	XP: CL I, Div 1, GPS BCD	
	DIP: CL II, Div 1, GPS EFG	
	DIP: CL III, Div 1, 2	
	Ex d ia ib IIC T6 or Ex d ia IIC T6	

13.5 Transmisor de diseño remoto - Modelo FCT300

Condiciones ambientales y de proceso:

 $\rm T_{amb}$ $\rm -20~...~60~^{\circ}C~(-4~...~140~^{\circ}F)$ Clase de protección $\rm IP~65,~IP~67~y~NEMA~4X~/~Type~4X$

13.5.1 Homologación Ex cFMus

Según el diseño del sensor de caudal (compacto o remoto) se aplicará una codificación específica según la norma FM (Factory Mutual System).

IMPORTANTE (NOTA)

ABB se reserva modificaciones de la codificación Ex. La codificación exacta se indica en la placa de características de los aparatos suministrados.

Homologación	Marca	Observación	
		Observacion	
FM (marking US)	NI: CL I, II, III, Div 2 GPS ABCDEFG	-	
	DIP: CL II Div 1 GPS EFG		
	DIP: CL III, Div 1,2		
FM (marking Canada)	NI: CL I, II, III, Div 2 GPS ABCDEFG	-	
	DIP: CL II Div 1 GPS EFG		
	DIP: CL III, Div 1,2		
	, ,		
Modelo FCT3xx-F2 (tran	nsmisor y sensor de caudal instalados en Zona 2, D	Div 2)	
Modelo FCT3xx-F2 (tran	1 2 2	Div 2) Observación	
,	ismisor y sensor de caudal instalados en Zona 2, D	•	
Homologación	nsmisor y sensor de caudal instalados en Zona 2, D Marca	•	
Homologación	Ismisor y sensor de caudal instalados en Zona 2, D Marca NI: CL I, II, III, Div 2 GPS ABCDEFG	•	
Homologación	Ismisor y sensor de caudal instalados en Zona 2, D Marca NI: CL I, II, III, Div 2 GPS ABCDEFG DIP: CL II Div 1 GPS EFG	•	
Homologación FM (marking US)	Ismisor y sensor de caudal instalados en Zona 2, D Marca NI: CL I, II, III, Div 2 GPS ABCDEFG DIP: CL II Div 1 GPS EFG DIP: CL III, Div 1,2	•	

Homologación	Marca	Observación					
FM (marking US)							
Versión II	IS: CL I, Div 1, GPS ABCD	2 salidas analógicas pasivas, salidas "ia" / "e", según e					
	NI: CL I, II, III, DIV2, GPS ABCDEFG	modo de conexión especificado por el usuario.					
	XP: CL I, Div 1, GPS ABCD						
	DIP: CL II, Div 1, GPS EFG						
	DIP: CL III, Div 1, 2						
	CL I, ZN1, AEx d ia IIC T6						
	ZN 21 AEx ia tb IIIC T85°C						
Versión I	IS: CL I, Div 1, GPS ABCD	Salidas analógicas activas / pasivas, salidas "ib" / "e",					
	NI: CL I, II, III, DIV2, GPS ABCDEFG	según el modo de conexión especificado por el usuario					
	XP: CL I, Div 1, GPS ABCD						
	DIP: CL II, Div 1, GPS EFG						
	DIP: CL III, Div 1, 2						
	CL I, ZN 1, AEx d ib [ia] IIC T6 or CL I, ZN1, AEx d [ia] IIC T	T6					
	ZN21 AEx ib tb [ia] IIIC T85°C or ZN21 AEx tb [ia] IIC T	6					
FM (marking Canada)							
Versión II	IS: CL I, Div 1, GPS ABCD	2 salidas analógicas pasivas, salidas "ia" / "e", según e					
	NI: CL I, II, III, Div 2, GPS ABCDEFG	modo de conexión especificado por el usuario.					
	XP: CL I, Div 1, GPS BCD						
	DIP: CL II, Div 1, GPS EFG						
	DIP: CL III, Div 1, 2						
	Ex d ia IIC T6						
Versión I	IS: CL I, Div 1, GPS ABCD	Salidas analógicas activas / pasivas, salidas "ib" / "e",					
	NI: CL I, II, III, Div 2, GPS ABCDEFG	según el modo de conexión especificado por el usuario					
	XP: CL I, Div 1, GPS BCD						
	DIP: CL II, Div 1, GPS EFG						
	DIP CL III, Div 1, 2						
	Ex d ib [ia] IIC T6 or Ex d [ia] IIC T6						

14 Lista de piezas de repuesto

IMPORTANTE (NOTA)

Las piezas de repuesto pueden pedirse al servicio posventa de ABB:

Consulte al Servicio de atención al cliente (dirección en la página 2) para el establecimiento colaborador más cercano.

14.1 Transmisor en caja de campo

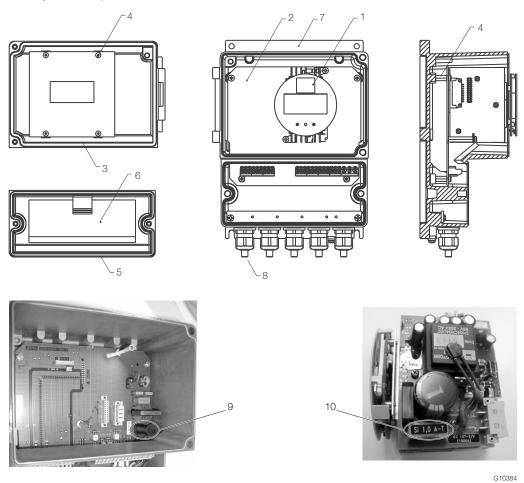


Fig. 44: Piezas de repuesto - caja de campo

Posición	Denominación	Referencia de pedido
1	Unidad de transmisor enchufable o backplane (Por favor, diríjase al servicio técnico de ABB)	-
2	Placa de contacto (estándar)	D685A1020U10
3	Tapa para la caja de campo, grande	D641A030U01
4	Tornillo alomado, cruz, M3 x 5 mm, 7985 acero inox.	D085D020AU20
5	Tapa para la caja de campo, pequeña	D641A029U01
6	Esquema de conexión	D338D314U01
7	Parte inferior de la caja de campo	D641A031U01
8	Racor atornillado para cables M20 x 1,5	D150A008U15
9	Inserto de fusible para la placa de contacto en la caja de campo, 4 A	D151B002U07
10	Inserto de fusible para la unidad de transmisor enchufable, 24 V, 2 A	D151B002U08
	Inserto de fusible para la unidad de transmisor enchufable, 100 230 V, 1 A	D151B002U06
-	Lápiz magnético simple	D614L537U01

15 Anexo

15.1 Homologaciones y certificados

El modelo de aparato comercializado por nuestra empresa cumple las normas de las siguientes Directivas CE:

- Directiva CEM 2004/108/CE
- Directa 2006/95/CE sobre bajas tensiones
- Directiva de Equipos a Presión (PED) 97/23/CE

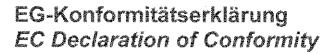
Protección contra explosión

Protección contra Marca para indicar el uso conforme al fin previsto en zonas potencialmente explosivas, de acuerdo con:

Directiva ATEX

iECEx - Normas IEC

- cFMus Approvals for Canada and United States



IMPORTANTE (NOTA)

Todas las documentaciones, declaraciones de conformidad y certificados pueden descargarse de la página web de ABB.

www.abb.com/flow

Hiermit bestätigen wir die Übereinstimmung der aufgeführten Geräte mit den Richtlinien des Rates der Europäischen Gemeinschaft, welche mit dem CE-Zeichen gekennzeichnet sind. Die Sicherheits- und Installationshinweise der Produktdokumentation sind zu beachten. We herewith confirm that the listed devices are in compliance with the council directives of the European Community and are marked with the CE marking. The safety and installation requirements of the product documentation must be observed.

Hersteller: ABB Automation Products GmbH,

Manufacturer: Dransfelder Straße 2, 37079 Göttingen - Germany

Gerät: CoriolisMaster

Device:

Modelle.: FCB330_; FCB350_

Models:

 Richtlinie:
 2004/108/EG * (EMV)

 Directive:
 2004/108/EG * (EMC)

Europäische Norm: EN 61326-1, 10/2006 * EN 61326-2-3, 05/2007 European Standard: EN 61326-1, 10/2006 * EN 61326-2-3, 05/2007

Richtlinie: 2006/95/EG * (Niederspannungsrichtlinie)

Directive: 2006/95/EC * (Low voltage directive)

Europäische Norm: EN 61010-1, 08/2002 * European Standard: EN 61010-1, 08/2002 *

Göttingen, 06. February 2012

i.♥. Dr. Günter Kuhlmann

(R&D Manager)

i.V. Klaus Schäfer

Manager) 3KXF002000G0021

ABB Automation Products GmbH

Postenschrift: Oransfelder Sir. 2 0-57079 Göffingen Besuchsenectrifi: Cransfelder Str. 2 D-27079 Göttingen Feleton +95 551 905 0 Talafax 449 551 907 77 Internet, http://www.abb.com/de

Siz der Gesellschaft Laderburg Registergericht Amtsgenicht Mannheim Harosisregister: HRB 190229 USLIGN - OF 115 300 097 Vorsitz des Adisichtsnates: Hans-Georg Krabbe Geschäftsführung: Tilt Schneiter Daniel Hutter Bankverbindung: Commerchank AG Frankfurt Konlo: 589 535 200 BLZ: 500 400 00

Rev.1, 21242

einschließlich Nachträge / including alterations

EG-Konformitätserklärung EC-Declaration of Conformity

requirements of the product documentation must be observed.

Hiermit bestätigen wir die Übereinstimmung des aufgeführten Gerätes mit den Richtlinien des Rates der Europäischen Gemeinschaft, welche mit dem CE-Zeichen gekennzeichnet sind. Die Sicherheits- und Installationshinweise der Produktdokumentation sind zu beachten. Herewith we confirm that the listed instrument is in compliance with the council directives of the European Community and are marked with the CE marking. The safety and installation

ABB Automation Products GmbH, Hersteller: manufacturer: 37070 Göttingen - Germany

Coriolis - Massedurchflussmesser FCB... Modell:

Coriolis mass flowmeter FCB... model:

Druckgeräterichtlinie 97/23/EG Richtlinie:

pressure equipment directive 97/23/EC directive:

Einstufung: Ausrüstungsteile von Rohrleitungen

classification: piping accessories

Normengrundlage: AD 2000 Merkblätter und EN 12516 technical standard: AD 2000 Merkblätter and EN 12516

Konformitätsbewertungsverfahren: B (EG-Baumusterprüfung) + D (Qualitätssicherung Produktion) conformity assessment procedure: B (EC-type-examination) + D (production quality assurance)

EG-Baumusterprüfbescheinigung: Nr. 1045 Z 0034 / 2 / D / 0004

Entwurfsprüfbericht:

Nr. STK1 P 0220 2 01 No. 1045 Z 0034/2/D/0004 EC type-examination certificate:

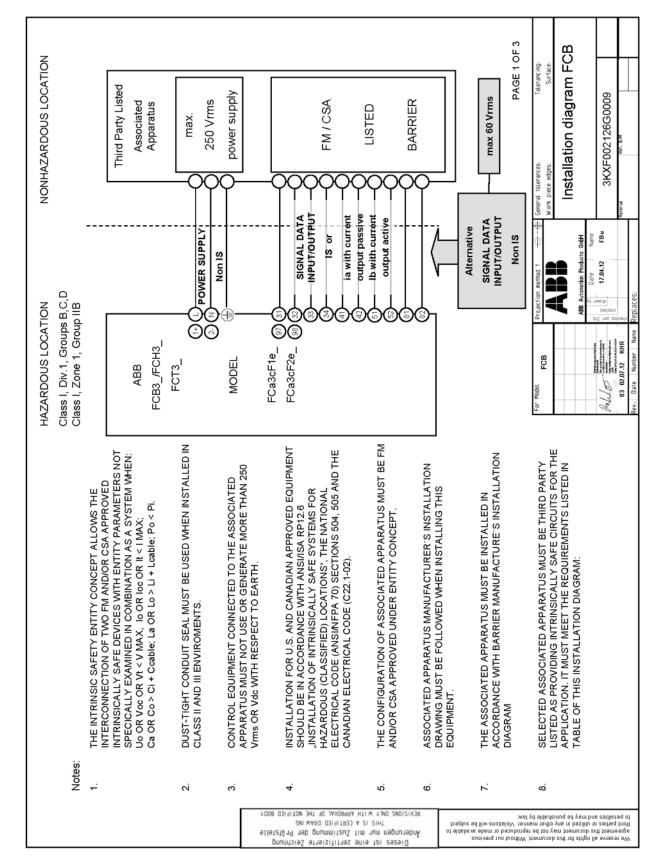
Design-examination report: No. STK1 P 0220 2 01

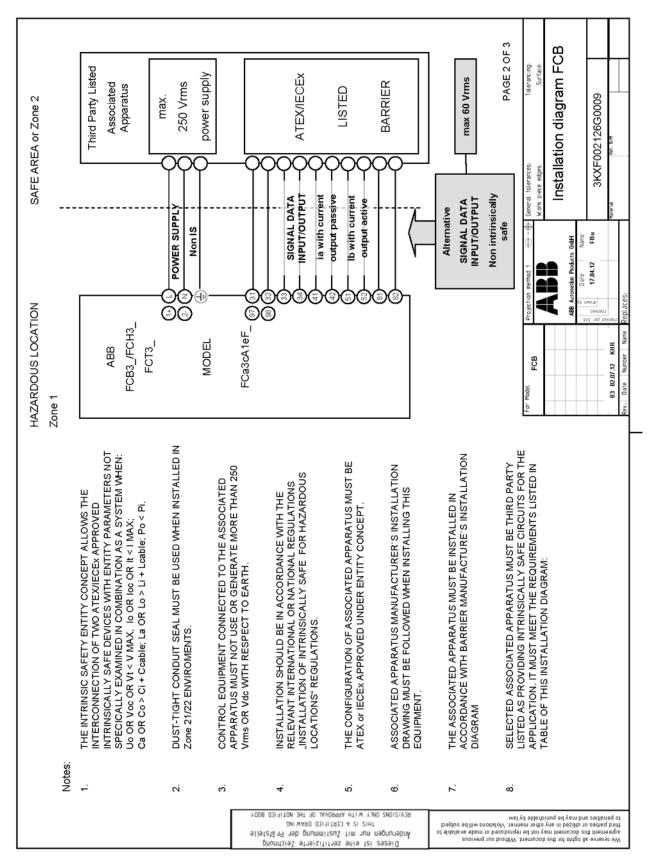
benannte Stelle: TÜV Nord Systems GmbH & Co. KG

notified body: Große Bahnstr. 31

22525 Hamburg

Kennnummer: 0045


identification no.


Göttingen, den 26.03.2012

(Bernd Kammann, Product Line Manager)

BZ-25-0013 Rev.01 / 21629

Page 1 of 3

																		PAGE 3 OF 3	Projection nethod 1 + 1 - 1 General tolerances. Tolerancing.	Installation diagram FCB	墨	3KXF002126G0009	╼
		J.E.	ω _.	ĒĒ	0,17	J E	0.17	0,17	0.17	0.17			ᆵ	0,17	0.17	0.17	0,17	0,17	FCB_				03 02.07.12 KHR ev. Date Number Name
		CoPA [nF]	0	C 2	2,4	C _{[P}]	2,4	2,4	2.4	2,4			C _{IPA}	4.0	₽.0	₽.0	4.0	0,47	For Model				03 02.07.12 . Date Nu
	<u>s</u>	C. [nF]	217	عَ إِنَّ	4.2	ر <u>آ</u>	4.	4.2	4.2	4.2		SI.	C, [hF]	4.0	0.47	4.0	4.0	4.0	Ē			Ш.	Sev
	Ex i b/ IS	P _o [m ^M d]	200	P. [m\/d]	200	P. [m\/d]	760	115	200	115		Ex i a/18	P, [m/m]	2000	2000	2000	2000	2000					
		lo [mA]	100	- E	90	[m.A]	100	8	09	8			- [A	300	300	300	300	300					
		ŝΣ	20	Ξē		ōΣ	90	5	8	5			ΞĒ	8	8	8	8	99					
	N >	∎ [mA]	30				30	65	10	92		A/NI	[Am]	30	30	99	10	92					
	Ex nA / NI	⊠	30				8	90	30	30		Ex nA / NI	3.5	30	30	30	30	30					
	Operating Value	_ [mA]	98				8	25	10	90		ating	l∎ [mA]	8	8	65	5	65					
L	Oper	5.5	30				90	8	30	30	L	Value	3€	90	8	98	8	8					
	Ex e / XP	₽₹	35				35	35	35	35		Ex e / XP	. ≣⊴	88	35	35	8	35					
	Ä	5∑	99				8	8	99	8		Ä	3€	8	8	8	8	8					
HART			Teminal 31/32 Teminal 32-PA				Teminal 33/34 Teminal 34-PA	Tembal 41/42	Temhal 81/82	Terminal 51/52	, HART			Teminal 31/32	Tem Isal 33/34	Teminal 41/42	Terminal 81/82	Terminal 51/52					
Current active, HART	FCa3c,kA1m_ FCa3c,kH1m_ FCa3c,kA2m_ FCa3c,kH2m_		Current 1 Active				2	t Output	*	Pulse Output	Current passive, HART	FCa3c_kA3m_ FCa3c_kH3m_	HART communication	Current 1 Passive	2			Pulse Output					
										J9t≳ìū 19	J der Awing	פלוֹחששחק: וורונס טפי	nes enie t euS tim nu rego a si s eqqa htiw	n nagnu IHT	19bnÅ	of eldslisv	s absm 101	t Withouto reproduced nner. Viola ≀law.	o pherma ay not be	mentms yn enibe	usob ai sziližu 10	eementth	age third

Declaración sobre la contaminación de aparatos y componentes

La reparación y/o el mantenimiento de aparatos y componentes se realizará solamente cuando el impreso de declaración esté rellenado completamente.

En caso contrario es posible rechazar el envío. Esta declaración debe ser rellenada y firmada, exclusivamente, por el personal técnico autorizado del propietario.

Datos referentes al cliente:				
Empresa:				
Dirección:				
Persona de contacto:		Teléfono:		
Fax:		Email:		
Datos referentes al equipo:				
Tipo:			N°. de serie:	
Motivo del envío / descripción de	al defecto:		iv . de sene.	
Metive del envier, decemperen di	01 00100101			
Ha sido utilizado el aparato pa	ara realizar trabaios con	sustancia	s que pueden causar un riesgo o peligro para	ı la salu
Sí ∏No			- der haram ramen an meege e henger hand	
□ En el caso afirmativo ;indique el t	ino de contaminación! (má	rauese co	n una cruz)	
biológico	corrosivo/irritante	П	inflamable (ligera /altamente inflamable)	
tóxico	explosivo	H	otras sustancias nocivas	一片
radioactivo			Oli de Gestal Iolea Nocifie	
Tadicactive				
¿Qué sustancias han estado en c	contacto con el aparato?			
1.	to the detail of aparato.			
2.				
3.				
0.				
Confirmamos que los aparatos /	componentes enviados ha	n eido limr	viados y están libres de cualquier sustancia tóxic	20
peligrosa según el Reglamento de	· ·	ii sido iii ii	nados y estam noros de edalquier sustament toxio	a o
peligiosa seguir el neglamento di	e Sustancias i eligiosas.			
Ciudad, fecha			Firma y sello	

Contacto

ASEA BROWN BOVERI, S.A.

Process Automation

División Instrumentación C/San Romualdo 13 28037 Madrid

Spain

Tel: +34 91 581 93 93 Fax: +34 91 581 99 43

ABB S.A.

Process Automation

Av. Don Diego Cisneros Edif. ABB, Los Ruices Caracas

Venezuela

Tel: +58 (0)212 2031676 Fax: +58 (0)212 2031827

ABB Automation Products GmbH Process Automation

Dransfelder Str. 2 37079 Goettingen Germany

Tel: +49 551 905-534 Fax: +49 551 905-555

www.abb.com

Note

Nos reservamos el derecho a realizar cambios técnicos o modificar el contenido de este documento sin previo aviso. En relación a las solicitudes de compra, prevalecen los detalles acordados. ABB no acepta ninguna responsabilidad por cualquier error potencial o posible falta de información de este documento.

Nos reservamos los derechos de este documento, los temas que incluye y las ilustraciones que contiene. Cualquier reproducción, comunicación a terceras partes o utilización del contenido total o parcial está prohibida sin consentimiento previo por escrito de ABB.

Copyright© 2012 ABB Todos los derechos reservados

3KXF411008R4206

™ Hastelloy C-4 es una marca registrada de Haynes International

