Instruction Booklet
1MRA577215–MIB
Issue A September 1999 (IB 7.11.1.7-11)

Note: Future revisions to individual pages will be by means of dated pages and special references to these pages in the Table of Contents.
Table of Contents

Table of Contents ... ii

Guide to Figures .. viii

Guide to Tables ... x

Introduction .. xi

Getting Started .. xii

Section 1 Protective Functions

Protective Functions ... 1-1
Summary of Protective Elements .. 1-1
Phase Time Overcurrent Element 51P (3I>) ... 1-2
Ground Time Overcurrent Element 51N (IN>) ... 1-2
Phase Instantaneous Overcurrent Element 50P-1 (3I>>1) - Level 1, Low set ... 1-3
Phase Instantaneous Overcurrent Element 50P-2 (3I>>2) - Level 2, Mid set .. 1-4
Two Phase 50P (3I>>) Tripping .. 1-5
Phase Instantaneous Overcurrent Element 50P-3 (3I>>3) - Level 3, High set .. 1-5
Ground Instantaneous Overcurrent Element 50N-1 (IN>>1) - Level 1, Low set 1-6
Ground Instantaneous Overcurrent Element 50N-2 (IN>>2) - Level 2, Mid set 1-6
Sensitive Earth Fault (SEF) Option, Definite Time .. 1-6
Ground Instantaneous Overcurrent Element 50N-3 (IN>>3) - Level 3, High set 1-7
Negative Sequence Time Overcurrent Element 46 (Insc>) .. 1-7
Ansi Timing Curves ... 1-9
Ansi Time Overcurrent Curve Equation .. 1-10
IEC Timing Curves ... 1-10
IEC Time Overcurrent Curve Equation .. 1-10
Undervoltage Element 27 (U<) ... 1-23
Cold Load Time ... 1-23
Recloser Function 79 (O->I) .. 1-23
Lockout .. 1-24
Cutout Timer (O->I-CO) ... 1-25
Single Shot Reclose Logical Input 79S (O->I1) ... 1-25
Multi-Shot Reclose Logical Input 79M (O->I) ... 1-26
Voltage Block 79V (O->IU<) .. 1-26
Recloser Logical Inputs .. 1-27
Alternate Settings Group ... 1-28
Section 2 Configuration Settings
 Phase CT Ratio ... 2-1
 VT Ratio ... 2-1
 VT Conn ... 2-1
 Line Impedances ... 2-1
 Line Length ... 2-1
 Breaker Trip Fail Timer .. 2-1
 Breaker Close Fail Timer ... 2-1
 Slow Trip Time .. 2-2
 Phase Rotation .. 2-2
 Protection Mode .. 2-2
 Reset Mode ... 2-2
 ALT1, ALT2 Setting .. 2-2
 MDT Mode ... 2-2
 Cold Load Time Mode ... 2-3
 79V (O->IU<) Time Mode ... 2-3
 Voltage Display Mode .. 2-3
 Zone Sequence Coordination .. 2-3
 Target Display Mode ... 2-3
 Local Edit ... 2-3
 Remote Edit .. 2-4
 Meter Mode .. 2-4
 LCD Light .. 2-4
 Unit ID ... 2-4
 Demand Meter Constant .. 2-4
 LCD Contrast .. 2-4
 Change Relay Password .. 2-4
 Change Test Password .. 2-4

Section 3 Metering
 Load Metering .. 3-1
 Energy Meter Rollover ... 3-1
 Demand Metering .. 3-2
 Minimum/Maximum Metering ... 3-2

Section 4 Relay Design and Specification
 Processor Specifications .. 4-1
 Battery Backed-Up Clock .. 4-1
 Ratings and Tolerances ... 4-3
 Current Input Circuits ... 4-3
 Voltage Input Circuits ... 4-3
 Burden ... 4-3
 Contact Input Circuits .. 4-3
 Control Power Requirements .. 4-3
 Output Contact Ratings ... 4-3
 Operating Temperature ... 4-4
 Humidity ... 4-4
 Transient Immunity ... 4-4
 Tolerances Over Temperature Range of -20° C to +55° C .. 4-4
 Dielectric ... 4-4
 Weight (Standard DPU1500R Unit) 4-4
Section 5 Interfacing with the Relay
- Man-Machine Interface (MMI) .. 5-1
- Man-Machine Interface Menus ... 5-2
- Targets .. 5-3
- Windows External Communications Program (WinECP) 5-4
- WinECP Menus ... 5-5
- WinECP User Guide ... 5-4
- FLI Index and User Names ... 5-23
- Master Trip Output ... 5-23
- Register Configuration ... 5-23
- Miscellaneous Settings .. 5-23
- Clock ... 5-24
- Prolonged Storage of Relay ... 5-24

Section 6 Programmable Input and Output Contacts
- Binary (Contact) Inputs .. 6-1
- Programmable Input Definitions ... 6-2
- Programming the Binary (Contact) Inputs .. 6-5
- Programmable Outputs .. 6-6
- Logical Output Types and Definitions ... 6-6
- Output Contacts .. 6-11
 - Permanently Programmed Output Contacts 6-11
 - Programmable Master Trip Contacts .. 6-12
 - Master Trip Contact .. 6-12
 - Programmable Output Contacts - OUT 1 through OUT 6 6-13
- Advanced Programmable Logic ... 6-13
- Physical Inputs .. 6-13
- Physical Outputs ... 6-13
- Logical Inputs ... 6-14
- Programming Examples .. 6-14

Section 7 Records
- Records Menu .. 7-1
- Fault Summary ... 7-1
- Fault Record ... 7-2
- Operations Record .. 7-2
- Fault Locator .. 7-4
- Self-Test Status .. 7-5
- Example of a Self-Test Failure ... 7-6
- Example of an Editor Access ... 7-6
- Settings Tables Diagnostics ... 7-6
- Operations Log Listing and Definitions .. 7-7
- Operations Summary/Operations Counters and KSI Summation 7-14

Section 8 Monitoring and Control
- Physical I/O Status ... 8-1
- Logical Input Status ... 8-1
- Logical Output Status .. 8-2
- Metering Status .. 8-2
- Forcing I/O ... 8-2
- Pulsing Physical Outputs ... 8-4
Section 9 Mounting and Connections
Receipt of the DPU1500R ... 9-1
Installing the DPU1500R ... 9-1
Case Dimensions (Standard 19" Rack Mount) 9-3
Horizontal Panel Mounting Kit ... 9-4
Vertical Panel Mounting Kit .. 9-5
Rear Terminal Block Connections .. 9-6
Relay External Connections ... 9-7
Typical Minimum External Connections .. 9-7
Typical Connections for Units with Sensitive Earth Fault Option ... 9-8
Typical VT and CT Connections for Directional Sensitive Earth Fault Units .. 9-9

Section 10 Optional Features
Load Profile .. 10-1
Using the Load Profile Feature ... 10-2
Oscillographic Data Storage (Waveform Capture) 10-3
Saving a Waveform Capture Record ... 10-4
Oscillographic Analysis Tool .. 10-5
System Requirements and Installation .. 10-5
Using the Oscillographics Analysis Tool 10-5
Opening a File ... 10-5
Analog Display Windows ... 10-5
Menu Commands .. 10-7
Assign Colors Menu ... 10-7
Trace Overlay Menu ... 10-7
Scale Traces Menu ... 10-8
Select Status Trace Menu .. 10-8
Zoom Menu .. 10-9
Math Button .. 10-9
Spectral Analysis .. 10-9
Customer-Programmable Curves .. 10-10
CurveGen Software Release 1.0 .. 10-11
PC Requirements ... 10-11
Installation .. 10-11
Using CurveGen .. 10-11
Computing Coefficients ... 10-12
Manually Entering Coefficients .. 10-14
Downloading Curves ... 10-14

Section 11 Maintenance and Testing
High-Potential Tests ... 11-1
Withdraw the DPU1500R from its Case ... 11-1
System Verification Tests ... 11-1
Testing the DPU1500R ... 11-2
Functional Test Mode (Password Protected) 11-4
Verify Self-Checking Test Via MMI .. 11-4
Phase Angle Conventions .. 11-5
ABB Distribution Protection Unit 1500R

Section 12 Ordering Information/Communications/Panel Mounting/Spare Parts

Parts and Assemblies .. 12-1
Replacing Power Supplies ... 12-1
Panel Mounting Kit ... 12-2
Communications Ports .. 12-4
Pin Connections ... 12-4
RS-485 Port ... 12-5
Communications Settings .. 12-5
Communication Port Configurations ... 12-6
Option 0 ... 12-7
Option 1 ... 12-7
Option 2 ... 12-7
Option 3 ... 12-7
Option 4 ... 12-7
Option 5 ... 12-7
Communication Protocols ... 12-8
RTU Emulation .. 12-8
Ordering Instructions .. 12-9
How to Order .. 12-9
Communications Options Table ... 12-10
Ordering Selections .. 12-11

Application Notes (Inserts)

Application Note

IRIG B Implementation in the DPU/TPU/GPU 2000/R and DPU1500R Units

Application Note AN-22

Bus Breaker Backup to Feeder Breaker

Application Note AN-23

Zone Sequence Coordination

Application Note AN-24

Two-Phase-50P Tripping

Application Note AN-26

Single-Pole Tripping of Distribution Feeders
Guide to Figures

Section 1 Protective Functions
- Figure 1-1 DPU1500R Protective Functions ... 1-1
- Figure 1-2 IEC Extremely Inverse Curve .. 1-11
- Figure 1-3 IEC Very Inverse Curve ... 1-12
- Figure 1-4 IEC Inverse Curve ... 1-13
- Figure 1-5 IEC Long Time Inverse Curve ... 1-14
- Figure 1-6 Extremely Inverse Curve ... 1-15
- Figure 1-7 Very Inverse Curve .. 1-16
- Figure 1-8 Inverse Curve .. 1-17
- Figure 1-9 Short Time Inverse Curve ... 1-18
- Figure 1-10 Definite Time Curve .. 1-19
- Figure 1-11 Recloser Curve #8 .. 1-20
- Figure 1-12 Standard Instantaneous Curve ... 1-21
- Figure 1-13 Inverse Instantaneous Curve ... 1-22
- Figure 1-14 Recloser Sequence .. 1-24
- Figure 1-15 79 Cutout Time (O->I-CO) ... 1-25
- Figure 1-16 Sample Alternate Settings Programmable Input Logic Assignments 1-28

Section 3 Metering
- Figure 3-1 Metering Conventions ... 3-2
- Figure 3-2 WinECP Meter Menus .. 3-3

Section 4 Relay Design and Specifications
- Figure 4-1 DPU1500R Block Diagram ... 4-2

Section 5 Interfacing with the Relay
- Figure 5-1 MMI Access Panel .. 5-1
- Figure 5-2 MMI Displays .. 5-2
- Figure 5-3 Man-Machine Interface Menus .. 5-2
- Figure 5-4 WinECP Program Menus ... 5-4

Section 6 Programmable Inputs & Outputs
- Figure 6-1 Programmable Inputs Screen ... 6-1
- Figure 6-2 Trip Coil Monitoring .. 6-4
- Figure 6-3 Master Trip Contact Programming Screen 6-12
- Figure 6-4 Programmable Outputs Screen .. 6-13
- Figure 6-5 Programmable Inputs Screen ... 6-14
- Figure 6-6 52a and 52b Combined Input Example .. 6-14
- Figure 6-7 ALT1 Settings and 43A Recloser Disable Control Logic 6-14
- Figure 6-8 51V Tripping Logic .. 6-15
- Figure 6-9 Ground Relay Control Logic ... 6-15
- Figure 6-10 Blown Fuse Alarm Logic ... 6-15
Table of Figures

Section 7 Records
Figure 7-1 Fault Summary Record ... 7-1
Figure 7-2 Fault Record ... 7-2
Figure 7-3 Operations Record ... 7-3

Section 8 Monitoring and Control
Figure 8-1 Physical I/O Contacts ... 8-1
Figure 8-2 Logical Input Status .. 8-1
Figure 8-3 Logical Output Status ... 8-2
Figure 8-4 Forcing Physical Inputs ... 8-2
Figure 8-5 Forcing Logical Inputs ... 8-3
Figure 8-6 Physical Inputs .. 8-3
Figure 8-7 Pulse Physical Outputs ... 8-4
Figure 8-8 Breaker Control .. 8-4
Figure 8-9 Target Reset ... 8-5
Figure 8-10 Seal-In Alarm Reset .. 8-5
Figure 8-11 Starting Oscillographic Data Acquisition 8-6
Figure 8-12 Oscillographic Data Acquisition Status .. 8-6

Section 9 Relay Installations
Figure 9-1 Main Circuit Board Jumpers ... 9-2
Figure 9-2 Case Dimensions (Standard 19" Rack Mount 3 Units High) 9-3
Figure 9-3 Rear Terminal Block ... 9-6
Figure 9-4 Typical Minimum External Connections .. 9-7
Figure 9-5 Typical Connections for Units with Sensitive Earth Fault Option 9-8
Figure 9-6 Typical VT and CT Connections for Directional Sensitive Earth Fault Units .. 9-9

Section 10 Optional Features
Figure 10-1 Sample Load Profile for (-A-) Wye (Star)-Connected VTs and (-B-) Delta-Connected VTs 10-1
Figure 10-2 Load Profile Analysis .. 10-1
Figure 10-3 Load Profile Data Transfer ... 10-2
Figure 10-4 Oscillographc Analysis Tool ... 10-3
Figure 10-5 Waveform Capture Settings Screen ... 10-3
Figure 10-6 Oscillographic Data Exporting .. 10-4
Figure 10-7 Analog Display Window ... 10-6

Section 11 Maintenance and Testing
Figure 11-1 Typical Test Circuit .. 11-4
Figure 11-2 Metering Test ... 11-5
Figure 11-3 Test Circuit for Time Overcurrent, 50P (3I>>), 2-Phase 50P (3I>>) and 46 (Insc>) Functions 11-7
Figure 11-4 Test Circuit for 51N (IN>), 50N-1 (IN>>1), 50P-2 (3I>>2), 50N-2 (IN>>2), 50P-3 (3I>>3), 50N-3 (IN>>3) and 2-Phase 50P (3I>>) Functions ... 11-7
Figure 11-5 Test Circuit for Timing and Recloser Lockout 11-10

Section 12 Ordering Information/Communications/Panel Mounting/ Spare Parts
Figure 12-1 Rear Terminal Blocks and Communications Ports 12-6
Guide to Tables

Section 1 Protective Functions
- Table 1-1 51P (3I>) Characteristics .. 1-2
- Table 1-2 51N (IN>) Characteristics .. 1-3
- Table 1-3 50P-1 (3I>>1) Characteristics .. 1-4
- Table 1-4 50P-2 (3I>>2) Characteristics .. 1-4
- Table 1-5 50P-3 (3I>>3) Characteristics .. 1-5
- Table 1-6 50N-1 (IN>>1) Characteristics .. 1-5
- Table 1-7 50N-2 (IN>>2) Characteristics .. 1-6
- Table 1-8 50N-2 Sensitive Earth Fault Units ... 1-6
- Table 1-9 50N-3 (IN>>3) Characteristics .. 1-7
- Table 1-10 46 (Insc>) Characteristics ... 1-8
- Table 1-11 Constants for ANSI Time Overcurrent Characteristics 1-9
- Table 1-12 Constants for IEC Time Overcurrent Characteristics 1-9
- Table 1-13 27 (U<) Characteristics ... 1-23
- Table 1-14 79V (O->IU<) Characteristics .. 1-26

Section 5 Interfacing with Relay
- Table 5-1 Primary, Alternate 1 and Alternate 2 Settings (Password Protected) 5-19 to 5-20
- Table 5-2 Configuration Settings (Password Protected) 5-21
- Table 5-3 Counter Settings (Password Protected) .. 5-22
- Table 5-4 Alarm Settings (Password Protected) .. 5-22
- Table 5-5 Communications Settings (Password Protected) 5-23

Section 6 Programmable Inputs & Outputs
- Table 6-1 Logical Input Definitions .. 6-2 to 6-4
- Table 6-2 Logical Output Definitions .. 6-6 to 6-11

Section 7 Differential Relay Settings
- Table 7-1 Operations Record Value Information .. 7-5
- Table 7-2 Operations Log Listing .. 7-7 to 7-13

Section 9 Relay Installations
- Table 9-1 Minimum Connections ... 9-6

Section 11 Maintenance and Testing
- Table 11-1 Factory Defaults for Testing Primary Settings 11-3
- Table 11-2 Factory Defaults for Testing Configuration Settings 11-3

Section 12 Ordering Information/Communications/Panel Mounting/Spare Parts
- Table 12-1 DPU1500R Parts and Assemblies Table 12-1
- Table 12-2 RS-232 Pin Connections ... 12-4
- Table 12-3 RS-485, INCOM, and IRIG-B Pin Connections 12-5
- Table 12-4 Communications Options Table ... 12-10
- Table 12-5 Catalog Number Selections .. 12-11
Introduction

The Distribution Protection Unit 1500R (DPU1500R) is an advanced microprocessor-based relay that protects electrical power subtransmission and distribution systems. Available for 5 or 1 ampere secondary current transformers (CTs), the DPU1500R uses circuit breaker 52a (XO) and 52b (XI) auxiliary contacts for logic input signals. The DPU1500R can be applied with voltage transformers (VTs) connected for operation at 69 or 120 volts AC phase-to-ground (Wye(Star)), 120 volts AC phase-to-phase (Delta or Open Delta with B phase grounded) or 208 volts AC phase-to-phase (Delta). The DPU1500R is packaged in a metal case suitable for conventional flush mounting on a rack panel. The microprocessor-based logic along with the power supply can be totally withdrawn from the case and interchanged with other cases without the need for calibration. All connections to the DPU1500R are made at clearly identified terminals on the rear of the unit. Because of its microprocessor capability, the DPU1500R provides the following features in one integrated package:

- Isolated communication ports for superior noise-free communications
- Password protected settings and controls
- Expanded operating temperature range, from -40°C to +70°C
- Phase time and instantaneous overcurrent protection: 51P (3I>), 50P-1 (3I>>1), 50P-2 (3I>>2), 50P-3 (3I>>3)
- Ground time and instantaneous overcurrent protection: 51N (IN>), 50N-1 (IN>>1), 50N-2 (IN>>2), 50N-3 (IN>>3)
- Negative sequence (I₂) time overcurrent protection: 46 (Insc>)
- Multishot reclosing: 79 (O->I)
- Single- and three-phase undervoltage and single-phase overvoltage functions: 27-1P (U<) and 27-3P (3U<)
- Metering: currents, voltages, watts, VARs, watt and VAR hours, power factor, frequency
- Peak demand currents, watts and VARs with time stamp
- Fault locator with estimated distance in miles and fault resistance
- Fault summary and detailed fault records for last 32 trips
- Operations (sequence of events) record for last 128 operations
- Eight (6) user-programmable binary (contact) inputs
- Eight (8) output contacts: six (6) user-programmable
- Three selectable settings tables: Primary, Alternate 1 and Alternate 2
- Cold load pickup function
- Bus breaker backup scheme is easily implemented
- Zone sequence coordination function
- Summation of breaker interrupting duty and breaker operations counter
- Battery backed-up clock maintains date and time during control power interruptions
- Continuous self-diagnostics on power supply, memory elements and microprocessors
- Front RS-232 port and a variety of rear communication port options such as RS-232, RS-485 and Modbus ®
- Optional load profile capability: watts, VARs and voltage for 40, 80 or 160 days
- Optional user-programmable time overcurrent curves
- Optional oscillographic data storage captures 64 cycles of current and voltage waveform data
- Drawout motherboard and power supply from the case and interchange with other cases without the need for calibration
Getting Started

Precautions

Take the following precautions when using the ABB Distribution Protection Unit 1500R:

1. Incorrect wiring may result in damage. Be sure wiring agrees with connection diagram before energizing.

2. Apply only the rated control voltage marked on the unit.

3. High-potential tests are not recommended. If a control wire insulation test is required, fully withdraw the DPU1500R from its case and perform only a DC high-potential test. **Surge capacitors installed in the unit do not allow AC high-potential testing.**

4. Follow test procedures to verify proper operation. To avoid personal shock, use caution when working with energized equipment. Only competent technicians familiar with good safety practices should service these devices.

5. In the event the self-checking function detects a system failure, the protective functions are disabled and the alarm contacts are actuated. Replace the unit as soon as possible.

Password

6. A correct password is required to make changes to the relay settings and to test the output contacts. **The preset factory password is four blank spaces.** Once you have chosen a new password and entered it into the system, access will be denied if the password is forgotten. If you forget the password, contact the factory.

WARNING: Removal of the relay from the case exposes the user to dangerous voltages. Use extreme care. Do not insert hands or other foreign objects into the case.

This instruction booklet contains the information to properly install, operate and test the DPU1500R but does not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in conjunction with installation, operation or maintenance. Should particular problems arise which are not sufficiently covered for the purchaser’s purposes, please contact ABB Automation Inc.

Modbus® is a registered trademark of Modicon, Inc.
INCOM™ is a registered trademark of Cutler Hammer.
The purpose of this document is to provide an engineer or technician with all of the necessary information on how to test trip and reclose in a new DPU1500R relay. It will answer all of the questions most frequently asked by users who are not familiar with the relay. It is recommended that the initial tests performed be done according to the Acceptance Test procedure in this instruction manual before attempting to test with operational settings.

Initial Tripping

When right from the factory, mostly all of the protection functions in the DPU1500R are disabled in the Primary Settings. Only the functions 51P (3I>), 50P-1 (3I>>1), 51N (IN>), and 50N-1 (IN>>1) are enabled. The Time Overcurrent elements are set to pick up at 6 amperes and the Instantaneous to trip at 3 times this setting or 18 amperes. Given the default curve (extremely inverse) and time dial (5), 12 Amps rms into one phase and out another should trip the 51P (3I>) in about 16 seconds.

It is not enough that the settings are enabled directly as above, they must also be enabled in the Recloser Trip Functions settings 79-1 (O->I1), 79-2 (O->I2), 79-3 (O->I3), 79-4 (O->I4), and 79-5 (O->I5). Only the functions that are enabled (or set to lockout) can trip the relay during that recloser cycle. That is, only functions enabled (set to lockout) in 79-1 (O->I1) can trip the relay before it's first reclose, only the functions enabled in 79-2 (O->I2) can trip between the first and second reclose, and so on. Elements that are selected "Disable" in any reclose sequence will not operate.

From the factory, only the functions 51P (3I>), 50P-1 (3I>>1), 51N (IN>), and 50N-1 (IN>>1) are enabled in setting 79-1 (O->I1). The 51P (3I>) function is not in the list because it is always enabled. To add to the list in 79-1 (O->I1), a function must first be enabled outside of 79-1 (O->I1). The new function will then appear in the 79-1 (O->I1) list as "Disabled" and must be set to "Enable" or "Lockout". The preceding statements are also applicable to all of the other Recloser Trip step settings, 79-2 (O->I2) through 79-5 (O->I5).

Another way to disable (torque control) protection functions is by mapping that function to one of the programmable inputs in the Programmable Inputs screen using WinECP. Mapping a function to an input will disable that function if there is no control voltage detected on that input's terminals. An will disable the function when control voltage is detected on that input's terminals.

From the factory, no tripping functions are disabled in this way. The only functions that are mapped to inputs are the 52A (XO), 52B (XI), and 43A (AR) functions which are mapped to IN-1, IN-2, and IN-3 respectively.

Yet another way that a function can be disabled is by deselecting it from the Master Trip Output screen. The Master Trip Output allows the user to choose which tripping function will activate the main trip contact and provides a way to separate the different tripping functions among programmable output contacts. From the factory, all tripping functions are mapped to the main trip output.

Reclosing

When the DPU1500R with factory settings is first powered up, the red “Recloser Out” front panel target LED will be lit indicating that the reclosing function is disabled. There are a few different ways that reclosing is defeated in the factory settings. Any one of them is capable of disabling the recloser by itself and must each be taken into account. They are listed here:

1. The 43A (AR) function is mapped with a programmable input IN-3. Enable the recloser by connecting control voltage to IN-3 or by unmapping the 43A (AR) input.
2. The factory settings do not map the CLOSE function to any programmable output. Use WinECP to map CLOSE to OUT-1 or any other output contact.
3. The 79-1 (O->I1) Open Time setting is initially set to “Lockout”. Change this setting to some time interval.
Another thing that can keep the relay from reclosing, regardless of what the settings are, is the way the unit is tested. When the relay is tripped, the breaker status 52A (XO) and 52B (XI) contacts must change state and the fault current must drop to 5% under the lowest pickup within the **Trip Failure Time** setting or the relay will go to Lockout and issue a breaker failure alarm. The breaker status requirement can be bypassed by putting the relay into Functional Test mode (from the Test Menu). In this mode, the relay can ignore the status of the 52A (XO) and 52B (XI) contacts for 15 minutes, unless it is reset.

To stop the fault current, the current source should be configured to turn off when it senses that the trip contact has closed, or, the current could be wired through an A-contact controlled by the breaker. If the current cannot be turned off quickly enough, the **Trip Failure Time** setting (in the Configuration Settings group) can be increased up to 1 second (60 cycles).

There are additional reasons that the DPU1500R relay may not reclose when the relay does not contain only factory settings. Some possible causes are listed here:

1. The function that causes the trip is set to send the relay into “Lockout” within the **79-X (O->IX) Select** setting where X can be reclose step 1, 2, 3, 4 or 5.
2. The **79V (O->IU<) Voltage Select** setting is enabled and one of the phase voltages is below the **79V (O->IU<) Pickup** setting.
Protective Functions

Protective Elements

The DPU1500R features a combination of protective elements as typically applied in subtransmission and distribution protection schemes. The following text will describe the various elements, their application, and how to set them.

Summary of Protective Elements

The following Figure 1-1 summarizes all of the protective elements contained in the DPU1500R, their settings, and factory default settings. See the following text for a complete description of each element.

![Figure 1-1. DPU1500R Protective Functions](image)

Phase Time Overcurrent Element 51P (3I>)

The phase time overcurrent element, 51P, contained in the DPU1500R is set based on CT secondary current as connected to the phase current inputs; Sensor 1 (Ia), Sensor 2 (Ib), and Sensor 3 (Ic). See Figure 9-4 for a typical connections drawing. Multiple time curves and time dials are available (see Table 1-1) to closely coordinate with other devices in the system. The time-current curves included in the DPU1500R can be found later this section. User programmable curves are available depending on the DPU1500R model ordered (see Section 10 for more details). See Section 12 for help defining the unit model number. The 51P pickup, curve type, and time dial are all set in the Primary, Alternate 1, and Alternate 2 settings groups. For the 51P element to operate the “Trip” contact, it must be selected in the “Master Trip Output” mapping (see “Programmable Master Trip Contact” later in this section). 51P is set by factory default to operate the “Trip” contact. The 51P element will always initiate reclosing unless the recloser is disabled. See the “Reclosing” Section for more details.
The 51P element can be supervised (torque controlled) by mapping the “PH3” logical input to a physical input for external supervision or Logical Output for internal supervision. See the Programmable I/O” Section for programming instructions.

There are two selectable reset modes available for the 51P element. The instantaneous mode is used to coordinate with other instantaneous reset devices such as solid state or microprocessor based relays. In the instantaneous mode the 51P will reset when the current drops below the pickup setting for one half cycle.

The delayed mode simulates the action of an electromechanical induction disk relay. In this mode the 51P reset follows a slow reset characteristic that depends upon the duration of the overcurrent condition and the amount of load current flowing after the event. The reset equations are described later in this section. When the DPU1500R “Multiple Device Trip Mode” (see “Multiple Device Trip Mode” in Section 2) is enabled, the 51P reset characteristic defaults to the instantaneous mode and cannot be set to delayed. The reset mode applies to all time overcurrent elements in the DPU1500R.

Ground Time Overcurrent Element 51N (IN>)

The ground time overcurrent element, 51N, contained in the DPU1500R is calculated internally as the sum of the three phase CT secondary currents or 3Io. Multiple time curves and time dials are available (see Table 1-2) to closely coordinate with other devices in the system. The time-current curves for the DPU1500R are can be found later in this section. User programmable curves are available depending on the DPU1500R model ordered (see Section 10 for programmable curves). See Section 12 for help defining the unit model number. The 51N pickup, curve type, and time dial are all set in the Primary, Alternate 1, and Alternate 2 settings groups. For the 51N element to operate the “Trip” contact, it must be selected in the “Master Trip Output” mapping (see “Programmable Master Trip Contact” later in this section). The 51N element is set by factory default to operate the “Trip” contact.

Table 1-1. 51P (3I>>) Characteristics

<table>
<thead>
<tr>
<th>51P Parameter</th>
<th>Range/Curve</th>
<th>Time Dial</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup for 5 ampere model</td>
<td>1 to 12 amperes</td>
<td>0.1 amperes</td>
<td></td>
</tr>
<tr>
<td>Pickup for 1 ampere model</td>
<td>0.2 to 2.4 amperes</td>
<td>0.02 amperes</td>
<td></td>
</tr>
<tr>
<td>Time Overcurrent Curves **</td>
<td>Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Very Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Extremely Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Long Time Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Long Time Very Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Long Time Ext. Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Short Time Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Definite Time</td>
<td>0 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Recloser Curve</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td>IEC</td>
<td>Inverse</td>
<td>0.05 to 1.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Very Inverse</td>
<td>0.05 to 1.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Extremely Inverse</td>
<td>0.05 to 1.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Long Time Inverse</td>
<td>0.05 to 1.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>User Prog. Curve #1 ***</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>User Prog. Curve #2 ***</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>User Prog. Curve #3 ***</td>
<td>0 to 10</td>
<td>0.1</td>
</tr>
</tbody>
</table>

See model number for applicability

*** Optional

See Table 5-1 for the 51P factory default settings.
There are two selectable reset modes available for the 51N element. The instantaneous mode is used to coordinate with other instantaneous reset devices such as solid state or microprocessor based relays. In the instantaneous mode the 51N will reset when the current drops below the pickup setting for one half cycle. The delayed mode simulates the action of an electromechanical induction disk relay. In this mode the 51N reset follows a slow reset characteristic that depends upon the duration of the overcurrent condition and the amount of load current flowing after the event. The delayed reset equations are described later in this section. When the DPU1500R “Multiple Device Trip Mode” (see “Multiple Device Trip Mode” in Section 2) is enabled the 51N reset characteristic defaults to the instantaneous mode and cannot be set to delayed. The reset mode applies to all time overcurrent elements in the DPU1500R.

Phase Instantaneous Overcurrent Element 50P-1 (3I>>1) - Level 1, Low set

The 50P-1 function operates when the level of any phase current exceeds the pickup level. It should be enabled where phase instantaneous tripping is desired. It is typically set equal to or higher than the phase time overcurrent pickup. The pickup level of 50P-1 is set as a multiple of the 51P pickup. The timing of the 50P-1 element varies depending upon which curve is selected (see Table 1-3). The curves can be found later in this section. The 50P-1 pickup, curve type, and time dial are all set in the Primary, Alternate 1, and Alternate 2 settings groups. For the 50P-1 element to operate the “Trip” contact, it must be selected in the “Master Trip Output” mapping (see “Programmable Master Trip Contact” later in this section). The 50P-1 element is set by factory default to operate the “Trip” contact.
Phase Instantaneous Overcurrent Element 50P-2 (3I>>2) - Level 2, Mid set

The 50P-2 function operates when the level of any phase current exceeds the pickup level. 50P-2 is used to establish an additional layer of instantaneous overcurrent protection.

The pickup level of 50P-2 is set as a multiple of the 51P pickup. The timing of the 50P-2 is set strictly as definite time (see Table 1-4). The 50P-2 pickup is often set higher than the 50P-1 and used to trip faster than the 50P-1 or for recloser Lockout. See “Reclosing” later in this section. The 50P-2 pickup and time delay are all set in the Primary, Alternate 1, and Alternate 2 settings groups. For the 50P-2 element to operate the “Trip” contact, it must be selected in the “Master Trip Output” mapping (see “Programmable Master Trip Contact” later in this section). 50P-2 is set by factory default to operate the “Trip” contact.

50P-2 tripping can be enabled or disabled in each step of the reclose sequence. See the “Reclosing” Section for more details. It can also be supervised (torque controlled) by mapping the “PH3” logical input to a physical input for external supervision or Logical Output for internal supervision. See the “Programmable I/O” Section for programming instructions. When the two phase 50P tripping function is selected, the 50P-1 element trips only when two or three phases exceed the pickup setting and does not operate for single phase faults. This is applicable where instantaneous tripping for single phase to ground faults is not desired (see “Two Phase 50P Tripping” later in this section).

When the circuit breaker is closed by an external source such as a control switch or SCADA, the 50P-1 can be disabled from tripping for a “Cold Load Time”. See the “Cold Load Time” Section for more details.
Phase Instantaneous Overcurrent Element 50P-3 (3I>>3) - Level 3, High set

The 50P-3 function operates when the level of any phase current exceeds the pickup level. 50P-3 is typically used to establish high set instantaneous overcurrent protection. The 50P-3 setting is often used to block reclosing at high levels of fault current, or as a level detector supervised by another function within the relay such as the 32. To operate an output relay with the 50P-3 only, a programmable output contact must be mapped to operate on the 50P-3 element only. See the “Programmable I/O” Section for more details. The pickup level of 50P-3 is set as a multiple of the 51P pickup (see Table 1-5). The timing of the 50P-3 is not selectable and trips instantaneously with no intentional time delay. The 50P-3 pickup is set in the Primary, Alternate 1, and Alternate 2 settings groups. For the 50P-3 element to operate the “Trip” contact, it must be selected in the “Master Trip Output” mapping (see “Programmable Master Trip Contact” later in this section). 50P-3 is set by factory default to operate the “Trip” contact.

50P-3 tripping can be enabled or disabled in each step of the reclose sequence. See “Reclosing” later in this section for more details. When the Two Phase 50P tripping function is selected, the 50P-3 element trips only when two or three phases exceed the pickup setting and does not operate for single phase faults. This is applicable where instantaneous tripping for ground faults is not desired.

Ground Instantaneous Overcurrent Element 50N-1 (IN>>1) - Level 1, Low set

The 50N-1 function operates when the level of ground current exceeds the pickup level. It is enabled where ground instantaneous tripping is desired. It is typically set equal to or at a higher pickup level than the ground time over current pickup. The pickup level of 50N-1 is set as a multiple of the 51N pickup. The timing of the 50N-1 element varies depending upon which curve is selected (see Table 1-6). The 50N-1 pickup, curve type, and time dial are all set in the Primary, Alternate 1, and Alternate 2 settings groups. For the 50N-1 element to operate the “Trip” contact, it must be selected in the “Master Trip Output” mapping (see “Programmable Master Trip Contact” later in this section). 50N-1 is factory default to operate the “Trip” contact.

50N-1 tripping can be enabled or disabled in each step of the reclose sequence. See “Reclosing” later in this section for more details. It can also be supervised (torque controlled) by mapping the “GRD” logical input to a physical input for external supervision or Logical Output for internal supervision. See the “Programmable I/O” Section for programming instructions.

When the circuit breaker is closed by an external source such as a control switch or SCADA, the 50N-1 can be disabled from tripping for a “Cold Load Time”. See the “Cold Load Time” Section for more details.
Ground Instantaneous Overcurrent Element 50N-2 (IN>>2) - Level 2, Mid set

The 50N-2 function operates when the level of ground current exceeds the pickup level. 50N-2 is used to establish one more layer of instantaneous overcurrent protection such as a high set instantaneous overcurrent element. If the fault current exceeds the 50N-2 setting, a typical scenario would be to trip faster than the 50N-1 setting, lockout reclosing, or operate an external lockout relay. To operate an external lockout relay with the 50N-2 only, a programmable output contact must be mapped to operate on the 50N-2 element only. See the “Programmable I/O” Section for more details. The pickup level of 50N-2 is set as a multiple of the 51N pickup. The timing of the 50N-2 is set strictly as definite time (see Table 1-7). The 50N-2 pickup and time delay are all set in the Primary, Alternate 1, and Alternate 2 settings groups. For the 50N-2 element to operate the “Trip” contact, it must be selected in the “Master Trip Output” mapping (see Programmable Trip Contact Section). 50N-2 is set by factory default to operate the “Trip” contact.

50N-2 tripping can be enabled or disabled in each step of the reclose sequence. See “Reclosing” later in this section for more details. It can also be supervised (torque controlled) by mapping the “GRD” logical input to a physical input for external supervision or Logical Output for internal supervision. See the “Programmable I/O” Section for programming instructions.

Sensitive Earth Fault (SEF) Option, 50N-2 (I0>2) - Definite Time

The Sensitive Earth Fault (SEF) is applicable to systems where all loads are connected line to line and no neutral or earth current flows unless an earth fault occurs. (This option is not applicable to 4 wire multigrounded systems.) This feature is included on special SEF DPU1500R models only (see Section 12) and replaces the standard 50N-2 element described earlier. For SEF models a separate SEF current input is provided at Sensor 5 (I0SEF). This input can be connected residually in series with the standard earth fault CT or it may be connected to a separate window type CT that encloses all three phase conductors. See Table 1-8 for applicable SEF settings.

The analog and digital filtering provide a rejection ratio of third harmonic greater than 50:1 to prevent incorrect operation due to the effects of distribution transformer excitation currents.

For loop schemes or ungrounded systems, a directional SEF model is available (see Section 12). The directional unit is polarized, by a separate V_0 (zero sequence voltage) input (see Figure 9-6). The potential transformers should be connected wye-broken delta. The minimum polarization voltage is 2 volts and the torque angle is set 0 to 355 degrees in 5 degree steps with a sector width of 180 degrees. (Contact factory for availability of 1-volt sensitivity). The SEF 50N-2 tripping can be enabled or disabled in each step of the reclose sequence. See “Reclosing” later in this section for more details. It can also be supervised (torque controlled) by mapping the “SEF” logical input to a physical input for external supervision or Logical Output for internal supervision. See the “Programmable I/O” Section for programming instructions.

Table 1-7. 50N-2 (IN>>2) Characteristics

<table>
<thead>
<tr>
<th>50N-2 Parameter</th>
<th>Range/Curve</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>0.5 to 20 x 51N setting</td>
<td>0.1x</td>
</tr>
<tr>
<td>Definite Time</td>
<td>0 to 9.99 seconds</td>
<td>0.01 sec.</td>
</tr>
</tbody>
</table>

The 50N-2 element is disabled in the factory default settings.

Table 1-8. 50N-2 (IN>>2) Sensitive Earth Fault Units

<table>
<thead>
<tr>
<th>SEF 50N-2 Parameter</th>
<th>Range/Curve</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>0.005 to 0.200 ampere</td>
<td>0.0005A</td>
</tr>
<tr>
<td>Definite Time</td>
<td>0.5 to 180 seconds</td>
<td>0.1 seconds</td>
</tr>
</tbody>
</table>

The SEF 50N-2 is disabled in the factory default settings.
Ground Instantaneous Overcurrent Element 50N-3 (IN>>3) - Level 3, High set

The 50N-3 function operates when the level of ground current exceeds the pickup level. 50N-3 is typically used to establish high set instantaneous overcurrent protection. If the fault current exceeds the 50N-3 setting a typical scenario would be to lockout reclosing or operate an external lockout relay. To operate an external lockout relay with the 50N-3 only, a programmable output contact must be mapped to operate on the 50N-3 element only. This function can also be used as a level detector supervised by some other function such as the 32N. See the “Programmable I/O” Section for more details. The pickup level of 50N-3 is set as a multiple of the 51N pickup (see Table 1-2). The timing of the 50N-3 is not selectable and trips instantaneously with no intentional time delay. The 50N-3 pickup is set in the Primary, Alternate 1, and Alternate 2 settings groups. For the 50N-3 element to operate the “Trip” contact, it must be selected in the “Master Trip Output” mapping (see “Programmable Master Trip Contact” later in this section). 50N-3 is set by factory default to operate the “Trip” contact. 50N-3 tripping can be enabled or disabled in each step of the reclose sequence. See “Reclosing” later in this section for more details.

<table>
<thead>
<tr>
<th>50N-3 Parameter</th>
<th>Range/Curve</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup</td>
<td>0.5 to 20 x 51N setting</td>
<td>0.1x</td>
</tr>
</tbody>
</table>

The 50N-3 element is disabled in the factory default settings.

Negative Sequence Time Overcurrent Element 46 (Insc>)

The negative sequence overcurrent element is used where increased sensitivity for phase to phase faults is desired. In addition to the typical application of feeder protection, this element can also be applied on DPU1500R relays protecting a main bus breaker in medium to large distribution substations. The main DPU1500R would typically be set to provide tripping for bus faults and backup tripping for a failed feeder relay or breaker. In the case of a medium to larger substation the time and instantaneous overcurrent elements in the main DPU1500R must be set well above the combined full load current of all the individual feeders. This slows the response to bus faults and decreases the sensitivity to faults on a single distribution feeder. Since the negative sequence element only looks at the amount of negative sequence current in the system it can be set just above the maximum negative sequence current level produced by single phase load unbalance. This makes the main DPU1500R much more sensitive to phase to phase faults.

Multiple time curves and time dials are available (see Table 1-10) to coordinate with other devices in the system. The time-current curves included in the DPU1500R are located later in Section 1. User programmable curves and special Recloser curves are also available depending on the DPU1500R model ordered (see Section 10 for programmable curves). See Section 12 for help defining the unit model number. The 46 pickup, curve type, and time dial are all set in the Primary, Alternate 1, and Alternate 2 settings groups. For the 46 element to operate the “Trip” contact, it must be selected in the “Master Trip Output” mapping (see “Programmable Master Trip Contact” later in this section). The 46 element is set by factory default to operate the “Trip” contact. The 46 element will always initiate reclosing unless the recloser is disabled. See “Reclosing” later in this section for more details.

There are two selectable reset modes available for the 46 element. The instantaneous mode is used to coordinate with other instantaneous reset devices such as solid state or microprocessor based relays. In the instantaneous mode the 46 will reset when the current drops below the pickup setting for one half cycle. The delayed mode simulates the action of an electromechanical induction disk relay. In this mode the 46 reset follows a slow reset characteristic that depends upon the duration of the overcurrent condition and the amount of load current flowing after the event. The reset time equations are available at the end of Section 1. When the DPU1500R “Multiple Device Trip Mode” (see “Multiple Device Trip Mode” in Section 2) is enabled the 46 reset characteristic defaults to the instantaneous mode and cannot be set to delayed. The reset mode when set applies to all time overcurrent elements in the DPU1500R.
Table 1-10. 46 (Insc>) Characteristics

<table>
<thead>
<tr>
<th>51P Parameter</th>
<th>Range/Curve</th>
<th>Time Dial</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickup for 5 ampere model</td>
<td>1 to 12 amperes</td>
<td></td>
<td>0.1 ampere</td>
</tr>
<tr>
<td>Pickup for 1 ampere model</td>
<td>0.2 to 2.4 amperes</td>
<td></td>
<td>0.02 ampere</td>
</tr>
<tr>
<td>Time Overcurrent Curves **</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANSI</td>
<td>Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Very Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Extremely Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Long Time Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Long Time Very Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Long Time Ext. Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Short Time Inverse</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Definite Time</td>
<td>0 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Recloser Curve</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td>IEC</td>
<td>Inverse</td>
<td>0.05 to 1.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Very Inverse</td>
<td>0.05 to 1.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Extremely Inverse</td>
<td>0.05 to 1.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>Long Time Inverse</td>
<td>0.05 to 1.0</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>User Prog. Curve #1 ***</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>User Prog. Curve #2 ***</td>
<td>1 to 10</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>User Prog. Curve #3 ***</td>
<td>0 to 10</td>
<td>0.1</td>
</tr>
</tbody>
</table>

** See model number for applicability

*** Optional

The 46 element is disabled in the factory default settings.
Timing Curves

Time Overcurrent Curve Equation

ANSI

\[
\text{Trip Time} = \left(\frac{A}{M^c - C} + B \right) \times \left(\frac{14n - 5}{9} \right)
\]

\[
\text{Reset Time} = \left(\frac{D}{1 - EM} \right) \times \left(\frac{14n - 5}{9} \right)
\]

M = Multiples of pickup current (I/Ipu)

n = Time Dial setting

Table 1-11. Constants for ANSI Time Overcurrent Characteristics

<table>
<thead>
<tr>
<th>Curve</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>P</th>
<th>D</th>
<th>E</th>
<th>K</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Inverse</td>
<td>6.407</td>
<td>0.025</td>
<td>1</td>
<td>2.0</td>
<td>3</td>
<td>0.998</td>
<td>80.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Very Inverse</td>
<td>2.855</td>
<td>0.0712</td>
<td>1</td>
<td>2.0</td>
<td>1.346</td>
<td>0.998</td>
<td>13.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Inverse</td>
<td>0.0086</td>
<td>0.0185</td>
<td>1</td>
<td>0.02</td>
<td>0.46</td>
<td>0.998</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td>Short Time Inverse</td>
<td>0.00172</td>
<td>0.0037</td>
<td>1</td>
<td>0.02</td>
<td>0.092</td>
<td>0.998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definite Time</td>
<td>1.281</td>
<td>0.005</td>
<td>1</td>
<td>2.0</td>
<td>0.6</td>
<td>0.998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Time Ext. Inv.</td>
<td>64.07</td>
<td>0.250</td>
<td>1</td>
<td>2.0</td>
<td>30</td>
<td>0.998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Time Very Inv.</td>
<td>28.55</td>
<td>0.712</td>
<td>1</td>
<td>2.0</td>
<td>13.46</td>
<td>0.998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Time Inverse</td>
<td>0.086</td>
<td>0.185</td>
<td>1</td>
<td>0.02</td>
<td>4.6</td>
<td>0.998</td>
<td>120.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Recloser Curve #8</td>
<td>4.211</td>
<td>0.013</td>
<td>0.35</td>
<td>1.8</td>
<td>3.29</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- The time in seconds for the **Long Time Extremely Inverse** Curve is 10 times that of the Extremely Inverse Curve.
- The time in seconds for the **Long Time Very Inverse** Curve is 10 times that of the Very Inverse Curve.
- The time in seconds for the **Long Time Inverse** Curve is 10 times that of the Inverse Curve.
- The ANSI curves comply with ANSI C37.112.
- See Section 10 for information on optional Recloser curves.
Timing Curves

Time Overcurrent Curve Equation

IEC

$$\text{Trip Time} = \left(\frac{K}{\left(\frac{G}{G_b}\right)^{\alpha} - 1}\right) \times \text{time multiple}$$

Reset Time = instantaneous

$$\frac{G}{G_b} = \text{multiples of pickup current}$$

Time multiple range 0.05 to 1.0 in steps of 0.05

Table 1-12. Constants for IEC Time Overcurrent Characteristics

<table>
<thead>
<tr>
<th>Curve</th>
<th>K</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremely Inverse</td>
<td>80.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Very Inverse</td>
<td>13.5</td>
<td>1.0</td>
</tr>
<tr>
<td>Inverse</td>
<td>0.14</td>
<td>0.02</td>
</tr>
<tr>
<td>Long Time Inverse</td>
<td>120.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Figure 1-2. Extremely Inverse Curve
Figure 1-3. Very Inverse Curve
Figure 1-4. Inverse Curve
Figure 1-5. Long Time Inverse Curve
Figure 1-6. Extremely Inverse Curve
Figure 1-7. Very Inverse Curve

TIME-CURRENT CHARACTERISTICS

TIME IN SECONDS

CURRENT IN MULTIPLES OF SETTING

DWG. NO. 605841 Rev. 2
Figure 1-8. Inverse Curve

CURRENT IN MULTIPLES OF SETTING

TIME IN SECONDS
Figure 1-9. Short Time Inverse Curve
Figure 1-10. Definite Time Curve
Figure 1-11. Recloser Curve #8
Figure 1-12. Standard Instantaneous Curve

TIME-CURRENT CHARACTERISTICS

TIME IN SECONDS

CURRENT IN MULTIPLES OF SETTING

Figure 1-12. Standard Instantaneous Curve

DWG. NO. 605845 Rev. 2
Figure 1-13. Inverse Instantaneous Curve
Undervoltage Element 27 (U<)

The undervoltage element is provided for alarm and control purposes when the system voltage drops below a preset threshold. Two logical outputs are provided with the 27 element; one for single phase undervoltage, 27-1P, and one for three phase undervoltage, 27-3P. The 27-1P element will operate when any single phase drops below the undervoltage setting. The 27-3P element will operate only when all three phases drop below the undervoltage setting. Both elements are separate and do not operate the "Main Trip" contact. These logical outputs must be mapped to physical outputs if alarming or tripping is desired (see Programmable I/O Section). The 27 element can also be used to supervise (torque control) other protective elements such as the 51P. Mapping the 27 element to the "PH3" logical input via the programmable logic, provides a voltage controlled overcurrent protective function. See the "Programmable I/O" Section for more details.

The 27 threshold and time delay are set in the Primary, Alternate 1, and Alternate 2 settings groups (Table 5-1). The time delay range is 0 to 60 seconds. If trip times below one second are desired, set the Time Delay to zero and place desired trip time in physical output timers (see the Programmable Output Section).

Cold Load Time

The Cold Load timer as set in the Primary, Alternate 1, and Alternate 2 settings groups is used to block unintentional tripping of the 50P-1 and the 50N-1 due to inrush currents seen by the DPU1500R after a manual breaker close. The timer is set from 0 to 254 with a resolution of 1. Select "seconds" or "minutes" in the Configuration Settings (see Section 2). During the cold load time delay period, a logical output, CL TA, is asserted. This logical output can be mapped to a physical output for alarm and control purposes (see Programmable Outputs Section). The cold load timer is operational only after a manual breaker close. It does not operate during a DPU1500R reclose sequence.

The Cold Load Time is disabled in the factory default settings.

A separate Neutral Cold Load Time function is supplied in units with the Sensitive Earth Fault feature.

Recloser Function 79 (O->I)

This recloser function, 79, provides automatic reclosing of the circuit breaker after the DPU1500R has tripped due to a fault. The circuit breaker will close after a preprogrammed time delay called "Open Time". Zero to four recloser steps can be selected and each has its own separate "Open Time" and selection of protective elements. The steps as labeled in the DPU1500R are 79-1 (step 1), 79-2 (step 2), 79-3, (step 3), 79-4 (step 4) and 79-5 (step 5). During each reclose step the protective elements 50P-1, 50P-2, 50P-3, 51N, 50N-1, 50N-2, and 50N-3 can be enabled or disabled from tripping. Each protective element can also be set such that if the element operates, the reclose sequence will be halted and "locked out". Lockout is a point at which the circuit breaker will remain open after a fault and must be manually closed. These steps can be used to provide high speed reclosing for the first trip and delayed reclosing thereafter. A reset timer runs after a successful circuit breaker reclose (whether automatic or manual) and is used to reset the reclose sequence to 79-1 after its time period expires. If the DPU1500R trips the circuit breaker again before the expiration of the reset time, the reclose sequence will increment one step; I.E. 79-1 to 79-2. The settings as programmed in the 79-2 step will then become active. This incremental stepping occurs until the recloser locks out or successfully recloses. If the reclosing function proceeds to lockout, the circuit breaker must be manually closed.

Table 1-13. 27 Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range/Curve</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undervoltage Pickup</td>
<td>10 to 200 VAC</td>
<td>1 volt</td>
</tr>
<tr>
<td>Time Delay</td>
<td>0 to 60 seconds</td>
<td>1 second</td>
</tr>
</tbody>
</table>

The 27 undervoltage elements are disabled in the factory default settings.
A red “Recloser Out” target contained on the front panel of the DPU1500R indicates that the recloser function is disabled. The logical input, 43A is used to remotely enable or disable the recloser (I.E. via control switch). If this logical input is not mapped to a physical input (see Programmable I/O Section), the recloser is defaulted to enabled. If the recloser is in the middle of a sequence and the 43A logical input is made inactive the recloser will stop operation. When 43A is returned to the active state, the recloser will be reset to step 79-1. The recloser function can also be disabled by setting 79-1 to lockout.

See Table 5-1 for the 79 factory default settings.

Lockout

The DPU1500R will lockout reclosing if any one of the following conditions are true:

- A fault persists for the entire reclose sequence.
- The breaker is manually closed and a fault occurs before the reset time expires.
- A Trip output occurs and the fault current is not removed and/or the 52a/52b contacts did not change state before expiration of the Trip Fail Timer (5 to 60 cycles).
- A Close output occurs and the 52a/52b contacts do not change state before the expiration of the Close Fail Timer. If the Circuit Breaker subsequently closes and trips within the reset time, the recloser will lock out.
- The reclose function is set to lockout after a 50P-1, 50P-2, 50P-3, 51N, 50N-1, 50N-2, or 50N-3 overcurrent trip.
- The voltage block function, 79V, is enabled, the bus voltage is below the 79V setting, and the 79V time delay has expired.

A lockout condition is displayed on the LCD display as “Recloser Lockout”. A logical output, 79LOA is also asserted for a lockout condition. The lockout state is cleared when the DPU1500R senses a manual breaker close by the state of the 52a and 52b contacts and the reset timer expires.
Cutout Timer (O->I-CO)

The 79 Cutout Time (79-CO) function allows for the detection of low-level or intermittent faults prior to the resetting of the reclose sequence. At the end of the selected cutout time period, all overcurrent functions are re-enabled based on the 79-1 settings. For example, if the 79 Reset Time is set for ten seconds and the 79 Cutout Time is set for five seconds, the first five seconds after reclosing, the DPU1500R follows the overcurrent function settings for the reclose sequence, but the second five seconds (after the cutout time has expired) it follows the 79-1 settings. The 79-CO setting (in Primary, Alternate 1 or Alternate 2 settings) is enabled by programming a time period from 1 to 200 seconds. When enabled, the 79-CO setting must be less than the 79 Reset Time.

![Figure 1-15. 79 Cutout Time](image)

In fuse-saving applications involving large downstream fuses, the 50P and 50N instantaneous functions are set below the fuse curve to detect faults on tapped laterals. These functions are blocked after the first trip in the reclose sequence. The 51P and 51N time overcurrent functions are set above the fuse curve. This results in the upstream protection being less sensitive to an intermittent or low-level fault during the subsequent reclose operations.

If the reset time is too short, the reclosing relay may reset before the fault is detected again. If the reset time is too long, the intermittent or low-level fault is not cleared fast enough by the upstream protective device. In schemes using discrete reclosing relays, blocked instantaneous overcurrent functions are placed back in service only after the reclosing relay has reset. However, the 79-CO function in the DPU1500R re-enables the instantaneous functions at the end of the selected cutout period. Set the time for the 79-CO function according to how long it takes a downstream fuse or other protective device to clear downstream faults. The typical time setting is between 10 and 15 seconds. If an intermittent or low-level fault exists, it will be detected at the end of the 79 CO cutout time period, and the DPU1500R will trip and continue through the reclose sequence until the fault is permanently cleared or lockout is reached. The 79-CO function allows the reset time to be set beyond 60 seconds without jeopardizing sensitivity to intermittent or low-level faults.

Single Shot Reclose Logical Input 79S (O->I1)

The 79S logical input is used to initiate a single shot of reclosing when the circuit breaker is opened by an external source. Logical input 79S must be mapped to a physical input contact for activation by an external device (see Programmable I/O Section). The 43A (recloser enable) logical input must also be active for the 79S function to operate. If 43A is not mapped to a physical input it defaults to enable. The 79S operates as follows:

- If the breaker is opened by an external source and the 79S logical input is active, the circuit breaker will close in the 79-1 open time.
- If the breaker is opened by an external source and the 79S logical input is not active but is made active after the circuit breaker is opened, the circuit breaker will close in the 79-1 open time.
- If the circuit breaker is opened before the reset time expires, 79S will not operate again until the breaker is manually closed back in and the reset time expires.

The 79S function can be made active or inactive by the mapping a User Logical Output (ULO) to the 79S logical input through the feedback logic (see Programmable I/O Section).
The internal DPU1500R logic only checks the status of the 79S logical input when it detects that the circuit breaker has opened. Once it has determined that the 79S is active, it will initiate the single shot reclose. It doesn’t matter if the 79S is toggled or held active.

If the single shot recloser is in the middle of the open time or reset time and the recloser is disabled via the 43A logical input, the recloser will stop operation. When 43A is returned to the active state the recloser will be reset.

Multi-Shot Reclose Logical Input 79M (O->I)

The 79M logical input is used to initiate multiple shots of reclosing when the circuit breaker is opened by an external source. Logical input 79M must be mapped to a physical input contact for activation by an external device (see Programmable Inputs Section). The 43A (recloser enable) logical input must also be active for the 79M function to operate. If 43A is not mapped to a physical input it defaults to enable. The 79M operates as follows:

If the breaker is opened by an external source and the 79M logical input is active, the circuit breaker will close in the 79-1 open time. If the circuit breaker is opened again by an external source and the reset time has not expired, the recloser will step to 79-2 and the circuit breaker will close (or lockout depending upon the 79-2 programming) in 79-2 time. If the breaker continues to open before the reset time expires, the recloser will continue to increment steps until it reaches the step that locks out. At this point no further reclosing will take place and the circuit breaker must be closed manually.

If the breaker is opened by an external source and the 79M logical input is not active but is made active after the circuit breaker is opened, the circuit breaker will close in the 79-1 open time. If the circuit breaker is opened again by an external source and the reset time has not expired, the recloser will step to 79-2 and the circuit breaker will close (or lockout depending upon the 79-2 programming) in 79-2 time. If the breaker continues to open before the reset time expires, the recloser will continue to increment steps until it reaches the step that locks out. At this point no further reclosing will take place and the circuit breaker must be closed manually.

The 79M function can be made active or inactive by the mapping a User Logical Output (ULO) to the 79M logical input through the feedback logic (see Programmable Logic Section).

If the multi-shot recloser is in the middle of a sequence and the 43A logical input is made inactive, the recloser will stop operation. When 43A is returned to the active state the recloser will be reset and at step 79-1.

Voltage Block 79V (O->IU<)

The 79V Voltage Block function blocks reclosing when one or more of the input voltages is below the 79V voltage setting. When the input voltage is restored within the 79V time delay setting, the recloser operation is unblocked and the "open time" will begin. If the voltage is not restored within the 79V time delay setting, the recloser will proceed to lockout. The 79V time delay can be set to count in seconds or minutes. The setting, "79V Time Mode", is made in the Configurations settings (see Section 2). This function is useful in preventing a feeder breaker closure when the bus voltage is lost or below normal. This reduces inrush currents when the voltage to the bus is eventually restored. The settings for the 79V function are listed in Table 1-14.

Table 1-14. 79V (O->IU<) Characteristics

<table>
<thead>
<tr>
<th>79V Parameter</th>
<th>Range/Curve</th>
<th>Increment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>10 to 200 VAC</td>
<td>1 volt</td>
</tr>
<tr>
<td>Time Delay</td>
<td>4.0 to 240 seconds</td>
<td>1 sec. (79V time mode: seconds)</td>
</tr>
<tr>
<td>Time Delay</td>
<td>1.0 to 60 minutes</td>
<td>1 min. (79V time mode: minutes)</td>
</tr>
</tbody>
</table>

Note: If the voltage is lost or falls below the 79V voltage setting during the open time interval, the open timer will halt. If the voltage is restored before the 79V time delay expires, the open timer will again run. If the voltage is not restored and the 79V time delay expires, the recloser will proceed to lockout.
Recloser Logical Inputs

The following are the programmable logic inputs associated with the recloser. They may help in unique reclosing applications.

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T ARC</td>
<td>Initiate Trip and Auto Reclose. This input is used to issue a circuit breaker trip and reclose. It is useful in the testing of the circuit breaker trip and close circuits as well as the recloser logic and timing settings. When T ARC is a logical 1, a trip and automatic reclose sequence is initiated. If the input is held at a logical 1, the DPU1500R will continue to trip and reclose through the recloser steps (79-1, 79-2, 79-3, etc., see Recloser Section for reclosing details). If T ARC is pulsed at a logical 1, the trip and auto reclose will only occur once unless T ARC is pulsed again. T ARC defaults to a logical 0 when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>ARCI</td>
<td>Automatic Reclose Inhibit. This logical input stops the recloser open timer for the time in which it is a logical 1. When ARCI is returned to a logical 0 the open timer will continue where it was stopped. ARCI does not affect the recloser reset timer. ARCI defaults to a logical 0 when not connected to a physical input or feedback term.</td>
</tr>
<tr>
<td>43A</td>
<td>Recloser Enable. This input is used to supervise the DPU1500R reclosing function. When the 43A input is a logical 1, the DPU1500R recloser is enabled. When 43A is a logical 0, the recloser is disabled. If the recloser is disabled, a red “Recloser Out” target will illuminate on the front of the DPU1500R. 43A defaults to a logical 0 when not assigned to a physical input.</td>
</tr>
<tr>
<td>79S</td>
<td>Single Shot Reclosing. Enables a single shot of reclosing when the DPU1500R determines that an external device has opened the circuit breaker. When 79S is a logical 1, single shot reclosing is enabled. 79S defaults to a logical 0 when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>79M</td>
<td>Multi-Shot Reclosing. Enables a multi shot of reclosing when the DPU1500R determines that an external device has opened the circuit breaker. When 79M is a logical 1, multi-shot reclosing is enabled. 79M defaults to a logical 0 when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>ZSC</td>
<td>Enables Zone Sequence Coordination scheme. Allows external supervision of the Zone Sequence scheme. When the ZSC input is a logical 1, zone sequence is enabled. ZSC defaults to a logical 1 if not assigned to a physical input or feedback term. See the Zone Sequence Section for more details.</td>
</tr>
<tr>
<td>SCC</td>
<td>Spring Charging Contact. Connect SCC to a physical input to monitor a recloser spring. If the SCC input is a logical 1, a “Spring Charging” event is logged in the operations record. SCC defaults to a logical 0 when not assigned to a physical input or feedback term. SCC only functions when the DPU1500R determines a breaker open state.</td>
</tr>
</tbody>
</table>
Alternate Settings Groups

The DPU1500R has three separate and identical selectable settings groups for protective relay functions. These groups are labeled Primary, Alternate 1 and Alternate 2. Use of the three groups provides flexibility to quickly change parameters according to some external conditions. For example, Alternate 1 settings might be used during a high load time while Alternate 2 settings might be used when a storm is pending (and modified instantaneous settings are desired). Other uses might be winter/summer settings or line maintenance settings.

In order to activate these alternate settings groups remotely, the logical inputs ALT1 and ALT2 assigned (in the programmable inputs screen of the Windows External Communications Program - WinECP) to programmable input contacts such as IN1 and IN2 respectively. Once the logic functions are assigned, to IN1 and IN2, they can be wired to electronically controlled switches which can be actuated through SCADA. (Note: The programmable input contacts can also be actuated through one of our various protocol options by simply issuing the proper commands).

The internal logic of DPU1500R will only allow one settings group to be active at a time. When ALT2 is active and an ALT1 input is asserted, ALT2 stays active until the ALT2 input is de-asserted. Only then will the ALT1 settings group become active. Note: there is a 2 cycle time delay that occurs between the settings group change. Protection is never disabled during these changes.

As an example, assign the ALT1 logic function to programmable input IN1 with enabled when closed logic and the ALT2 logic function to programmable input IN2 with enabled when closed logic. Externally wire IN1 to a control switch to be used for Cold Load control and wire IN2 to a control switch to be used for storm settings. If the Cold Load settings (IN1) must have priority over primary settings as well as storm settings (IN2), assign the ALT2 logic function also to programmable input IN1 with enabled when open logic (see Figure 1-16). The logic will force ALT2 to be disabled whenever ALT1 is enabled.

All of the protective elements outlined in the “Protective Elements” Section are available in the Primary, Alternate 1, and Alternate 2 settings groups. All other settings in the relay such as the Configuration settings, Programmable Inputs, Programmable Outputs, etc. are fixed at one group and follow the three protective settings groups. These other settings typically do not change once the relay is set and commissioned.

![Figure 1-16. Sample Alternate Settings Programmable Input Logic Assignments](image-url)
Configuration Settings

Phase CT Ratio

Phase current transformer turns ratio. The range is from 1 - 2000 turns.

VT Ratio

Voltage transformer turns ratio. The range is from 1 - 2000 turns.

VT Conn

Must be entered for proper DPU1500R metering and protection.

Options are: 69V Wye (Star)
120V Wye (Star)
120V Delta
208V Delta

Line Impedances

The line impedances are used for fault location purposes. The settings are positive and zero sequence reactance and positive and zero sequence resistance in primary ohms per mile. The ranges are .001 to 4.00 primary ohms/mi. See the section on “Fault Locator” in Section 7.

Line Length

The line length is used for fault location purposes. The range is from 0.1 to 125 miles. See the section on “Fault Location” in Section 1.

Breaker Trip Fail Timer

The DPU1500R determines a successful trip by the state of the 52a and 52b breaker contacts and the level of input current. The 52a and 52b contacts must indicate an open breaker and the current must have dropped to below 5 percent of the 51P pickup setting. At the time that the DPU1500R issues a trip, it also starts a “Trip Fail Timer”. This timer is used to determine a failed or slow breaker. It is set in the Configuration Setting and is selectable for 5 to 60 cycles in 1 cycle steps. If the timer expires before the DPU1500R determines an open breaker (either or both conditions stated above are met), a Breaker Failure Alarm, BFA, logical output is asserted and the recloser will lockout. If the DPU1500R determines an open breaker within the Trip Fail Time setting, it will reset and re-enable when the breaker is reclosed. The Trip Fail Timer is set by factory default to 18 cycles.

Breaker Close Fail Timer

The DPU1500R determines a successful close by the state of the 52a and 52b breaker contacts. The 52a and 52b contacts must indicate a closed breaker. At the time that the DPU1500R issues a close, it also starts a “Close Fail Timer”. This timer is used to determine a failed or slow breaker. It is set in the Configuration Setting and is selectable for 18 to 999 cycles in 1 cycle steps. If the timer expires before the DPU1500R determines a closed breaker (condition stated above is met), the DPU1500R will halt its automatic reclose or manual close operation and wait for the proper state to appear. If the close failure occurred while the recloser was at a certain reclose step, i.e. 79-3, the DPU1500R will stay at that step until the breaker is finally closed back in. When this occurs, the reset timer will run and the reclose sequence will pickup where it left off. If a subsequent trip occurs, the relay will lock out. If the DPU1500R determines a closed breaker within the Close Fail Time setting, it will reset and re-enable when the breaker is opened. The Close Fail Timer is factory default to 18 cycles.
Slow Trip Time

At the time the DPU1500R issues a trip, the “Slow Trip Time” timer starts. This timer is used to determine a “sluggish” breaker. This setting is adjustable from 5 to 60 cycles in 1-cycle steps. If the timer expires before the DPU1500R determines an open breaker, a logical output “Slow Breaker” is asserted. If the DPU1500R determines an open breaker within the “Slow Trip Time” setting, it will reset and re-enable when the breaker is reclosed. The Slow Trip Time is set by factory default to 18 cycles.

Phase Rotation

Must be selected for proper sequence calculations for the metering. Options are ABC or ACB. This setting directly affects all directional elements in the relay.

Protection Mode

Select “Fund” if the desired operating quantity for overcurrent protection is the 50 or 60 Hz fundamental current.

Select “RMS” if the desired operating quantity is the unfiltered RMS current which includes the fundamental and all harmonics up to and including 11th harmonic.

Reset Mode

Select “Instant” if the desired overcurrent reset mode is instantaneous.

Select “Delayed” if the desired overcurrent reset mode is delayed as with electromechanical relays. The reset characteristic equations are on page 1-9.

ALT1, ALT2 Setting

The Alternate 1 or Alternate 2 settings tables can be enabled or disabled with this setting. If enabled, the ALT settings will only be active if the logical input ALT1 or ALT2 is mapped via programmable inputs and the logic is “true.” See section 6 for programmable Inputs.

MDT Mode

When the Multiple Device Trip Mode is enabled in the Configuration Settings Table, the DPU1500R's TRIP and CLOSE Output Contacts and Breaker Failure Alarm do not depend on the 52A and 52B contact input status. With this mode enabled, the TRIP output is removed 3 cycles after the fault current drops below 90% of the lowest pickup setting. In the reclose sequence, the open interval timer and subsequent CLOSE output are initiated only if an Overcurrent TRIP Output has occurred and the current has dropped below 90% of the lowest pickup setting within the Trip Failure Time setting.

When the MDT mode is enabled, the lockout state is cleared when either of the following occurs:

1) The 52b contact input is open and currents in all three phases are greater than 5% of the 51P pickup setting and the reset time has expired.

 OR

2) The 52b contact input is open and the Targets are reset and the reset time has expired.

The 52b contact input is required for the 79S contact input (Single Shot Recloser Input) and the 79M contact input (Multi-Shot Recloser Input) functions to initiate a reclosure when the MDT Mode is enabled. When the MDT Mode is enabled, the Reset Mode is automatically switched to instantaneous.

The MDT mode is disabled in the factory default settings.
Cold Load Time Mode

The cold load time can be either in seconds or minutes. The time itself is set in the primary settings menu. See Section 1 for details on this function.

79V (O->IU<) Time Mode

The 79V time can be either in seconds or minutes. The time itself is set in the primary settings menu. See Section 1 for more details on this function.

Voltage Display Mode

Select “Vll” for voltages to be displayed Line to Line.

Select “Vln” for voltages to be displayed Line to Neutral.

Zone Sequence Coordination

The zone sequence coordination function coordinates the instantaneous functions within the reclosing sequence of the upstream and downstream reclosing devices. Applications include fuse-saving schemes for faults that occur beyond the downstream reclosers. Refer to Application Note AN-23.

Enable the ZSC function by (1) enabling it in the Configuration Settings and (2) mapping the ZSC logic function to a contact input in the Programmable Inputs screen of the Windows External Communications Program. The 50P-1/50N-1 or 50P-2/50N-2 and 50P-3/50N-3 instantaneous functions in the upstream DPU1500R must be set for a time delay that is equal to or greater than the clearing time of the downstream device. The Reset Time setting of the upstream DPU1500R must also be longer than the longest open interval time of the downstream device.

When the ZSC function is enabled and the DPU1500R senses a fault downstream, the relay increments through its reclose sequence. For example, if the downstream device is activated by a phase to ground fault, the DPU1500R must see a fault current greater in value than the lowest pickup setting of any of the phase overcurrent protective functions.

The zone sequence step occurs when the fault current exceeds the enabled lowest pickup setting and then decreases to less than 90 percent of the setting value before its time delay setting is exceeded. The recloser reset time is displayed when a zone sequence step occurs. All zone sequence coordination steps that occur are logged in the Fault Summary and Fault Record.

Target Display Mode

Select “Last” if the only target desired on the front panel of the relay is the most recent target. If “All” is selected, then all targets will remain displayed since the last target reset.

Local Edit

“Enable” allows settings to be changed via the MMI.

“Disable” disallows setting changes via the MMI.

This setting can only be edited remotely via communications.
Remote Edit

“Enable” allows settings to be changed via the communication ports.

“Disable” disallows setting changes via the communication ports.

This setting can only be changed locally through the MMI.

Meter Mode

Select KWHr or MWHr for kilowatt/kilovar or Megawatt/Megavar metering.

LCD Light

Select “ON” for continuous display.

Select “TIME OUT” to enable the LCD Screen saver. This setting will significantly extend the life of the LCD display. After the Screen saver times out, the user can press any button to activate the LCD display.

Unit ID

Type a 15 character description of the relay.

Demand Meter Constant

Select 5, 15, 30 or 60 minute time constant. Demand currents replicate thermal demand meters. The demand kilowatts and kiloVArS are averaged values that are calculated by using the kilowatt-hours, kiloVArS-hours and the selected time constant.

LCD Contrast

This setting adjusts the brightness of the LCD Display. Adjustable from 0-63. The DPU1500R LCD automatically compensates for change in temperature reducing the need to adjust the default contrast setting for improved legibility.

Change Relay Password

The relay password can be changed via the MMI in the configuration settings menu. Using ECP, the user can change the relay password when exiting out of the configuration settings menu, select “send settings to unit”, and select “Yes” to change relay password.

Change Test Password

The test password allows access to the actions in the Test Menu and the Operations Menu, see Section 6. The user cannot make setting changes with the test password.
Metering

The DPU1500R contains a complete voltage and current metering package. It also calculates sequence components, real and reactive power flow, power factor, demand, and minimum/maximum values. The proper setting of the Voltage Transformer (VT) and Current Transformer (CT) configurations and ratios are extremely important for proper metering operation. The VT and CT configuration (wye or delta) and ratio settings are contained in the “Configuration Settings” menu (see Section 2). Load magnitudes for kilovolts and current are displayed by default on the LCD display (if applicable). They can also be displayed in the WinECP metering screen. The voltage values displayed are phase to neutral for wye connected VT’s and phase to phase for delta connected VT’s. Voltage Van or Vab for delta VT’s is always shown at 0 degrees and is used as a reference for all other voltage and current phase angles. The calculated sequence voltage components V1 and V2 are derived from the line voltages regardless of VT configuration. If a balanced condition is assumed then: In a delta system, the angle of the positive sequence voltage (V1) leads Vab by 330 degrees. In a wye system the angle of the positive sequence voltage (V1) equals Van. The metering screen can be used to verify proper and healthy connections to the voltage and current input sensors of the DPU1500R.

The following is a description of all the DPU1500R metering features.

Load Metering

The following load values are contained in the DPU1500R and are accessible via the MMI or WinECP program:

- Phase Currents: Magnitude and Phase Angle (wye or delta connections)
- Ground Current: Magnitude and Phase Angle (wye or delta connections)
- Kilovolts: Magnitude and Phase Angle (wye or delta connections)
- Kilowatts (or Megawatts): Single Phase and Three Phase for wye VT’s and Three Phase for Delta VT’s
- KiloVARs (or MegaVARs): Single Phase and Three Phase for wye VT’s and Three Phase for Delta VT’s
- Kilowatt-hours (or Megawatt-hours): Single Phase and Three Phase for wye VT’s and Three Phase for Delta VT’s
- KiloVAR-hour (or MegaVAR-hour): Single Phase and Three Phase for wye VT’s and Three Phase for Delta VT’s
- Voltage Sequence Components: Magnitude and Phase of Positive Sequence (V1) and Negative sequence (V2) voltage
- Current Sequence Components: Magnitude and Phase Angle of Positive Sequence (I1), Negative Sequence (I2), and Zero Sequence (I0) current
- Power Factor
- Frequency

Energy Meter Rollover

The Watt-hour and VAR-hour or Energy meters can be set to display Kilowatt-hours or Megawatt-hours. This setting is made in the “Configuration” menu (see Man Machine Interface or Windows External Communication Program). Depending on the magnitude of the power flow seen by the DPU1500R and the time period between meter readings, it may be necessary to switch the meter mode to megawatt-hours to avoid energy meter rollover. Meter rollover is the point at which the DPU1500R watt-hour meter has reached its maximum count and returns to zero to begin incrementing again. The roll over point for the energy meters is 6,000,000 kilowatt-hours (kiloVAR-hours) in the Kwhr mode and 2,000,000,000 megawatt-hours (megaVAR-hours) in the Mwhr mode.

The energy meters are capable of reading negative power. If the magnitudes are positive, the meters will increment, if negative they will decrement. Figure 3-1 outlines the metering conventions used in the DPU1500R.
The update rate of the energy meters is based on the “Demand Constant” setting (see Demand Meter Section) as set in the “Configurations” settings. The meters will update every 1/15 of the Demand Constant. For example: if the Demand Constant is set to 15 minutes the energy meters will update every 1 minute (15min x 1/15 = 1 min).

The watt-hour and VAr-hour meters can be reset to 0 by the local Man Machine Interface (MMI) only. “Reset Energy Meters” is found in the “Meter” Menu.

Demand Metering

Demand metering is typically used for analysis of equipment loading and system planning. The demand values in the DPU1500R are accessible via the MMI or WinECP program. The following are the measurements taken by the demand meter:

Phase Currents: Magnitude and Phase Angle (wye or delta connections)

Ground Current: Magnitude and Phase Angle (wye or delta connections)

Kilowatts: Single Phase and Three Phase for wye VT’s and Three Phase for Delta VT’s

KiloVAr’s: Single Phase and Three Phase for wye VT’s and Three Phase for Delta VT’s

The demand meter takes a snapshot of the load every 1/15 x Demand Constant minutes. The demand currents are averaged using a log₁₀ function over the period of the Demand Constant Interval to replicate thermal demand ammeters. The demand kilowatts and kiloVAr’s are averaged values that are calculated by sampling the kilowatt-hours and kiloVAr-hours every “Demand Constant” interval. The Demand Constant interval is a setting made in the “Configuration” settings and is the time period between demand meter updates. Current utility or industrial practice usually dictates the setting of the demand constant interval.

Minimum / Maximum Metering

During each demand interval described above, the DPU1500R also captures and stores minimum and maximum values for the measurements listed below. It functions as a standard minimum / maximum meter given that when a new maximum or minimum value is determined, the old value is replaced. A time stamp is placed with the latest minimum and maximum values. The minimum / maximum meter measures:

Phase Currents: Magnitude and Phase Angle (wye or delta connections)

Ground Current: Magnitude and Phase Angle (wye or delta connections)

Kilowatts: Single Phase and Three Phase for wye VT’s and Three Phase for Delta VT’s

KiloVAr’s: Single Phase and Three Phase for wye VT’s and Three Phase for Delta VT’s
Figure 3-2. WinECP Meter Menus
Relay Design and Specifications

The DPU1500R design incorporates a 32-bit microprocessor and a 16-bit microprocessor which create a multi-tasking environment. The capabilities of these microprocessors allow the DPU1500R to perform many protective and monitoring functions. Figure 4-1 shows a block diagram of the unit.

Processor Specifications

The processing power of the DPU1500R provides a true multitasking environment that combines protection, metering and control. The hardware components of the unit include:

- CPU—16-MHz, 32-bit 68332 Motorola microprocessor
- CPU RAM—64K of temporary storage for CPU
- DSP—a 16-bit analog device digital signal processor handles all analog acquisition and measurement of input parameters. It also performs all arithmetic iterations of the converted digital input signals.
- EEPROM stores all protective function settings.
- 16-bit analog-to-digital (A/D) converter
- FLASH EPROM stores the CPU’s programming.
- DSP RAM—16 K of memory provide temporary storage of DSP’s arithmetic values.
- Real-time battery backed-up clock

Battery Backed-Up Clock

An internal clock time tags the faults in the Fault Record, events in the Operations Record and values in the Load Profile record. In normal operation, this clock is powered by the DPU1500R. When the DPU1500R is withdrawn from its case, a battery powers the clock. As long as you turn off the battery backed-up clock during prolonged storage, the battery should last the life of the unit. Turn off the battery backed-up clock through the front man-machine interface by entering a “0” for the day.
Figure 4-1. DPU1500R Block Diagram
Ratings and Tolerances

The following are the ratings and tolerances of the DPU1500R.

Current Input Circuits

- 5A input rating, 16 A continuous and 450 A for 1 second
- 1A input rating, 3 A continuous and 100 A for 1 second
- Input burden at 0.245 VA at 5 A (1 - 12A range)
- Input burden at 0.014 VA at 1 A (0.2 - 2.4A range)
- Frequency 50 or 60 Hz

Voltage Input Circuit

Voltage ratings based on the VT connection setting.

Burden

- 0.04VA for V(A-N) at 120 Vac

Voltage

- **Wye** Connection: 160V continuous and 480V for 10 seconds
- **Delta** Connection: 260V continuous and 480V for 10 seconds

Contact Input Circuits

- 2.10 VA at 220 Vdc and 250 Vdc
- 0.52 VA at 125 Vdc and 110 Vdc
- 0.08 VA at 48 Vdc
- 0.02 VA at 24 Vdc
- Voltage range 24 to 280 Vdc for 48/110/125/220/250 Vdc
- Voltage range 12 to 140 Vdc for 24 Vdc model

Control Power Requirements

- 48 Vdc model, range = 38 to 58 Vdc
- 110/125/220/250 Vdc models, range = 70 to 280 Vdc
- 24 Vdc model, range = 19 to 39 Vdc

Control Power Burden

- 24 Vdc = 0.7A max @ 19 V
- 48 Vdc = 0.35A max @ 38 V
- 110/125 Vdc = 0.25A max @ 70 V
- 220/250 Vdc = 0.16A max @ 100 V

Output Contacts Ratings

<table>
<thead>
<tr>
<th>125 Vdc</th>
<th>220 Vdc</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 A tripping</td>
<td>30 A tripping</td>
</tr>
<tr>
<td>6 A continuous</td>
<td>6 A continuous</td>
</tr>
<tr>
<td>0.25 A break inductive</td>
<td>0.1 A break inductive</td>
</tr>
</tbody>
</table>
Operating Temperature

-40° to +70° C

Humidity

- Per ANSI 37.90, up to 95% without condensation

Transient Immunity

- Surge withstand capability
 - SWC and fast transient tests per ANSI C37.90.1 and IEC 255-22-1 class III for all connections except comm or AUX ports
 - Isolated comm ports and AUX ports per ANSI C37.90 using oscillatory SWC Test Wave only and per IEC 255-22-1 class III and 255-22-4 class III
 - Impulse voltage withstand test per IEC 255-5
 - EMI test per trial use standard ANSI C37.90.2

Tolerances Over Temperature Range of -20° C to +55° C

<table>
<thead>
<tr>
<th>Function</th>
<th>Pickup</th>
<th>Dropout</th>
<th>Timing (whichever is greater)</th>
</tr>
</thead>
<tbody>
<tr>
<td>51P/51N</td>
<td>±3% of setting</td>
<td>98% of setting</td>
<td>± 7% or +/- 16 milliseconds</td>
</tr>
<tr>
<td>50P/50N</td>
<td>±7% of setting</td>
<td>98% of setting</td>
<td>± 7% or +/- 16 milliseconds</td>
</tr>
<tr>
<td>46</td>
<td>±3% of 51P setting</td>
<td>98% of setting</td>
<td>± 7% or +/- 16 milliseconds</td>
</tr>
<tr>
<td>27/79V</td>
<td>±3% of setting</td>
<td>98% of setting</td>
<td>± 7% or +/- 16 milliseconds</td>
</tr>
</tbody>
</table>

Phase Ammeter ± 1% of 51P time overcurrent pickup setting
Negative Ammeter ± 5% of 51N time overcurrent pickup setting
Volmeter ± 1% of VT Connection setting
Wattmeter ± 2% of full scale
VARmeter ± 2% of full scale
Power Meter ± 2% of I xV, 51P pickup setting x VT Connection setting
Frequency ± 0.01 Hz from 30-90 Hz, at 120 Vac input on Va.

Dielectric

- 3150 Vdc for 1 second, all circuits to ground except comm ports per IEC 255-5
- 2333 Vdc for 1 second, for isolated communication ports

Weight

- Unboxed 5.36 kg (11.80lbs)
- Boxed 5.67 kg (12.51 lbs)
Interfacing with the Relay

Man-Machine Interface (MMI)

The man-machine interface (MMI) on the front panel consists of an auto temperature compensating graphics LCD, six push-buttons (keys) and twelve LED targets. Press the Enter <E> key to access the Main Menu. Use the ← and → arrow keys to move through the various menus and to change the character value when you enter the alphanumeric password. Use the Enter <E> key to select the desired menu or desired value when you change settings.

Use the ← and → arrow keys to decrease and increase, respectively, setting values or record numbers. Also use them to move from left to right within the password string. If you hold down the right or left arrow key, the setting value slowly changes. If you press the arrow keys repeatedly, the value changes more rapidly.

From the default screen, you can use the <C> key to:

If there are no targets

- Hit <C> once within a 5-second window: Prompts the user to reset alarms. Hit <C> within 5 seconds to reset alarms. The user will then be prompted to reset seal-ins. Hit <C> within 5 seconds to reset seal-ins.
- Hit <C> two times within a 5-second window: Automatically scrolls through demand values.
- Hit <C> three times within a 5-second window: Prompts the user to reset Min/Max Demands. Hit <C> within 5 seconds to reset Min/Max Demands.

If there are targets

- Hitting <C> once will prompt the user to clear fault data.
- If <C> is hit again within 5 seconds, fault data will be cleared from the MMI and the user will be prompted to clear target data.
- If <C> is hit again within 5 seconds, targets are cleared and the user will be prompted to clear sealed-in outputs.
- If <C> is hit again, sealed-in outputs will be cleared.

You can do a system reset by simultaneously pressing the <C>, <E> and up-arrow keys. A “System Reset” resets the microprocessor and re-initiates the software program. During a system reset, no stored information or settings are lost. The following displays and menus are available through the MMI:

- Continuous Displays-- shows currents, voltages and which settings table is enabled
- Post-Fault Display-- shows distance to fault in miles (km) and fault currents for last fault until targets are reset
- Reclosing Display-- shows open interval or reset time counting down to zero
Man-Machine Interface Menus

Below is an outline of all the menus available through the man-machine interface.

![Man-Machine Interface Menus Diagram]

Figure 5-3. Man-Machine Interface Menus

ABB Distribution Protection Unit 1500R

Figure 5-2. MMI Displays

Display After a Fault Interruption

- **Distance - Km**: 10.1
- **Ia**: 3320
- **lb**: 430
- **Ic**: 420
- **In**: 3310
- **Reset Time**: 14

Metering Display (Continuous)

- **Ia**: 500 KVar: 13.00
- **lb**: 500 KVbn: 13.00
- **Ic**: 500 KVcn: 13.00
- **ln**: 0 Primary Set

OPERATIONS MENU

- Trip Breaker+
- Close Breaker+
- Force Physical Input+
- Force Physical Output+
- Force Logical Input+

UNIT INFORMATION

- CAT 577R0411-6111
- SERIAL #: 990000
- CPU ROM: V1.00
- DSP ROM: V1.00
- FP ROM: V2.00
- COMM ROM: N/A

MAIN MENU

- Meter
- Settings
- Records
- Operations
- Test

METER MENU

- Load
- Demand
- Max/Min Demand
- Reset Energy Mtrs.

SETTING MENU

- Show Settings
- Change Settings
- Unit Information

RECORDS MENU

- Fault Summary
- Fault Record
- Operations Record
- Operations Summary

CHANGE SETTINGS MENU

- Prim Settings+
- Alt1 Settings+
- Alt2 Settings+
- Configuration+
- Counter Settings+
- Alarm Settings+
- Clock+
- Communications+

SHOW SETTINGS MENU

- Prim Settings
- Alt1 Settings
- Alt2 Settings
- Configuration
- Alarm Settings
- Clock
- Communications

+ Password protected
Targets

Twelve Light Emitting Diodes (LED's) called “targets” are provided on the front panel of the DPU1500R for indication of DPU1500R health, overcurrent pickup (current exceeds setting), recloser status, and fault type. Two types of targets called “sealed-in” and “non-sealed in” are available.

Sealed-in targets will remain on even after the condition that has turned them on has been cleared. These type of targets can be reset by depressing the “C” key on the Man-Machine Interface (MMI) twice or by pressing the recessed front panel “Target Reset” pushbutton. The target display can be set to “Last” or “All”. If they are set to “Last”, the latest targets acquired will replace any preceding target information. If set to “All”, the all target information is displayed until the Targets a reset. This setting is made in the “Configurations Settings” menu (see Man-Machine Interface Section).

Non sealed in targets remain lit only for the time when the condition is present.

The targets and their functionality are listed below.

- **Normal**: Indicates DPU1500R is in normal operating state. If the DPU1500R detects an internal failure the LED will turn off and the Fail LED will turn on. The Normal LED will flash when a logical input or output has been forced to an on or off state. The flashing indicate that the DPU1500R is healthy but is in an abnormal operating state (see Operations Menu in Section 8). The Normal LED is a Green non sealed in target.

- **Fail**: Indicates that the DPU1500R has determined a self test failure. The LCD display (if applicable) may indicate an error code at this point. See the Self Testing section for details on error codes. When the Fail LED is lit the unit will usually require service. The Self Check alarm contacts on the rear of the unit will also change state anytime that the Fail LED is lit. The Fail LED is a red non sealed in target.

- **Pickup**: The LED will light for a condition where the input current has exceeded the pickup setting of any of the overcurrent elements (51P, 51N, 50P-1, 50P-2, 50P-3, 50N-1, 50N-2, 50N-3, 46). The Pickup LED is a red non sealed in target.

- **Recloser Out**: Indicates that the reclosing function contained in the DPU1500R is disabled. This LED will light when the logical input 43A is disabled or 79-1 is set to lockout. See the “Recloser” Section for more details. The Recloser Out LED is a red non sealed in target.

- **φA, φB, φC, N**: Indicates the phase or phases faulted. These targets will light after the relay has tripped for a fault. These LED’s are all red sealed in targets.

- **Time**: Indicates that a time overcurrent trip has occurred. The time overcurrent elements 51P, 51N, and 46 when tripped will activate the Time target. The Time LED is a red sealed in target.

- **Instantaneous**: Indicates that an instantaneous overcurrent trip has occurred. The instantaneous overcurrent elements 50P-1, 50P-2, 50P-3, 50N-1, 50N-2, and 50N-3 when tripped will activate the Instantaneous target. The Instantaneous LED is a red sealed in target.

- **Negative Sequence**: Indicates that a negative sequence trip has occurred. The negative sequence element 46 when tripped will activate the Negative Sequence target. The Negative Sequence LED is a red sealed in target.
Windows External Communications Program

Use a 9-pin null modem adaptor with a 9-pin RS-232 cable when you connect a PC directly to the DPU1500R (not via modems). When connecting to a modem, simply use a 25-pin to 9-pin RS-232 cable.

The application program on this disk has been carefully tested and performs accurately with most IBM-compatible personal computers. If you experience difficulty in using WinECP, use its online helper or contact ABB at (610)395-7333.

WinECP Menus

Below is an outline of all the menus available through the Windows External Communications Program. Many of these menus are the same as those in the man-machine interface (MMI), but some are unique to the WinECP. Tables 5–1 through 5-5 show the specific settings for the DPU1500R.

Figure 5-4. WinECP Program
WHAT IS WINECP?

WinECP is an interface program to ABB protective relays. WinECP resides on a PC and communicates to the relay via one of the PC’s serial communication ports.

WinECP operates either “on-line” (i.e., communicating with a relay) or “Offline”. In the Offline mode, WinECP is not communicating with a relay but with data files which may have been saved from a relay or from a previous WinECP session. WinECP also acts as a “communication bridge” to other software programs and features such as CurveGen, Oscillographics Analysis Tool and Load Profile.

System Requirements

To use WinECP you must have:

Ø Pentium class or better PC
Ø Microsoft Windows 95, Windows 98 or Windows NT
Ø Minimum screen resolution setting of 800x600

This User Guide is intended for use by power utility technicians and engineers and sales persons familiar with ABB protective relays. These users should also be familiar with the PC and use of Windows programs.

INSTALLATION

To install WinECP on your computer’s hard drive, follow these steps:

1. Start Microsoft Windows 95 or NT.
2. Place Installation Disk 1 in the floppy diskette drive.
3. From the Start Menu, select Run.
4. Type the letter of the floppy diskette drive where you placed the installation disk, followed by a colon, followed by setup.

For example, if you placed the diskette in drive b, you would type: b:setup

5. Click OK.
6. Follow the instructions on your computer screen to complete the installation.

The installation program copies the selected application files (WinECP, Oscillographics Analysis Tool and/or FPI) onto your hard drive. The default directory for installation is \ABB Applications.

The installation also creates a Windows Start Programs Menu group called ABB Applications, which contains shortcuts to the applications installed by the WinECP installation program.
STARTING WINCECP

To start WinECP, follow these steps:

1. Click Start, Programs.
2. From the list of Programs, highlight ABB Applications, then WinECP, then click on "WinECP".

SELECT OPERATING MODE

The “Select Operating Mode” window is the first screen that appears when you start the WinECP program. From this window, you can choose to work Offline, via Direct Access (the PC is directly connected to the Relay), or via Remote Access (connected through a modem using a dial-up connection).

![Figure 2](image)

If you select to work Offline, another window appears prompting you to select a relay file or a relay type. (See Figure 3). If you choose to work directly with the relay via Direct Access, a window will appear prompting you to make your Communications Port selections (See Figure 6). If you choose to work with the relay via Remote Access, a window will appear requesting dial-up information (See Figure 7).

Offline

When you select "Offline", you are prompted to select a Relay File or a Relay Type. To use previously saved information, choose "Browse" and select an existing relay file on your hard drive. To generate a new configuration, select a relay type from the drop down list, then choose "Create Catalog Number" to configure the Catalog Number specifications.

![Figure 3](image)
Create Catalog Number

After selecting a relay type and choosing "Create Catalog Number", the following screen appears: (Figure 4) From this screen, you can build the product's catalog number via the editable fields. (NOTE: For additional information regarding catalog numbers, refer to the Ordering Selections page in the Instruction Manual or Descriptive Bulletin.) The Catalog Number can be changed by manually inputting the individual numbers, or by using the drop-down arrow in each field and making the desired selection.

![Figure 4]

When you have completed your selections in the Create Catalog Number screen, click OK.

Advanced (Version Number)

By clicking the Advanced button in the Create Catalog Number screen, you can select the firmware version number of the relay. Use the drop-down arrow that appears in the "Version" window (Figure 5) to choose from a list of Firmware Version Numbers available for the relay type that you have selected. When you have finished making your selection, click OK.

![Figure 5]

Direct Access

If you wish to connect directly to the relay, select "Direct Access" at the Select Operating Mode dialog (See Figure 2). Make the appropriate selections from the Comm Port Setup dialog that is displayed and then click Connect.
Remote Access

If you wish to connect to a relay remotely (e.g., a relay that is off-site), select "Remote Access" at the Select Operating Mode dialog (See Figure 2). When the Remote Access dialog appears, enter the dialing information (phone number) that will enable the modem to dial into the remote relay.

The Comm Port settings can be configured from within the Remote Access dialog by selecting the drop down arrows next to each item included in "Comm Port Setup".

Be sure to select the correct "Dial Mode" for your telephone line, either Tone Dial or Pulse Dial, by clicking once on the button located next to your selection.

You must specify the Unit Address of the remote site relay to which you wish to connect.

If you are connecting to a unit with Code Operated Switch capability, place a checkmark in the box next to "Code Operated Switch (COS)" by clicking once on the box.

When you have completed entering the phone number information (the dialing string), click Dial.
Advanced (Modem Initialization String)

The Modem initialization string has been written to correctly initialize almost all modems. If your modem fails to work and you need to change the modem initialization string, click the Advanced button and enter the appropriate information. (Figure 8) Click OK to return to the Remote Access dialog and initiate the call.

![Modem Initialization String](image)

Figure 8

WINECP MAIN WINDOW

After you have established your connection to the relay (Offline, Direct Access or Remote Access), you will be ready to begin utilizing the functions of the WinECP program from within the Main window of WinECP.

![WINECP Main Window](image)

Figure 9

Menu Items

The main WinECP window contains the following menu items:

1. File
2. Edit
3. Monitoring
4. Settings
5. Control
6. History
7. Comm
8. Help
Status Bar

The Status Bar appears at the bottom of the main WinECP window. It contains the following information regarding the current connection status to the relay:

1. Help Instructions

NOTE: Full Help capability is still under development and is not included with the WinECP Release 1.00.

2. Connection Type
 a. Online
 b. Offline

3. Catalog Number
4. Serial Number
5. Unit Number
6. Unit Name
7. Firmware Version Number (CPU #)

FILE

From the File menu, you can choose to start a New Session, Import or Export data, open other ABB applications (Oscillographics Analysis Tool or FPI) or Exit the WinECP application.

New Session

1. Click File, New Session.
2. At the prompt, choose Yes to save your current settings to a file on your hard drive, or click No to continue to a new session without saving your current settings. Choose Cancel if you wish to cancel beginning a new session.

![Image](Figure 10)

Export

1. Select File, Export.
2. Select the data you wish to save to a file.
 a. Load Profile - When the Save As dialog appears, choose the location where you would like to have the file stored. Assign a name to the file and click Save.
 b. Load Profile All - When the Save As dialog appears, choose the location where you would like to save the file on the computer. Assign a name to the file and click Save.
 c. Oscillographics - When the Waveform Capture Records dialog appears, select the record number you wish to save and click Save to File. When the Save As dialog appears, choose the location where you like to have the file stored.

NOTE: When exporting Oscillographics, the file name is already designated according to the Record Number you choose to save. You can change the default file name by typing in a new name.
When you have verified that the location and file name are correct, click Save. When the file save has finished, you may either choose another record to save (repeat the above steps) or click Cancel to end the Export Oscillography process.

d. Program Curves - When the Save As dialog appears, choose the location where you would like to have the file stored. Assign a name to the file and click Save.

When the User dialog appears, select either User1, User2 or User3 and click OK.

Import

1. Select File, Import.
2. Select Program Curves.
3. When the Open dialog appears, select the file you wish to import to the relay and click Open.
4. When the User dialog appears, select either User1, User2, or User3 and click OK.
5. When the Password dialog appears, enter the correct password and click OK.

Oscillographs Analysis Tool

To run the Oscillographs Analysis Tool program, click Osc. Analysis Tool.

NOTE: If you chose not to install Oscillographs Analysis Tool at the time of the initial WinECP installation, you will not be able to access the Oscillographs Analysis Tool software.

FPI

To run the FPI program, click FPI.

NOTE: If you chose not to install FPI at the time of the initial WinECP installation, you will not be able to access the FPI software.

CAUTION!! Settings saved in the FPI application are not compatible with the WinECP application. You must use WinECP if you wish to save all your Settings prior to downloading new firmware.

Exit

To quit the WinECP application, click Exit.

EDIT

The "Edit" Menu item allows you to copy and paste settings from the Alternate 1, Alternate 2, and Primary settings screens. The copy and paste functions work only with these settings screens, permitting you to copy settings from one screen to another (e.g., from Primary to Alternate 1 or Alternate 2).

NOTE: The copy and paste functions are only enabled when working in the Alternate 1, Alternate 2, and Primary settings screens. They are disabled when you are working on any other settings screen. The "paste" function is enabled only if you have previously selected to "copy" settings from one of these three settings screens.
MONITORING

The monitoring screens periodically poll the relay for data. Select the Monitoring screen whose data you wish to view. Each menu item presents a separate window from which you can view the data as it updates.

To differentiate groups of data, numeric values are shown in differing colors.

To close a Monitoring window, click the “X” in the upper right corner of that window.

![Figure 11](image)

NOTE: You must be online with the relay (either via Direct Access or Remote Access) in order to monitor data "live" from the relay.

SETTINGS

From the Settings Menu, you can perform the following functions on one or more tabbed sheets: (Figure 12)

1. Upload from the System - load data into the WinECP program from the relay.
2. Download to the System - load data from the WinECP program to the relay.
3. Save File - save existing data in the WinECP program to a file on your hard drive.
4. Read File - read data into the current Settings sheets from a file on your hard drive.
5. Print - print selected Settings sheets.

Select All/Remove All

From the Settings tab sheet, you can choose to Select All settings if you wish to perform any of the above functions on all or several tabbed sheets.

From the Settings tabbed sheet, click the Select All button. Note that a checkmark is placed in each box on the tabbed sheet. This indicates which data settings you wish to manipulate.

To clear all the checkmarks from the Settings tabbed sheet, click Remove All. Note that all checkmarks are cleared.

You can select or deselect individual settings by clicking once on the checkbox next to the specific setting you wish to change.
Download to System

To Download data to the relay (must be online), click the Select All button from the main Settings tabbed sheet or select only the checkboxes of those settings you wish to download to the relay.

After selecting the settings sheet(s) you wish to download, click Download to System. Enter the correct password and click OK.

Upload from System

To Upload data from the relay (must be online), click the Select All button from the main Settings tabbed sheet or select only the checkboxes of those settings you wish to upload from the relay.

Click Upload from System.

Save File

To Save data to a file on your hard drive, (online or offline), click the Select All button from the main Settings tabbed sheet or select only the checkboxes of those settings you wish to save to a file.

Click Save File. When the Save As dialog window appears, select a name for the file and the location where the file is to be saved and click Save.

Read File

To Read data from an existing file on your hard drive, (online or offline), click the Select All button from the main Settings tabbed sheet or select only the checkboxes of those settings you wish to read in from a file.

Click Read File. When the Select Relay File window appears, select the relay file you wish to read in and click Open.
Print

To Print data, click Select All from the main Settings tabbed sheet or select only the checkboxes of those settings you wish to print.

Click Print and follow the instructions in the Print dialog window to select your printer, number of copies, etc.

NOTE: You can choose to Download, Upload, Save, Read or Print directly from a Settings tabbed sheet in which you are currently working, in which case only that sheet will be affected.

View/Make Changes to Individual Settings Sheets

1. Click Settings on the menu bar.
2. When the Settings screen appears, click the Primary (or other) tabbed sheet.
3. Note that the Primary sheet now opens and from there you can select from the categories contained on that sheet:
 a. Overcurrent
 b. Voltage
 c. Recloser
 d. Directional
 e. Frequency

![Figure 13](image-url)

Follow the same guidelines for each tabbed sheet you wish to view, clicking on the appropriate "tab" to bring that sheet to the forefront of the window.

To change data within each tabbed sheet settings category, click on the field whose data you wish to change. When the pop-up window appears, click the arrow to either display a list of items or to change the numeric range of that particular setting.

If the setting you wish to change is a numeric value, you can also enter the desired number by using the numeric keypad on your keyboard.

NOTE: The numeric value you enter manually must fall within the allowable range for that setting. If you enter a value that is outside of the specified range, you will receive a warning to that effect and will need to correct the value.
As data is manipulated in the tabbed sheets, one of the following icons will appear in the left corner of each tabbed sheet whose data has changed.

= Data has been read in from an existing file
= Data has changed in the tabbed sheet
= Data was successfully downloaded or uploaded to/from the relay

NOTE: If you are in a tabbed sheet and select to Upload/Download, or Read/Save, only that particular tabbed sheet will be affected.

CONTROL

The Control menu provides testing functionality for the relay.

![Figure 14](image)

NOTE: You must be connected (online) to a relay in order to conduct testing of the relay through the Control Menu.

HISTORY

Use the History Menu to view Fault and Operations Records currently stored in the relay. (Figure 13) From this screen, you can select and perform the following functions:

1. Upload
2. Save File
3. Read File
4. Print

Select All/Remove All

You can choose to Select All History records if you wish to perform any of the above functions on all tabbed sheets.

From the History tabbed sheet, click the Select All button. Note that a checkmark is placed in each box on the tabbed sheet. This indicates which data records you wish to manipulate.

To clear all the checkmarks from the History tabbed sheet, click Remove All. Note that all checkmarks are cleared and you can now select individual records by clicking once on the checkbox next to the specific record you wish to use.
Upload from System

To Upload history data from the relay (must be online), click the Select All button from the History tabbed sheet or select only the checkboxes of the history records you wish to upload from the relay.

Click Upload from System.

Save File

To Save history data to a file on your hard drive after you have Uploaded the data from the relay, click the Select All button from the History tabbed sheet or select only the checkboxes of the history records you wish to save to a file.

Click Save File. When the Save As dialog window appears, select a name for the file and the location where the file is to be saved and click Save.

Read File

To Read history data from an existing file on your hard drive, (online or offline), click the Select All button from the History tabbed sheet or select only the checkboxes of the history records you wish to read in from a file.

Click Read File. When the Select Relay File window appears, select the relay file you wish to read in and click Open.

Print

To Print history data, click Select All from the History tabbed sheet or select only the checkboxes of the history records you wish to print.

Click Print and follow the instructions in the Print dialog window to select your printer, number of copies, etc.

View Individual History Records Sheets

1. Click History on the menu bar.
2. When the History screen appears, click the Fault Summary tabbed sheet. Note that the Fault Summary sheet now opens. You can now choose to Upload, Save File, Read File, Print or Close (History window) directly from this sheet.
NOTE: Remember that if you choose to Upload, Save, Read or Print directly from a History tabbed sheet which you are currently viewing, only that tabbed sheet will be affected.

COMM

Dependent upon your current connection to the relay, you can change the type of connection from the Comm Menu. If you are Offline, you can change to either a Direct or Remote Access connection with a relay.

NOTE: When you select to change to either a Direct or Remote Access connection, you will be prompted to save your current settings (see Figure 10). Click Yes to save your current settings to a file on your hard drive, or click No to establish a new connection without saving your current settings. Click Cancel if you wish to cancel establishing a new connection.

From the Comm Menu, you can also select to change Comm Port settings, set the Unit Address and open the Terminal application.

![Comm Menu](image)

HELP

From the Help Menu item, you can access the Help Topics (currently under development), About WinECP which provides License Agreement, Copyright information, and Unit Information (online only).

![Help Menu](image)

Help Topics

NOTE: Complete Help Topics are still under development and are not included with Release V1.00.

For a brief description of the WinECP application, follow these steps:

1. From the menu bar, click Help.
2. Highlight and click Help Topics.
3. Double-click on the “What is WinECP” topic to expand and then double-click on WinECP for a brief description of the application.
About WinECP

About WinECP contains License Agreement information, Copyright information and Version Number. To view the About WinECP information, follow these steps:

1. From the menu bar, click Help.
2. Highlight and click About WinECP.
3. To close the About WinECP window, click OK.

Unit Information

The following unit information is available, during an online session, through the Help Menu item:

a. Product Id
b. Catalog Number
c. CPU Software Version
d. DSP Software Version
e. Front Panel Software Version
f. Rear Comm Software Version
g. Serial Number

![Unit Information](image)

Figure 18

NOTE: Unit Information is only accessible during an online session with the relay.

To access Unit Information (during an online session), follow these steps:

1. From the menu bar, click Help.
2. Highlight and click Unit Information.
3. To close the Unit Information window, click OK.
<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
<th>Range</th>
<th>Step Size</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>51P</td>
<td>Curve Selection</td>
<td>See Table 1-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pickup Amps</td>
<td>1 to 12 A or 0.2 to 2.4 A</td>
<td>0.1 or 0.02</td>
<td>6.0 or 1.2</td>
</tr>
<tr>
<td></td>
<td>Time Dial/Delay</td>
<td>1.0 to 10.0</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>50P-1</td>
<td>Curve Selection</td>
<td>See Table 1-3 or Disable</td>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Pickup X 51P</td>
<td>0.5 to 20 times 51P pickup setting</td>
<td>0.1</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>Time Dial/Delay</td>
<td>See Table 1-3</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>50P-2</td>
<td>Selection</td>
<td>Disable or Enable</td>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Pickup X 51P</td>
<td>0.5 to 20 times 51P pickup setting</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Time Delay</td>
<td>0 to 9.99 seconds</td>
<td>0.01</td>
<td>-</td>
</tr>
<tr>
<td>50P-3</td>
<td>Selection</td>
<td>Disable or Enable</td>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Pickup X 51P</td>
<td>0.5 to 20 times 51P pickup setting</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>Curve Selection</td>
<td>See Table 1-10 or Disable</td>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Pickup Amps</td>
<td>1 to 12 A or 0.2 to 2.4 A</td>
<td>0.1 or 0.02</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Time Dial/Delay</td>
<td>See Table 1-10</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>51N</td>
<td>Curve Selection</td>
<td>See Table 1-2 or Disable</td>
<td></td>
<td>Extremely Inverse</td>
</tr>
<tr>
<td></td>
<td>Pickup Amps</td>
<td>1 to 12 A or 0.2 to 2.4 A</td>
<td>0.1 or 0.02</td>
<td>6.0 or 1.2</td>
</tr>
<tr>
<td></td>
<td>Time Dial/Delay</td>
<td>See Table 1-2</td>
<td></td>
<td>5.00</td>
</tr>
<tr>
<td>50N-1</td>
<td>Curve Selection</td>
<td>See Table 1-6 or Disable</td>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td></td>
<td>Pickup X 51N</td>
<td>0.5 to 20 times 51N pickup setting</td>
<td>0.1</td>
<td>3.00</td>
</tr>
<tr>
<td></td>
<td>Time Dial/Delay</td>
<td>See Table 1-6</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>50N-2</td>
<td>Selection</td>
<td>Disable or Enable</td>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Pickup X 51N</td>
<td>0.5 to 20 times 51N pickup setting</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Time Delay</td>
<td>0 to 9.99 seconds</td>
<td>0.01</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 5-1. Primary, Alternate 1 and Alternate 2 Settings (Password Protected) (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
<th>Range</th>
<th>Step Size</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>50N-2 (\odot) (\text{IN}>>\text{IN}\langle\langle)</td>
<td>Select</td>
<td>Disable, Standard, SEF, Directional SEF</td>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td>SEF Pickup Amps (\odot)</td>
<td>0.005 to 0.200 A</td>
<td>0.0005</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Delay (\odot)</td>
<td>0.5 to 180.0 seconds</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Torque Angle*</td>
<td>0 to 355</td>
<td>5</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>50N-3 (\text{IN}>>\text{IN}\langle\langle)</td>
<td>Selection</td>
<td>Disable or Enable</td>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td>Pickup X 51N</td>
<td>0.5 to 20 times 51N pickup setting</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>79 (\text{O}_->\text{I})</td>
<td>Reset Time</td>
<td>3 to 200 seconds</td>
<td>1</td>
<td>10.00</td>
</tr>
<tr>
<td>79-1 (\text{O}_->\text{I}\langle\langle)</td>
<td>Select</td>
<td>50P-1, 50P-2, 50P-3, 51N, 50N-1, 50N-2, 50N-3 (Enable, Disable, or Lockout for each)</td>
<td>50P- Enable 51N- Enable 50N-1 Enable</td>
<td></td>
</tr>
<tr>
<td>Open Time</td>
<td>0.1 to 200 seconds or Lockout</td>
<td>0.1</td>
<td>Lockout</td>
<td></td>
</tr>
<tr>
<td>79-2 (\text{O}_->\text{I}\langle\langle)</td>
<td>Select</td>
<td>50P-1, 50P-2, 50P-3, 51N, 50N-1, 50N-2, 50N-3 (Enable, Disable, or Lockout for each)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Open Time</td>
<td>0.1 to 200 seconds or Lockout</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>79-3 (\text{O}_->\text{I}\langle\langle)</td>
<td>Select</td>
<td>50P-1, 50P-2, 50P-3, 51N, 50N-1, 50N-2, 50N-3 (Enable, Disable, or Lockout for each)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Open Time</td>
<td>0.1 to 200 seconds or Lockout</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>79-4 (\text{O}_->\text{I}\langle\langle)</td>
<td>Select</td>
<td>50P-1, 50P-2, 50P-3, 51N, 50N-1, 50N-2, 50N-3 (Enable, Disable, or Lockout for each)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Open Time</td>
<td>0.1 to 200 seconds or Lockout</td>
<td>0.1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>79-5 (\text{O}_->\text{I}\langle\langle)</td>
<td>Select</td>
<td>50P-1, 50P-2, 50P-3, 51N, 50N-1, 50N-2, 50N-3 (Enable, Disable, or Lockout for each)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Open Time</td>
<td>Lockout</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>79-CO (\text{O}_->\text{I}\langle\langle)</td>
<td>Cutout Time</td>
<td>1 to 200 seconds or Disable</td>
<td>1</td>
<td>Disable</td>
</tr>
<tr>
<td>Cold Load Time</td>
<td>0 to 254 seconds/minutes or Disable</td>
<td>1</td>
<td>Disable</td>
<td></td>
</tr>
<tr>
<td>2-Phase 50P (\text{3I}>>)</td>
<td>2Phase 50P Trip</td>
<td>Disable or Enable</td>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td>27 (\text{U}_<)</td>
<td>Select</td>
<td>Disable or Enable</td>
<td></td>
<td>Disable</td>
</tr>
<tr>
<td>Pickup Volts</td>
<td>10 to 200 volts AC</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Time Delay</td>
<td>0 to 60 seconds</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>79V (\text{O}_->\text{I}\langle\langle)</td>
<td>Voltage Select</td>
<td>Disable or Enable</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Pickup Volts</td>
<td>10 to 200 volts AC</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Time Delay</td>
<td>4 to 200 seconds</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* Directional SEF Model Only
\(\odot\) SEF Model
Table 5-2. Configuration Settings (Password Protected)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Range</th>
<th>Step Size</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase CT Ratio</td>
<td>1 - 2000</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>VT Ratio</td>
<td>1 - 2000</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>VT Connection (VT Conn:)</td>
<td>69 V or 120 V Wye (Star),</td>
<td>-</td>
<td>120V Wye</td>
</tr>
<tr>
<td></td>
<td>phase to ground; 120 V or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>208 V Delta, phase to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>phase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Sequence Reactance/Mile</td>
<td>0.001 to 4 Ohms/Mile</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>(km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Sequence Resistance/Mile</td>
<td>0.001 to 4 Ohms/Mile</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>(km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Sequence Reactance/Mile</td>
<td>0.001 to 4 Ohms/Mile</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>(km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Sequence Resistance/Mile</td>
<td>0.001 to 4 Ohms/Mile</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>(km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Line Length</td>
<td>0.1 to 125 miles (km)</td>
<td>0.1</td>
<td>20</td>
</tr>
<tr>
<td>Trip Failure Time</td>
<td>5 to 60 cycles</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Close Failure Time</td>
<td>18 to 999 cycles</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Phase Rotation (Phase Rotate:)</td>
<td>ABC or ACB</td>
<td>-</td>
<td>ABC</td>
</tr>
<tr>
<td>Protection Mode (Prot. Mode:)</td>
<td>Fund. or RMS</td>
<td>-</td>
<td>Fund.</td>
</tr>
<tr>
<td>Reset Mode - 51(3I>)/46 (Insc>)</td>
<td>Instant (2 cycles) or</td>
<td>-</td>
<td>Instant</td>
</tr>
<tr>
<td></td>
<td>delayed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate 1 Settings (Alt1 Set)</td>
<td>Enable or Disable</td>
<td>-</td>
<td>Enable</td>
</tr>
<tr>
<td>Alternate 2 Settings (Alt2 Set)</td>
<td>Enable or Disable</td>
<td>-</td>
<td>Enable</td>
</tr>
<tr>
<td>Multiple Device Trip Mode* (MDT)</td>
<td>Disable or Enable</td>
<td>-</td>
<td>Disable</td>
</tr>
<tr>
<td>Cold Load Time Mode</td>
<td>Seconds or Minutes</td>
<td>-</td>
<td>Seconds</td>
</tr>
<tr>
<td>79V (O->IU<)Time Mode</td>
<td>Seconds or Minutes</td>
<td>-</td>
<td>Seconds</td>
</tr>
<tr>
<td>Volt Display</td>
<td>Vin or Vll</td>
<td>-</td>
<td>Vin</td>
</tr>
<tr>
<td>Zone Sequence</td>
<td>Disable or Enable</td>
<td>-</td>
<td>Disable</td>
</tr>
<tr>
<td>Target Display Mode</td>
<td>Last or All (faults)</td>
<td>-</td>
<td>Last</td>
</tr>
<tr>
<td>Remote Edit = (Remote Edit) †</td>
<td>Enable or Disable</td>
<td>-</td>
<td>Enable</td>
</tr>
<tr>
<td>Local Edit (Comm Ports Only) ††</td>
<td>Enable or Disable</td>
<td>-</td>
<td>Enable</td>
</tr>
<tr>
<td>Meter Mode (WHr Display)</td>
<td>kWhr or MWhr (6 Digits)</td>
<td>-</td>
<td>kWhr</td>
</tr>
<tr>
<td>LCD Light</td>
<td>On or Time Out (5 Minutes)</td>
<td>-</td>
<td>On</td>
</tr>
<tr>
<td>Unit Identification (ID)</td>
<td>(15 alphanumeric characters)</td>
<td>-</td>
<td>DPU1500R</td>
</tr>
<tr>
<td>Demand Meter Constant</td>
<td>5, 15, 30, or 60 minutes</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>LCD Contrast</td>
<td>0 to 63</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Change Test Password</td>
<td>4 Alphanumeric characters</td>
<td>-</td>
<td>4 blank spaces</td>
</tr>
<tr>
<td>SE CT Ratio ⊗</td>
<td>1 to 2000</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SE V0 PT Ratio ⊗</td>
<td>1 to 2000</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* When the Multiple Device Trip Mode is enabled, the reset mode automatically goes to Instantaneous setting and cannot be changed.
† Remote edit appears only in MMI display.
†† Local edit appears only in the WinECP display.

© SEF model
In the Counter Settings Menu, the user has the option to change the value of the various counters.

Table 5-3. Counter Settings (Password Protected)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Range</th>
<th>Step Size</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSI Summation A Phase Setting - KSI Sum A (L1)</td>
<td>0 to 9999 kA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>KSI Summation B Phase Setting - KSI Sum B (L2)</td>
<td>0 to 9999 kA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>KSI Summation C Phase Setting - KSI SumC (L3)</td>
<td>0 to 9999 kA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Overcurrent Trip Counter</td>
<td>0 to 9999</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Breaker Operations Counter</td>
<td>0 to 9999</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>79 (O->I) Counter 1</td>
<td>0 to 9999</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>79 (O->i) Counter 2</td>
<td>0 to 9999</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1st Reclose Counter (1st Recl) [successful]</td>
<td>0 to 9999</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2st Reclose Counter (2nd Recl) [successful]</td>
<td>0 to 9999</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3rd Reclose Counter (3rd Recl) [successful]</td>
<td>0 to 9999</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4th Reclose Counter (4th Recl) [successful]</td>
<td>0 to 9999</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

In the Alarm Settings Menu, the user has the option to set thresholds for various alarms. When the threshold is exceeded, the corresponding logical output is asserted. (See “Programmable I/O” Section).

Table 5-4. Alarm Settings (Password Protected)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Range</th>
<th>Step Size</th>
<th>Default</th>
<th>Logical Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSI Summation</td>
<td>1 to 9999 (kA)</td>
<td>1</td>
<td>Disable</td>
<td>KSI</td>
</tr>
<tr>
<td>Over Current Trip Counter</td>
<td>1 to 9999</td>
<td>1</td>
<td>Disable</td>
<td>OCTC</td>
</tr>
<tr>
<td>79 (O->I) Counter 1</td>
<td>1 to 9999</td>
<td>1</td>
<td>Disable</td>
<td>79CA1</td>
</tr>
<tr>
<td>79 (O->i) Counter 2</td>
<td>1 to 9999</td>
<td>1</td>
<td>Disable</td>
<td>79CA2</td>
</tr>
<tr>
<td>Phase Demand Current Alarm</td>
<td>1 to 9999 (A)</td>
<td>1</td>
<td>Disable</td>
<td>PDA</td>
</tr>
<tr>
<td>Neutral Demand</td>
<td>1 to 9999 (A)</td>
<td>1</td>
<td>Disable</td>
<td>NDA</td>
</tr>
<tr>
<td>Demand 3P-kVar [3-phase kilo VAr alarm] (Dmnd 3P-kVAR)</td>
<td>10 to 99,990 (kVAR)</td>
<td>10</td>
<td>Disable</td>
<td>VarDA</td>
</tr>
<tr>
<td>Low PF [power factor alarm]</td>
<td>0.5 to 1.0 (lagging)</td>
<td>0.01</td>
<td>Disable</td>
<td>LPFA</td>
</tr>
<tr>
<td>High PF [power factor alarm]</td>
<td>0.5 to 1.0 (lagging)</td>
<td>0.01</td>
<td>Disable</td>
<td>HPFA</td>
</tr>
<tr>
<td>Load Current [alarm]</td>
<td>1 to 9999 (A)</td>
<td>1</td>
<td>Disable</td>
<td>LOADA</td>
</tr>
<tr>
<td>Positive kVAR [3-phase kiloVAR alarm]</td>
<td>10 to 99,990 (kVAR)</td>
<td>10</td>
<td>Disable</td>
<td>PVarA</td>
</tr>
<tr>
<td>Negative kVAR [3-phase KiloVAR alarm]</td>
<td>10 to 99,990 (kVAR)</td>
<td>10</td>
<td>Disable</td>
<td>NVArA</td>
</tr>
<tr>
<td>Positive KWatt Alarm 1</td>
<td>1 to 9999</td>
<td>1</td>
<td>Disable</td>
<td>PWatt1</td>
</tr>
<tr>
<td>Positive KWatt Alarm 2</td>
<td>1 to 9999</td>
<td>1</td>
<td>Disable</td>
<td>PWatt2</td>
</tr>
</tbody>
</table>
Table 5-5. Communications Settings (Password Protected)

<table>
<thead>
<tr>
<th>Setting</th>
<th>Range</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit Address</td>
<td>3 hexadecimal characters (0-9 & A-F)</td>
<td>001</td>
</tr>
<tr>
<td>Front RS232 Port:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate</td>
<td>300, 1200, 2400, 4800, 9600</td>
<td>9600</td>
</tr>
<tr>
<td>Frame</td>
<td>N,8,1 or N,8,2</td>
<td>N,8,1</td>
</tr>
<tr>
<td>Rear Port RS232:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate*</td>
<td>300, 1200, 2400, 4800, 9600, 19200</td>
<td>9600</td>
</tr>
<tr>
<td>Frame</td>
<td>N,8,1; E,8,1; ODD,8,1; N,8,2; E,7,1; ODD,7,1; N,7,2</td>
<td>N,8,1</td>
</tr>
<tr>
<td>Rear Port RS485:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baud Rate*</td>
<td>300, 1200, 2400, 4800, 9600, 19200</td>
<td>9600</td>
</tr>
<tr>
<td>Frame</td>
<td>N,8,1; E,8,1; ODD,8,1; N,8,2; E,7,1; ODD,7,1; N,7,2</td>
<td>N,8,1</td>
</tr>
<tr>
<td>Rear Port INCOM Baud Rate*</td>
<td>1200, 9600</td>
<td>9600</td>
</tr>
<tr>
<td>Rear Port IRIG-B Enable*</td>
<td>Disable or Enable</td>
<td>Disable</td>
</tr>
<tr>
<td>Network Parameters*</td>
<td>0 to 250</td>
<td>0</td>
</tr>
<tr>
<td>Network Modes*</td>
<td>Disable or Enable</td>
<td>Disable</td>
</tr>
</tbody>
</table>

* Check catalog number for available communications port options. Network parameters and network modes are specific settings designed for various SCADA protocols.

In addition to the Tables 5-1 through 5-5, under the “Change Settings” Menu, the following settings are also available:

FLI Index and User Names

This allows the user to set up a table of Logical Inputs that can be “forced” via the Operations Menu. See Section 8 for details.

Master Trip Output

The user has the ability to allow only certain protective elements to operate the Master Trip Output Contact (terminals 29 and 30). See Section 6 for more details.

Register Configuration

For use with Modbus Communications. Contact Factory for details.

Miscellaneous Settings

Under the Miscellaneous Settings Menu, you will find the following:

User Display Message-
Programmable Input. For use with the User Display Input (UDI)
The user can type a 4 line message here. When UDI is asserted, this message will blink on the MMI.
Clock

In WinECP, the user can change the relay date and time to the date and time of the PC.

From the MMI, the user can change the relay date and time to the desired setting.

Prolonged Storage of Relay

To preserve the life of the internal battery when the relay is not in service, turn off the clock by entering a “0” for the day.
Programmable Input and Output Contacts

By using the Windows External Communications Program, you can individually program the contact inputs and certain output contacts.

Binary (Contact) Inputs

Binary inputs are either programmable single-ended or programmable double-ended. Single-ended inputs have one terminal connection marked “+” and share a common terminal (# 3) marked “–”. Double-ended inputs have two terminal connections, marked “+” and “–”. The recognition time for the change in state of an input is two (2) cycles.

Programmable contact inputs with factory default settings include the following:

- **52a (XO)** Breaker Position: Breaker Closed (input closed)/Breaker Open (input open)
- **52b (XI)** Breaker Position: Breaker Open (input closed)/Breaker Closed (input open)
- **43a (AR)** Reclose Function: Enabled (input closed)/Disabled (input opened)

Up to six user-programmable contact inputs are available. The inputs are programmed via the Windows External Communications Program only. Nine (ten for SEF models) logic functions remain operational (enabled) when not assigned to contact inputs in the Programmable Input Map. These logic functions are: GRD (IN), PH3 (3I), 46 (Insc>, 50-1(>>1), 50-2(>>2), 50-3(>>3), TCM (TCS), ZSC and SEF* (I< >). You must assign the remaining logic functions to contact inputs for those functions to become operational (enabled). The user-programmable inputs can monitor, enable, initiate or actuate the logic functions shown in Table 6-1. The programmable inputs in the table are arranged in the order they appear on the default Programmable Inputs screen.

Figure 6-1 shows the factory default settings for mapping the programmable inputs. The color red is used when a closed contact (voltage present) enables the function and the color white is used when an open contact (voltage absent) enables the function. Place the label in the column under the desired contact input’s line. For example, based on the factory default settings, you must apply control power to Input 1 to enable logic input contact 52a (XO).
Programmable Inputs

Table 6-1: Logical Input Definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>———:</td>
<td>Entry not used.</td>
</tr>
<tr>
<td>TCM: (TCS)</td>
<td>Trip Coil Monitoring. Assign this to the physical input IN7 or IN8 only to monitor continuity of the circuit breaker coil. See Figure 6-2 for typical trip coil monitoring connections. When input is a logical 1, TCM logic assumes breaker coil continuity. If a logical 0, breaker coil is failed and logical output TCFA (trip circuit failure alarm) is asserted. TCM is only functional when the DPU1500R determines that the breaker is closed. In the MDT mode it is necessary to control the breaker through the DPU1500R since 52a and 52b are ignored and the only way the logic can determine the breaker state is by trip and close signals issued. TCM defaults to a logical 1 (breaker coil healthy) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>GRD: (IN)</td>
<td>Enables 51N/50N-1/50N-2. Use to supervise (torque control) all ground overcurrent protection except 50N-3. When the GRD input is a logical 1, all ground overcurrent protection except 50N-3 is enabled. GRD defaults to a logical 1 (enabled) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>PH3: (3I)</td>
<td>Enables 51P/50P-1/50P-2. Use to supervise (torque control) all phase overcurrent protection except 50P-3. When the PH3 input is a logical 1, all phase overcurrent protection except 50P-3 is enabled. PH3 defaults to a logical 1 (enabled) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>50-1: (I>>>1)</td>
<td>Enables 50P-1 & 50N-1. Use to supervise (torque control) phase and ground instantaneous overcurrent protection level 1. When the 50-1 input is a logical 1, phase and ground instantaneous overcurrent protection level 1 is enabled. 50-1 defaults to a logical 1 (enabled) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>50-2: (I>>2)</td>
<td>Enables 50P-2 & 50N-2. Use to supervise (torque control) phase and ground instantaneous overcurrent protection level 2. When the 50-2 input is a logical 1, phase and ground instantaneous overcurrent protection level 2 is enabled. 50-2 defaults to a logical 1 (enabled) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>50-3: (I>>3)</td>
<td>Enables 50P-3 & 50N-3. Use to supervise (torque control) phase and ground instantaneous overcurrent protection level 3. When the 50-3 input is a logical 1, phase and ground instantaneous overcurrent protection level 3 is enabled. 50-3 defaults to a logical 1 (enabled) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>ALT1:</td>
<td>Enables Alternate 1 Settings. When ALT1 is a logical high the Alternate 1 settings are placed into service if Alternate 1 Setting is set to “Enable” in configuration settings. ALT1 defaults to a logical 0 (alternate 1 settings not active) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>ALT2:</td>
<td>Enables Alternate 2 Settings. When ALT2 is a logical high the Alternate 2 settings are placed into service if Alternate 2 Setting is set to “Enable” in configuration settings. ALT2 defaults to a logical 0 (alternate 2 settings not active) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>ZSC:</td>
<td>Enables Zone Sequence Coordination scheme. Allows external supervision of the Zone Sequence scheme. When the ZSC input is a logical 1, zone sequence is enabled. ZSC defaults to a logical 1 (enabled) if not assigned to a physical input or feedback term. See the Section 13 for details on Zone Sequence Coordination.</td>
</tr>
<tr>
<td>SCC:</td>
<td>Spring Charging Contact. Connect SCC to a physical input to monitor a recloser spring. If the SCC input is a logical 1, a “Spring Charging” event is logged in the operations record. SCC defaults to a logical 0 (no spring charge event) when not assigned to a physical input or feedback term. SCC only functions when the DPU1500R determines a breaker open state.</td>
</tr>
<tr>
<td>79S: (O->I1)</td>
<td>Single Shot Reclosing. Enables a single shot of reclosing when the DPU1500R determines that an external device has opened the circuit breaker. When 79S is a logical 1, single shot reclosing is enabled. 79S defaults to a logical 0 (disabled) when not assigned to a physical input or feedback term. See Section 1 under “Reclosing” for more details.</td>
</tr>
</tbody>
</table>
Table 6-1: Logical Input Definitions (cont.)

<table>
<thead>
<tr>
<th>Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>79M: Multi-Shot Reclosing</td>
<td>Enables a multi shot of reclosing when the DPU1500R determines that an external device has opened the circuit breaker. When 79M is a logical 1, multi shot reclosing is enabled. 79M defaults to a logical 0 (disabled) when not assigned to a physical input or feedback term. See Section 1 under “Reclosing” for more details.</td>
</tr>
<tr>
<td>OPEN: Initiates Trip Output</td>
<td>Assign this input to a physical input for remote opening of the breaker by a control switch. It is recommended this input be used for breaker control when using the MDT mode. When OPEN is a logical 1, a trip is issued at the master trip output. OPEN defaults to a logical 0 (disabled) when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>CLOSE: Initiates Close Output</td>
<td>Assign this input to a physical input for remote closing of the breaker possibly by a control switch. It is recommended this input be used for breaker control when using the MDT mode. When CLOSE is a logical 1, the LOGICAL OUTPUT “CLOSE” is asserted. CLOSE defaults to a logical 0 (disabled) when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>ECI1: Event Capture Initiate</td>
<td>Assign this input to a physical input to capture events from external devices. When ECI1 is a logical 1, an event called “ECI1” is logged in the operations record. ECI1 defaults to a logical 0 (no event) when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>ECI2: Event Capture Initiate</td>
<td>As with ECI1, assign this input to a physical input to capture events from external devices. When ECI2 is a logical 1, an event called “ECI2” is logged in the operations record. ECI1 defaults to a logical 0 (no event) when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>WCI: Waveform Capture Initiate</td>
<td>Assign this input to either a physical input or feedback term for initiation of the oscillographic waveform capture. WCI can be used to capture waveform for other devices in the system that do not contain oscillographic capability. When WCI is a logical 1, the oscillographic waveform capture is initiated for the number of cycles programmed in the oscillographics settings (see the Oscillographics Section). WCI defaults to a logical 0 (no event) when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>46: Enables the 46 Negative Sequence time overcurrent function</td>
<td>Use to supervise (torque control) the negative sequence time overcurrent element. When the 46 input is a logical 1, negative sequence time overcurrent protection is enabled. 46 defaults to a logical 1 (enabled) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>CRI: Clear Reclose and Overcurrent Counters</td>
<td>Assign this input to a physical input or feedback term to remotely clear the Reclose and Overcurrent Counters. When CRI is a logical 1, the reclose and overcurrent counters are returned to 0. CRI defaults to a logical 0 (no clear) when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>UDI: User Display Input</td>
<td>Assign this input to a physical input to flash a message to the front MMI LCD display. When UDI is a logical 1, a user defined message as preprogrammed using the Windows External Communication Program (WinECP), is displayed along with the LCD default display in 1 second alternating intervals. UDI defaults to a logical 0 (disabled) when not assigned to a physical input or feedback term. This is useful for tagout conditions. The message can be changed using WinECP under “Settings”, “Miscellaneous Settings”.</td>
</tr>
<tr>
<td>EXTBFI: External Starter Input</td>
<td>This input is used to start the breaker failure tripping sequence. It is typically assigned to the same physical input as the 52a contact. EXTBFI defaults to a logical 0 (no input) when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>BFI: Breaker Fail Initiate</td>
<td>Assign this input to a physical input or feedback term for initiation of the Breaker Failure Trip logic. It is typically connected to an external protective device with a BFI output contact. BFI defaults to a logical 0 (no input) when not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>TARC: Initiate Trip and Auto Reclose</td>
<td>This input is used to issue a circuit breaker trip and reclose. It is useful in the testing of the circuit breaker trip and close circuits as well as the recloser logic and timing settings. When TARC is a logical 1, a trip and automatic reclose sequence is initiated. If the input is held at a logical 1, the DPU1500R will continue to trip and reclose through the recloser steps (79-1, 79-2, 79-3, etc., see Recloser Section for reclosing details). If TARC is pulsed at a logical 1, the trip and auto reclose will only occur once unless TARC is pulsed again. TARC defaults to a logical 0 (disabled) when not assigned to a physical input or feedback term.</td>
</tr>
</tbody>
</table>
Table 6-1: Logical Input Definitions (cont.)

<table>
<thead>
<tr>
<th>Logical Input</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCI:</td>
<td>Automatic Reclose Inhibit. This logical input stops the recloser open timer for the time in which it is a logical 1. When ARCI is returned to a logical 0 the open timer will continue where it was stopped. ARCI does not affect the recloser reset timer. ARCI defaults to a logical 0 (disabled) when not connected to a physical input or feedback term.</td>
</tr>
<tr>
<td>52A:</td>
<td>Breaker Position Input. Assign this input to the physical input that is connected to the circuit breaker 52A auxiliary contact. The DPU1500R requires this input along with the 52B logical input (except when in the MDT mode) to determine circuit breaker states for initiation of circuit breaker close, trip failure, and close failure logical outputs. When 52A is a logical 1 and 52B is a logical 0, the relay logic assumes a closed circuit breaker. When 52A is a logical 0 and 52B is a logical 1, the relay logic assumes an open circuit breaker. If the 52A and 52B are at equal logic states, the DPU1500R will determine a “CB Status Unknown” state as displayed on the front panel MMI LCD display. 52A defaults to a logical 0 when not assigned to a physical input.</td>
</tr>
<tr>
<td>52B:</td>
<td>Breaker Position Input. Assign this input to the physical input that is connected to the circuit breaker 52B auxiliary contact. The DPU1500R requires this input along with the 52A logical input (except when in the MDT mode) to determine circuit breaker states for initiation of circuit breaker close, trip failure, and close failure logical outputs. See 52A for valid breaker operating states. 52B defaults to a logical 0 when not assigned to a physical input.</td>
</tr>
<tr>
<td>43A:</td>
<td>Recloser Enable. This input is used to supervise the DPU1500R reclosing function. When the 43A input is a logical 1, the DPU1500R recloser is enabled. When 43A is a logical 0, the recloser is disabled. If the recloser is disabled, a red “Recloser Out” target will illuminate on the front of the DPU1500R. 43A defaults to a logical 1 (enabled) when not assigned to a physical input.</td>
</tr>
<tr>
<td>SEF:</td>
<td>SEF: Sensitive Earth Fault Enable. Enables the sensitive earth fault function (available in Sensitive Earth Fault models only). Use to supervise (torque control) the SEF overcurrent element. When the SEF input is a logical 1, the SEF overcurrent protection is enabled. SEF defaults to a logical 1 (enabled) if not assigned to a physical input or feedback term.</td>
</tr>
<tr>
<td>Local</td>
<td>When this function is unmapped, or a logical 0, the relay functions normally. When this is set to a logical 1, then the relay will not perform any functions listed in the operations record via SCADA or any communications program. However, the operations record is always available for use via the MMI.</td>
</tr>
<tr>
<td>SIA</td>
<td>Resets seal-in alarms</td>
</tr>
<tr>
<td>TGT</td>
<td>Resets target LEDs</td>
</tr>
</tbody>
</table>
Programming the Binary (Contact) Inputs

Up to 30 attributes can be selected for display on the Programmable Input Map. Use WinECP and follow these steps to program the binary (contact) inputs on the Programmable Input Map screen:

1. From the WinECP Main Menu, select “Settings.”

2. From the Settings Menu, select “Programmable I/O” and then “Programmable Inputs.”

3. The Programmable Input Map screen appears.

4. To change the listing of logical inputs:
 a. Place the mouse arrow on the logical input (leftmost column).
 b. Click to display a list of possible logical inputs.
 c. Scroll through the list until the logical input you want is highlighted.
 d. Click OK to change the contact or click cancel to close the list window without changing the current logical input.

5. To change the logic of a logical input:
 a. Click the logic value of a logical input and it will change.
 b. Click OK to change or cancel to close the logic window without any changes.

6. To change the conditions of a logical input:
 a. Place the mouse arrow on the box across from the contact name and underneath the physical input you want.
 b. Click the box to change color for gray, red or white for deassigned, closed and open logic. Gray, red or white is the same as blank, “C” or “O” logic in DOS ECP.
 c. Click OK to change or cancel to close the status window without any changes.

7. To assign a name to an input:
 a. Click mouse arrow in field above physical input designation.
 b. Click OK to change or cancel to close the input window without any changes.

8. Save your changes.
 a. Return to “Settings Menu”.
 b. Choose “Select All” to save all settings, or “Programmable I/O” to save I/O settings only.
 c. Choose “Download To System” to save change in DPU1500R or “Save To File” to save in a file.
Programmable Outputs

All logical outputs except “ALARM” are a logical 0 when the DPU1500R is in a “the normal” state.

Logical Output Types

The programmable logical outputs (or sometimes called alarms) as listed below can have two different types of outputs for the same function. The first type is a non-sealed-in type. This type of logical output will be a logical 1 (logical output asserted) when the condition is present and a logical 0 (logical output de-asserted) when the condition ceases. It is sometimes referred to as a “real time” output. The second type is a sealed-in type. This type of logical output will be a logical 1 (logical output asserted) when the condition is present and will remain a logical 1 when the condition ceases. The Sealed-In Outputs are reset by any of the following methods:

1. The front panel MMI “C” (clear) button is depressed once within a 5-second period. The user will eventually be prompted to reset seal-ins. See Section 5 for details.
2. The Sealed In Alarms can be reset with WinECP by selecting the Control - Resets Menu, and choosing the Sealed In Alarms command. The Sealed In Alarms can be reset individually, or all at once. See Section 8 for more details.
3. Depending on the communications protocol contained in the DPU1500R, a command is issued to reset the individual seal-in outputs or all seal-in outputs.

An example of where seal-in bits are applied: The DPU1500R is connected directly onto a Modbus communications network and a Programmable Logic Controller (PLC) is also on the network. The PLC obtains fault information from the DPU1500R over the Modbus network for certain restoration scheme. If the fault bit, 51P (3I>) for example, sensed by the PLC was a real time bit, the PLC would never see the change. The seal-in bit, 51P* (3I>*), can be used to alert the PLC to a fault even after the fault has extinguished. Once the PLC is finished with the logical output bit 51P* (3I>*), it can reset the bit to a logical 0 via the communication network. This eliminates hard contact wiring between the relay and the PLC and assure that the PLC will always see a fault.

Some of the alarms listed below will have duplicate elements. For example, 50P-1 (3I>>1) and 50P-1* (3I>>1*). Notice that an asterisk (*) follows one of the elements. This is the indication of a logical output that is of the seal-in type as described above.

Table 6-2: Logical Output Definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entry not used.</td>
<td></td>
</tr>
<tr>
<td>TRIP:</td>
<td>Breaker Trip Output. This output follows the action of the physical output contact “Trip”. It is activated by all of the overcurrent protective elements that are enabled. TRIP is also activated by the logical input OPEN and operates when the relay is asked to perform a manual circuit breaker trip by either the front panel MMI or remote WinECP program. See Section 1 under “Master Trip Contact Dropout” for details on dropout operation of this logical output.</td>
</tr>
<tr>
<td>CLOSE:</td>
<td>Breaker Close Output. This output is used by the DPU1500R recloser as the breaker close output. It must be assigned to the physical output that is connected to the circuit breaker close coil. CLOSE is also activated by the logical input CLOSE and operates when the relay is asked to perform a manual circuit breaker close by either the front panel MMI or remote WinECP program. The CLOSE logical output will become a logical 1 when the DPU1500R issues a CLOSE command. CLOSE will remain a logical 1 until the Close Fail Timer expires or the 52A and 52B contacts indicate that a circuit breaker close state exists.</td>
</tr>
<tr>
<td>ALARM:</td>
<td>Self Check Alarm. This output is normally a logical 1, and indicates that the DPU1500R is functioning normally. When the output is a logical 0, the DPU1500R has failed. This output is also linked to the physical “Self Check Alarm” contact and the red front panel “Fail” target.</td>
</tr>
</tbody>
</table>

Abbreviation Description

website:www.abb.com/papd

Programmable Input and Output Contacts

ABB Distribution Protection Unit 1500R
Table 6-2: Logical Output Definitions (cont.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFA:</td>
<td>Breaker Failure Alarm. BFA operates when the DPU1500R detects a breaker failed to trip. See Section 2 under “Trip Fail Timer” for details.</td>
</tr>
<tr>
<td>BFA*</td>
<td>Breaker Failure seal-in Alarm. See Logical Output Types Section.</td>
</tr>
<tr>
<td>TCFA:</td>
<td>Trip Circuit Failure Alarm. TCFA is activated when the DPU1500R determines that the circuit breaker trip coil continuity has been broken. It is directly tied to the operation of the logical input TCM. When TCM is a logical 0, the Trip Circuit Fail Alarm (TCFA) is a logical 1 indicating a trip coil failure.</td>
</tr>
<tr>
<td>79LOA: (O->ILO)</td>
<td>Recloser Lockout Alarm. 79LOA operates at any time when the DPU1500R recloser is in the lockout state. When 79LOA is a logical 1, the recloser is in lockout.</td>
</tr>
<tr>
<td>TCC:</td>
<td>Tap Changer Cutout Contact. TCC operates when the DPU1500R recloser begins operation and remains active until the last recloser operation is complete (reset time expires or recloser enters lockout state). When TCC is a logical 1, the recloser in the DPU1500R is active. TCC can be used to block a tap changer during fault and recovery operations.</td>
</tr>
<tr>
<td>PUA: (I>ls)</td>
<td>Overcurrent Pickup Alarm. PUA operate when any enabled overcurrent element is above its specific pickup level. Since PUA is an OR of all enabled overcurrent elements, it does not distinguish between elements. In other words, it will operate for the lowest set overcurrent element. When PUA is a logical 1, one of the overcurrent elements is above its pickup setting. PUA is instantaneous and ignores any overcurrent timing elements.</td>
</tr>
<tr>
<td>51P-1: (3I>>1)</td>
<td>Phase Instantaneous Overcurrent Trip Alarm Level 1 (Low Set Instantaneous). Indicates that the phase instantaneous overcurrent element level 1, 50P-1, has timed out and energized. 50P-1 will be a logical 1 when this occurs.</td>
</tr>
<tr>
<td>51P-1*: (3I>>1*)</td>
<td>Phase Instantaneous Overcurrent Trip Seal-in Alarm Level 1 (Low Set Instantaneous). See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>50N-1: (Insc>1)</td>
<td>Ground Instantaneous Overcurrent Trip Alarm Level 1 (Low Set Instantaneous). Indicates that the ground instantaneous overcurrent element level 1, 50N-1, has timed out and energized. 50N-1 will be a logical 1 when this occurs.</td>
</tr>
<tr>
<td>50N-1*: (Insc>1*)</td>
<td>Neutral Instantaneous Overcurrent Trip Seal-in Alarm Level 1 (Low Set Instantaneous). See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>50P-2: (3I>>2)</td>
<td>Phase Instantaneous Overcurrent Trip Alarm Level 2 (Mid Set Instantaneous). Indicates that the phase instantaneous overcurrent element level 2, 50P-2, has timed out and energized. 50P-2 will be a logical 1 when this occurs.</td>
</tr>
<tr>
<td>50P-2*: (3I>>2*)</td>
<td>Phase Instantaneous Overcurrent Trip Seal-in Alarm Level 2 (Mid Set Instantaneous). See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>50N-2: (Insc>2)</td>
<td>Ground Instantaneous Overcurrent Trip Alarm Level 2 (Mid Set Instantaneous). Indicates that the ground instantaneous overcurrent element level 2, 50N-2, has timed out and energized. 50N-2 will be a logical 1 when this occurs.</td>
</tr>
<tr>
<td>50N-2*: (Insc>2*)</td>
<td>Neutral Instantaneous Overcurrent Trip Seal-in Alarm Level 2 (Mid Set Instantaneous). See “Logical Output Types” earlier in this section.</td>
</tr>
</tbody>
</table>
Table 6-2: Logical Output Definitions (cont.)

<table>
<thead>
<tr>
<th>Logical Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>50P-3: (3I>>3)</td>
<td>Phase Instantaneous Overcurrent Trip Alarm Level 3 (High Set Instantaneous). Indicates that the phase instantaneous overcurrent element level 3, 50P-3, has energized. 50P-3 will be a logical 1 when this occurs.</td>
</tr>
<tr>
<td>50P-3: (3I>>3*)</td>
<td>Phase Instantaneous Overcurrent Trip Seal-in Alarm Level 3 (High Set Instantaneous). See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>50N-3: (IN>>3)</td>
<td>Ground Instantaneous Overcurrent Trip Alarm Level 3 (High Set Instantaneous). Indicates that the phase instantaneous overcurrent element level 3, 50N-3, has timed out and energized. 50N-3 will be a logical 1 when this occurs.</td>
</tr>
<tr>
<td>50N-3: (IN>>3*)</td>
<td>Neutral Instantaneous Overcurrent Trip Seal-in Alarm Level 3 (High Set Instantaneous). See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>PATA: (L1TA)</td>
<td>Phase A (L1) Target Alarm. Activates any time the red front panel phase A target LED is illuminated. If PATA is a logical 1, the phase A target LED is lit. If the front panel target LED’s are reset either by the front panel pushbutton “Target Reset” or by WinECP PATA will become a logical 0. This output is useful in remote communications and SCADA applications where faulted phase information is required.</td>
</tr>
<tr>
<td>PBTA: (L2TA)</td>
<td>Phase B (L2) Target Alarm. Activates any time the red front panel phase B target LED is illuminated. If PBTA is a logical 1, the phase B target LED is lit. If the front panel target LED’s are reset either by the front panel pushbutton “Target Reset” or by WinECP PBTA will become a logical 0. This output is useful in remote communications and SCADA applications where faulted phase information is required.</td>
</tr>
<tr>
<td>PCTA: (L3TA)</td>
<td>Phase C (L3) Target Alarm. Activates any time the red front panel phase C target LED is illuminated. If PCTA is a logical 1, the phase C target LED is lit. If the front panel target LED’s are reset either by the front panel pushbutton “Target Reset” or by WinECP PCTA will become a logical 0. This output is useful in remote communications and SCADA applications where faulted phase information is required.</td>
</tr>
<tr>
<td>27-1P: (U<)</td>
<td>Single Phase Undervoltage Alarm. Activates when any phase (or phase pair for delta VT’s) of voltage drops below the 27 undervoltage setting.</td>
</tr>
<tr>
<td>27-1P: (U<*)</td>
<td>Single Phase Undervoltage Seal-in Alarm. See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>79DA: (O->IDA)</td>
<td>Recloser Disabled Alarm. This logical output operates in conjunction with the red front panel “Recloser Out” target. It becomes a logical 1 when the recloser is disabled either by the 43A logical input or when the 79-1 recloser sequence is set to lockout.</td>
</tr>
<tr>
<td>79CA1: (O->I-1)</td>
<td>Recloser Counter 1 Alarm. Operates when the recloser has operated beyond the number of counts set in the 79 counter 1 alarm settings.</td>
</tr>
<tr>
<td>79CA1: (O->I-1*)</td>
<td>Recloser Counter 1 Seal-in Alarm. See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>79CA2: (O->I-2)</td>
<td>Recloser Counter 2 Alarm. Operates when the recloser has operated beyond the number of counts set in the 79 counter 2 alarm settings.</td>
</tr>
<tr>
<td>79CA2: (O->I-2*)</td>
<td>Recloser Counter 2 Seal-in Alarm. See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>Note:</td>
<td>Two recloser counter alarms are provided, 79CA1 and 79CA2. They can be set to different thresholds or as typically applied, one can be reset to 0 on a monthly basis and the other on a yearly basis. This way recloser operations can be tracked on a monthly and yearly basis.</td>
</tr>
<tr>
<td>OCTC:</td>
<td>Overcurrent Trip Counter Alarm. Activates when the number of overcurrent trip operations has exceeded the Overcurrent Counter Alarm setting.</td>
</tr>
</tbody>
</table>
Table 6-2: Logical Output Definitions (cont.)

<table>
<thead>
<tr>
<th>Logical Output</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSI: (I>TC)</td>
<td>KSI Summation Alarm. Activates when the KSI sum has exceeded the KSI Counter Alarm setting.</td>
</tr>
<tr>
<td>PDA:</td>
<td>Phase Current Demand Alarm. Activates when the demand current for any phase has exceeded the Phase Demand Alarm setting. This alarm is based on the incremental demand values and not the instantaneous values as in the load alarms. When the demand value rises above the Phase Demand Alarm setting, a 60 second timer is started. When the timer expires, PDA becomes a logical 1.</td>
</tr>
<tr>
<td>NDA:</td>
<td>Neutral Current Demand Alarm. Operates when the demand current for the neutral input has exceeded the Neutral Demand Alarm setting. This alarm is based on the incremental demand values and not the instantaneous values as in the load alarms. When the demand value rises above the Neutral Demand Alarm setting, a 60 second timer is started. When the timer expires, NDA becomes a logical 1.</td>
</tr>
<tr>
<td>PVArA:</td>
<td>Positive 3 Phase kVar Alarm. Operates 60 seconds after the positive 3 phase kVarars exceed the Positive KiloVar Alarm setting. When the Positive KiloVar value rises above the Positive KiloVar Alarm setting, a 60 second timer is started. When the timer expires, PVArA becomes a logical 1. If the value drops below the Alarm setting before the 60 second timer expires, the timer will reset.</td>
</tr>
<tr>
<td>NVArA:</td>
<td>Negative 3 Phase kVar Alarm. Operates 60 seconds after the negative 3 phase kVarars exceed the Negative KiloVar Alarm setting. When the Negative KiloVar value rises above the Negative KiloVar Alarm setting, a 60 second timer is started. When the timer expires, NVArA becomes a logical 1. If the value drops below the Alarm setting before the 60 second timer expires, the timer will reset.</td>
</tr>
<tr>
<td>LOADA:</td>
<td>Load Current Alarm. Operates 60 seconds after any single phase of load current rises above the Load Alarm setting. If the value drops below the Alarm setting before the 60 second timer expires, the timer will reset.</td>
</tr>
<tr>
<td>50-1D: (I>>1D)</td>
<td>50-1 Instantaneous Overcurrent Disabled Alarm. Operates when the torque controlled Programmable Input, 50-1, is mapped but not energized. This alarm indicates that the 50P-1 instantaneous unit is disabled from tripping. 50-1D will not operate if the 50P-1 element is disabled in the protective settings.</td>
</tr>
<tr>
<td>LPFA:</td>
<td>Low Power Factor Alarm. Operates 60 seconds after the load power factor drops below the Power Factor Alarm setting. If the value drops below the Alarm setting before the 60 second timer expires, the timer will reset.</td>
</tr>
<tr>
<td>HPFA:</td>
<td>High Power Factor Alarm. Operates 60 seconds after the power factor rises above the Power Factor Alarm setting. If the value drops below the Alarm setting before the 60 second timer expires, the timer will reset.</td>
</tr>
<tr>
<td>ZSC:</td>
<td>Zone Sequence Coordination Enabled Indicator. Operates when the Zone Sequence function is active. ZSC will be a logical 1 when Zone Sequence is enabled in the “Configurations” menu and the ZSC programmable input (see Programmable Inputs Section) is not assigned to an input or feedback term. ZSC will also be a logical 1 if the ZSC programmable input is assigned to an input or feedback term and that input or feedback term is energized. If any one of these conditions is not true ZSC will be a logical 0.</td>
</tr>
<tr>
<td>50-2D: (I>>2D)</td>
<td>50-2 Instantaneous Overcurrent Disabled Alarm. Operates when the torque control Programmable Input, 50-2, is mapped but not energized. This alarm indicates that the 50P-2 instantaneous unit is disabled from tripping. 50-2D will not operate if the 50P-2 element is disabled in the protective settings.</td>
</tr>
<tr>
<td>BFUA:</td>
<td>Blown Fuse Alarm. Operates when the voltage of any phase or phases drops below 7 volts and no 51P or 51N overcurrent pickup condition exists. This Logical Output seals in after a blown fuse condition exists. It must be manually reset via the MMI or WinECP after voltage has been restored.</td>
</tr>
</tbody>
</table>
Table 6-2: Logical Output Definitions (cont.)

<table>
<thead>
<tr>
<th>STCA:</th>
<th>Settings Table Changed Alarm. Activates when ever the “Settings” Menu is entered via front panel MMI or remote WinECP program.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH3-D: (3I>D)</td>
<td>Phase Control Disabled Alarm. Operates when the phase torque control logical input PH3 (see Programmable Inputs Section) is assigned to a physical input or feedback term and that physical input or feedback term is not energized.</td>
</tr>
<tr>
<td>GRD-D: (IN>D)</td>
<td>Ground Control Disabled Alarm. Operates when the ground torque control logical input GRD (see Programmable Inputs Section) is assigned to a physical input or feedback term and that physical input or feedback term is not energized.</td>
</tr>
<tr>
<td>27-3P: (3U<)</td>
<td>Three Phase Undervoltage Alarm. Activates when all three phases of voltage drop below the 27 undervoltage setting.</td>
</tr>
<tr>
<td>27-3P* (3U<*)</td>
<td>Three Phase Undervoltage Seal-in Alarm. See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>VARDA:</td>
<td>Three Phase kiloVar Demand Alarm. Operates when the value of the three phase demand VArS exceed the Three Phase Demand Alarm setting. This alarm is based on the incremental demand values and not the instantaneous values as in the load alarms. When the incremental value rises above the VARDA alarm setting, a 60 second timer is started. When the timer expires, VARDA becomes a logical 1.</td>
</tr>
<tr>
<td>TRIPA: (TRIPL1)</td>
<td>Phase A (L1) Trip Alarm. Operates when the tripping of the DPU1500R main trip contact is caused by a fault on phase A. TRIPA will drop out when the fault current drops below 90% of the lowest set time overcurrent element pickup.</td>
</tr>
<tr>
<td>TRIPA* (TRIPL1*)</td>
<td>Phase A (L1) Trip Seal-in Alarm. See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>TRIPB: (TRIPL2)</td>
<td>Phase B (L2) Trip Alarm. Operates when the tripping of the DPU1500R main trip contact is caused by a fault on phase B. TRIPB will drop out when the fault current drops below 90% of the lowest set time overcurrent element pickup.</td>
</tr>
<tr>
<td>TRIPB* (TRIPL2)</td>
<td>Phase B (L2) Trip Seal-in Alarm. See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>TRIPC: (TRIPL3)</td>
<td>Phase C (L3) Trip Alarm. Operates when the tripping of the DPU1500R main trip contact is caused by a fault on phase C. TRIPC will drop out when the fault current drops below 90% of the lowest set time overcurrent element pickup.</td>
</tr>
<tr>
<td>TRIPC* (TRIPL3*)</td>
<td>Phase C (L3) Trip Seal-in Alarm. See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>CLTA:</td>
<td>Cold Load Timer Alarm. Operates when the cold load timer is in operation. CLTA will become a logical 1 when the Cold Load Timer is counting. When the Cold Load Timer expires, CLTA will become a logical 0.</td>
</tr>
<tr>
<td>Pwatt1:</td>
<td>Positive Watt Alarm 1. Operates 60 seconds after the positive 3 phase kilowatts exceed the Positive Kilowatt Alarm 1 setting. When the Positive Kilowatt value rises above the the Positive Kilowatt Alarm 1 setting, a 60 second timer is started. When the timer expires, Pwatt1 becomes a logical 1. If the value drops below the Alarm setting before the 60 second timer expires, the timer will reset.</td>
</tr>
<tr>
<td>Pwatt2:</td>
<td>Positive Watt Alarm 2. Operates 60 seconds after the positive 3 phase kilowatts exceed the Positive Kilowatt Alarm 2 setting. When the Positive Kilowatt value rises above the the Positive Kilowatt Alarm 2 setting, a 60 second timer is started. When the timer expires, Pwatt2 becomes a logical 1. If the value drops below the Alarm setting before the 60 second timer expires, the timer will reset.</td>
</tr>
</tbody>
</table>

Note: Two positive watt alarm logical outputs are provided, Pwatt1 and Pwatt2. One alarm can be set to a different threshold than the other if desired. An application example: One can be used for alarming purposes and the other for tripping if desired.
Output Contacts

The relay output contacts are divided into two categories: permanently programmed and user-programmable. Jumpers on the CPU board allow you to choose whether the programmable output contacts are normally open or normally closed.

Permanently Programmed Output Contacts

MASTER TRIP—The trip output contact is actuated by the enabled protective functions. The trip output remains closed until the fault current is removed (less than 5% of the 51P (3I>) and 51N (IN>) pickup settings) and until the 52a (XO) and 52b (XI) contact inputs indicate that the breaker has opened.

If Multiple Device Trip Mode is enabled, the trip output is removed 3 cycles after the fault current drops below 90% of the lowest pickup setting; removal of the trip output is not dependent on the 52a (XO) and 52b (XI) contact inputs.

If Multiple Device Trip Mode is enabled, the open interval timer and subsequent close output are initiated only if an Overcurrent Trip Output has occurred and the current has dropped below 90% of the lowest pickup setting. Initiation of the open interval timer and the subsequent close output is not dependent on the 52a (XO) and 52b (XI) contact inputs.

ALARM—Self-check alarm output contacts, one normally open and one normally closed, change state when control power is applied. Upon a loss of control power or a failure status of a specific self-test, the contacts return to their normal state. A contact must be connected to a local annunciator light or, if available, to a remote terminal unit to indicate the need for relay replacement.

<table>
<thead>
<tr>
<th>BFT: Breaker Failure Trip.</th>
<th>Breaker Failure Trip function in the DPU1500R issues a breaker failure trip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFT*: Breaker Failure Trip Seal-in Alarm.</td>
<td>See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>ReTrp: Breaker Failure ReTrip.</td>
<td>Breaker Failure Trip function in the DPU1500R issues a ReTrip.</td>
</tr>
<tr>
<td>ReTrp*: Breaker Failure ReTrip Seal-in Alarm.</td>
<td>See “Logical Output Types” earlier in this section.</td>
</tr>
<tr>
<td>SBA Slow Breaker Alarm function.</td>
<td>This indicates that the “Slow Breaker Time” setting in the configuration settings has expired.</td>
</tr>
<tr>
<td>I>0 Sensitive Earth Fault Trip</td>
<td></td>
</tr>
<tr>
<td>I>0* Sensitive Earth Fault Trip Seal-in Alarm</td>
<td></td>
</tr>
<tr>
<td>BZA Bus Zone Alarm</td>
<td></td>
</tr>
<tr>
<td>79V (O->IU<) Reclose undervoltage block.</td>
<td>When this logical output is asserted, it indicates that the system voltage is less than the 79V setting and the 79 function is suspended. When the system voltage recovers above the 79V setting for the 79V time delay, this logical output will reset and the 79V will continue.</td>
</tr>
<tr>
<td>RCin Circuit Breaker Close initiate.</td>
<td></td>
</tr>
</tbody>
</table>
Programmable Master Trip Contact

The DPU1500R contains a “master trip” contact. This output contact is factory set as a type ‘A’ (normally open) contact and is actuated by the protective elements; 51P (3I>), 51N (IN>), 50P-1 (3I>>1), 50P-2 (3I>>2), 50P-3 (3I>>3), 50N-1 (IN>>1), 50N-2 (IN>>2), 50N-3 (IN>>3), and 46 (Insc>). It is possible to set this contact to a B type (normally closed) by removing the DPU1500R from its case and changing jumper J6. It is necessary to remove the metal RF shield covering the output relays. This is done by removing the two phillips screws holding the metal shield in place. Place jumper J6 in “NO” for a normally open contact and “NC” for a normally closed contact.

It is also possible to eliminate any of the above listed protective elements from activating the master trip contact. This can only be performed by the WinECP Select “Master Trip Contact” from “Settings” Menu and place an “X” next to the elements desired to operate the master trip contact and a space next to those not desired. Select “Send Settings” to complete the operation. Figure 6-3 shows a screen capture of the master trip programming.

These settings are useful where certain elements will be programmed to a different output contact (see Programmable I/O Section) for operation of a lockout relay or other auxiliary device.

Master Trip Contact Dropout

When the DPU1500R master trip contact operates due to the operation of a protective element such as 51P (3I>), 50P-1 (3I>>1), 50N-1 (IN>>1), etc., the master trip contact will drop out when the fault current on all phases drops to 90% of the lowest set time overcurrent element pickup AND the 52A (XO) and 52B (XI) breaker auxiliary contacts have changed state to the open position. The master trip contact will stay sealed in indefinitely until these cases are met.

Figure 6-2. Master Trip Contact Programming Screen
Programmable Output Contacts - OUT 1 through OUT 6

Up to six (6) user-programmable output contacts are available. Figure 6-4 shows the Programmable Outputs Menu of the WinECP with some mappings. A solid box means an output contact is mapped.

OUTPUT TIMERS: Additional time delay can be added to the function by means of the output timers. The time delay interval is adjustable from 0 to 250 seconds in 0.01 steps.

OUTPUT LABELS: Identifying names can be placed under each of the outputs in the screen shown in Figure 6-4.

Advanced Programmable Logic

Introduction

The programmable logic features in the DPU1500R are designed to provide easy to build logic functions. Virtually any desired logic scheme can be accomplished through the advanced programmable I/O features in the relay. This application note explains how to build complex logic schemes in the relay. To describe the various functions, some terms need to be defined:

Physical Inputs

These are hard wired inputs to the relay. Physical Inputs 1 - 5 are “single ended” inputs and require only a positive voltage on its terminals only to denote a HIGH state. Physical Input 6 is “double ended” inputs both positive and negative voltage on its terminals to denote a HIGH state.

Physical Outputs

These are hard wired “dry” output contacts from the relay. There are a total of 6 Physical Outputs on the DPU1500R. The main TRIP output, OUT1, and OUT2 can be configured for normally open or closed.

Figure 6-3. Programmable Outputs Screen

Figure 6-4. Trip Coil Monitoring
Logical Inputs

In the programmable input table in WinECP, the leftmost column lists the Logical Inputs to the relay. Logical Inputs are the protective functions in the relay that can be enabled or disabled via “input mapping”. When a Logical Input is true, the function is enabled. When the logic to the Logical Input is false, the function is disabled. A simple example of how logical inputs work is shown below.

Programming Examples

External Overcurrent Control

1. In this example, the first level of instantaneous 50-1 (I>>1) is enabled ONLY when IN1 is HIGH (has a + voltage) AND IN2 is LOW (no voltage). The Boolean Logic is I1 * I2 = 50-1.

Also, the 46 (Insc>) function is enabled only when IN1 is HIGH.

Figure 6-5. Programmable Inputs Screen

52a and 52b

2. In some applications it is desirable to combine the 52a and the 52b contacts for circuit breaker position indication. This approach is less secure than using separate inputs for the 52a and 52b, but it saves one input for other uses. The following programming example shows how the 52b can be derived from the NOT of 52a. Connect a 52a contact from the breaker to I1.

Figure 6-6. 52a and 52b Combined Input Example

Recloser Control

3. The following example shows how to change Setting Groups at the same time the recloser is disabled.

Figure 6-7. ALT1 Settings and 43A Recloser Disable Control Logic
51V

4. If a voltage-controlled overcurrent (51V) function is desired, see the following example. The Boolean Logic OUT2 = 50P-2 (3I>>2) * 27-1P (U<). 50P-2 is a definite time overcurrent element, and output 2 is connected to the trip bus.

Ground Torque Control

5. In the following example, the ground relay functions (51N & 50N) will be disabled when I2 and I3 are asserted. I2 can be connected to a panel mounted toggle switch for local control, and I3 can be connected to an RTU for remote control. When the ground relay is disabled, a message will appear in the MMI display. The Boolean Logic for the User Display Indication (UDI) is I2 + I3 = UDI. The Boolean Logic for the Ground Enable (GRD) is NOT I2 * NOT I3 = GRD; and OUT-1 = GRD-D (Ground Disable Alarm). Notice that GRD-D is the NOT of GRD, so that (by DeMorgan's Theorem) the OUT-2 logic becomes I2 + I3 = GRD-D.

Blown Fuse Alarm

6. In this example, the negative sequence overcurrent (46) and the undervoltage (27) elements work together to detect a blown transformer high-side fuse. The Boolean Logic is OUT-2 (blown fuse) = 46 (Insc>) * 27-1P (U<).
Records Menu

The DPU1500R provides fault and operations records. It also provides a list of records not yet reported.

Fault Summary

The DPU1500R provides a summary of the last 32 faults. The Fault Summary includes the:

- Record number (most recent listed first as "1")
- Fault number (numbered in order occurred)
- Enabled settings table and recloser sequence number (1, 2, 3, 4 or L for lockout)
- Tripping element
- Date and time
- Phase and neutral currents (magnitude only)

After a fault, the MMI continuously displays the apparent distance to the fault in miles and the fault currents (magnitude only) until the targets are reset. Save the Fault Summary as a file via WinECP.

Figure 7-1. Fault Summary Record
Fault Record

The Fault Record contains the last 32 faults. The Fault Record displays one fault at a time and includes the following information:

- Record number
- Fault number
- Reclose sequence number and enabled settings table
- Date and time
- Tripping element
- Apparent distance to the fault in miles
- Fault resistance
- Relay operate time
- Breaker clearing time
- Phase and neutral currents (magnitude and angle)
- Positive, negative and zero sequence currents (magnitude and angle)
- Phase voltages (magnitude and angle)
- Positive and negative sequence voltages (magnitude and angle)

Save the Fault Record as a file by using WinECP.

Operations Record

The DPU1500R provides an operations log in which any operation within the DPU1500R is recorded. This includes internal operations such as logical tripping elements and relay failures. The operations recorder also logs external events such as settings changes, circuit breaker operations, and logical input operations. During a fault the operations recorder does not know or care what element actually tripped and cleared the fault. It only knows that certain logical element became active and logs them with a time stamp. It is very possible that many elements may be logged for a specific fault but only one was responsible for fault clearing. See the Fault Records for the element responsible for fault clearing. A complete listing of all the possible operations logs is listed along with a description in Table 7-2. For detailed definitions to the actual logical elements 51P (3I>), 27-1P (U<), see the Programmable Outputs Section. It is important to note that the operations record logs only those elements that change state.
Three methods are used to obtain operations information from the DPU1500R.

1. The front panel MMI Main Menu item “Records” is accessed.

2. Operations records can be accessed, viewed, and saved with WinECP. They can be found by in the History Menu by choosing the Operations Records folder.

3. Depending on the communications protocol contained in the DPU1500R, a command is issued to send the operations records.

As can be seen in Figure 7-3, the operations records may contain a value associated with them. This value is a decimal number that further defines the occurrence. “Editor Access” and “Self Test Failure” logs will include a value. To interpret this number it must first be converted to binary. The binary bit pattern when compared to Table 7-1 will show what occurred. Notice in Table 7-1 that the values for “Editor Access” and “Self Test Failure” mean different things. For example: if the Operations Log records an “Editor Access” with a value of 256 it will not mean the same as a “Self Test Failure” value of 256.

The Operations Record contains the last 128 operations. The Operations Record includes the:

- Record number (most recent listed as “1”)
- Operation number (numbered sequentially in order of occurrence)
- Description of the operation
- Date and time of the operation

When the operation number reaches 999, the screen resets to 1.
Fault Locator

The DPU1500R fault algorithm is used to calculate estimated fault resistance and apparent distance to the fault. This calculation is performed by comparing the prefault current and voltage to the fault current and voltage and by analyzing the positive and zero sequence reactance per mile. Three to six of 6 cycles of fault current is needed to analyze the fault values. The system parameters are used to estimate the source impedance (known impedance) and source voltage. The fault values are used to estimate the load impedance (estimated impedance) and determine fault type. The known impedance and estimated impedance are used to easily calculate the fault impedance. Once the fault impedance is calculated, the distance to fault can be readily calculated using the fault impedance, the line impedance and the line length.

The Fault algorithm was designed to be used on a homogenous radial distribution line. Therefore, the unit is not intended to be used on a distribution line with many different types of conductors because the algorithm will not be as accurate.

Fault data may not be accurate for a close-into-fault condition where there is no prefault power flow. In the case of closing into a fault during a reclose sequence, the apparent distance to the fault in miles for the first fault appears on the first line of the LCD for the entire reclose sequence. The fault records also display the original fault distance in each record of that reclose sequence. The algorithm for the fault locator is most applicable to a radial feeder.

Key:
- \(Z_I\) = line impedance
- \(Z_s\) = source impedance
- \(Z_D\) = load impedance
- \(R_f\) = fault resistance
- \(M\) = distance
Self-Test Status

The DPU1500R provides continuous self-testing of its power supply voltages, its memory elements and digital signal processor and its program execution. In the event of a system failure, the protective functions are disabled and the Self-Check Alarm contacts are actuated. Except for a “processor stalled” condition, review the PASS/FAIL status of these self-test elements by using the man-machine interface (MMI). Normal status is indicated by a green NORMAL STATUS light (LED) and system failure is indicated by the red FAIL STATUS light (or by the green NORMAL STATUS light not being lit in the case of a loss of control power).

Self-Test Failures are recorded as a decimal number in the Operations Record. After converting this number to binary, the binary bit pattern indicates the Self-Test Failure or Editor Access Status involved. The 1s in the bit pattern indicate where a failure has occurred. Count from the right of the bit pattern (starting with zero) to the position where a "1" occurs. Compare that bit position with Table 7-1 to reveal the failure. See the examples on page 7-6 for further explanation.

If the self-test fails, the DPU1500R is no longer providing protection. Replace the unit as soon as possible.

Table 7-1. Operations Record Value Information

<table>
<thead>
<tr>
<th>Bit Position</th>
<th>Self-Test Failure</th>
<th>Editor Access Status</th>
<th>Decimal Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>CPU RAM</td>
<td>INTERRUPT LOGGING</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>CPU EPROM</td>
<td>REMOTE EDIT DISABLE = 1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>CPU NVRAM</td>
<td>LOCAL EDIT DISABLED = 1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>CPU EEPROM</td>
<td>FRONT MMI EDIT ACTIVE</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>NOT USED</td>
<td>FRONT COMM PORT EDIT ACTIVE</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>NOT USED</td>
<td>REAR COMM PORT EDIT ACTIVE</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>NOT USED</td>
<td>REAR AUX COMM PORT EDIT ACTIVE</td>
<td>64</td>
</tr>
<tr>
<td>7</td>
<td>NOT USED</td>
<td>REAL TIME CLOCK EDITED</td>
<td>128</td>
</tr>
<tr>
<td>8</td>
<td>DSP ROM</td>
<td>PROGRAMMABLE I/O EDITED</td>
<td>256</td>
</tr>
<tr>
<td>9</td>
<td>DSP INTERNAL RAM</td>
<td>PRIMARY SET EDITED</td>
<td>512</td>
</tr>
<tr>
<td>10</td>
<td>DSP EXTERNAL RAM</td>
<td>ALTERNATE1 SETTINGS EDITED</td>
<td>1024</td>
</tr>
<tr>
<td>11</td>
<td>DSP ANALOG/DIGITAL CONVERTER</td>
<td>ALTERNATE2 SETTINGS EDITED</td>
<td>2048</td>
</tr>
<tr>
<td>12</td>
<td>DSP +/-15, ±12 V POWER SUPPLIES</td>
<td>CONFIGURATION SETTINGS EDITED</td>
<td>4096</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>COUNTER SETTINGS EDITED</td>
<td>8192</td>
</tr>
<tr>
<td>14</td>
<td>DSP STALL or +5 V POWER SUPPLY</td>
<td>ALARM SETTINGS EDITED</td>
<td>16384</td>
</tr>
<tr>
<td>15</td>
<td>DSP TO CPU COMMUNICATIONS</td>
<td>COMMUNICATIONS SETTINGS EDITED</td>
<td>32768</td>
</tr>
</tbody>
</table>
Examples of bit interpretation are shown below.

Example of a Self-Test Failure

Value : 256 has a binary bit pattern of 0000000100000000 (bit order 15........0)

The 1 is in bit position 8 as you count from the right. This bit position correlates to DSP ROM failure.

Example of an Editor Access

Value : 145 has a binary bit pattern of 0000000010010001 (bit order 15........0)

The 1s in this bit pattern have the following bit positions and corresponding Editor Access Status:

Bit 0 : Interrupt logging bit (ignore this bit because it will always be set in this example).

Bit 4 : Front communications port initiated the editor access and change.

Bit 7 : Real-time clock settings were changed.

DPU1500R Settings Tables Diagnostics

Three copies of each settings table are stored in a nonvolatile memory device, preventing data loss during control power cycling. When you finish editing any settings table, the changed table’s data is transferred from a temporary edit buffer into three separate locations in the nonvolatile memory device.

A background diagnostics task continuously runs a checksum on each copy of the settings tables to verify data consistency. If an invalid copy is detected, the diagnostic task attempts self-correction by transferring a valid copy to the invalid copy location. If this is unsuccessful, the task marks the copy as unusable and switches to the next available copy.

When the DPU1500R detects that all three copies of a settings table are not valid, the diagnostic task adds a self-diagnostic error in the Operations Record, drops the self-check alarm and disables all protective functions. In addition, the Self Test display under the MMI Test Menu shows the current status (PASS or FAIL) for all memory devices.
Operations Log Listing

Listed in Table 7-2 are all of the possible operations records and their descriptions.

Table 7-2

<table>
<thead>
<tr>
<th>Operations Record Log</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>51P Trip (3I>)</td>
<td>Indicates that the phase time overcurrent element, 51P has timed out and operated. It is possible that this may not have been the actual tripping element.</td>
</tr>
<tr>
<td>51N Trip (IN>)</td>
<td>Indicates that the ground time overcurrent element, 51N has timed out and operated. It is possible that this may not have been the actual tripping element.</td>
</tr>
<tr>
<td>50P-1 Trip (3I>>1)</td>
<td>Indicates that the phase instantaneous overcurrent element, 50P-1 has timed out and operated. It is possible that this may not have been the actual tripping element.</td>
</tr>
<tr>
<td>50N-1 Trip (IN>>1)</td>
<td>Indicates that the ground instantaneous overcurrent element, 50N-1 has timed out and operated. It is possible that this may not have been the actual tripping element.</td>
</tr>
<tr>
<td>50P-2 Trip (3I>>2)</td>
<td>Indicates that the phase instantaneous overcurrent element, 50P-2 has timed out and operated. It is possible that this may not have been the actual tripping element.</td>
</tr>
<tr>
<td>50N-2 Trip (IN>>2)</td>
<td>Indicates that the ground instantaneous overcurrent element, 50N-2 has timed out and operated. It is possible that this may not have been the actual tripping element.</td>
</tr>
<tr>
<td>50P-3 Trip (3I>>3)</td>
<td>Indicates that the phase instantaneous overcurrent element, 50P-3 has operated. It is possible that this may not have been the actual tripping element.</td>
</tr>
<tr>
<td>50N-3 Trip (IN>>3)</td>
<td>Indicates that the ground instantaneous overcurrent element, 50N-3 has operated. It is possible that this may not have been the actual tripping element.</td>
</tr>
<tr>
<td>46 Trip (Insc>)</td>
<td>Indicates that the negative sequence time overcurrent element, 46 has timed out and operated. It is possible that this may not have been the actual tripping element.</td>
</tr>
<tr>
<td>27-1P Alarm (U<)</td>
<td>Indicates that the single phase undervoltage element, 27-1P, has operated. This log indicates only that the programmable logical output, 27-1P, has operated.</td>
</tr>
<tr>
<td>79V Block (O->IU<)</td>
<td>Indicates that one or more phases of voltage fell below the 79V threshold setting. Will log a 79V Block only during a reclose operation.</td>
</tr>
<tr>
<td>27-3P Alarm (3U<)</td>
<td>Indicates that the three phase voltage element, 27-3P, has operated. This log indicates only that the programmable logical output, 27-3P, has operated.</td>
</tr>
<tr>
<td>External Trip</td>
<td>Indicates that the DPU1500R saw the breaker open via the 52A and 52B Programmable Logic inputs, but the relay did not cause the breaker to open.</td>
</tr>
<tr>
<td>External Close</td>
<td>Indicates that the DPU1500R saw the breaker close via the 52A and 52B Programmable Logic inputs, but the relay did not cause the breaker to open.</td>
</tr>
<tr>
<td>Breaker Opened</td>
<td>Indicates that a “TRIP BREAKER” command was entered from the Operations Menu.</td>
</tr>
<tr>
<td>Breaker Closed</td>
<td>Indicates that a “CLOSE BREAKER” command was entered from the Operations Menu.</td>
</tr>
<tr>
<td>Recloser Lockout</td>
<td>Indicates a recloser lockout state. See the Recloser Section for details on lockout conditions.</td>
</tr>
<tr>
<td>MDT Close</td>
<td>Indicates that a circuit breaker close was issued by the DPU1500R while it was in the MDT mode. See the Multiple Device Trip (MDT) Sections for details on MDT tripping.</td>
</tr>
</tbody>
</table>
Table 7-2 (cont.)

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext. Trip & ARC</td>
<td>Indicates that the TARC (Trip and Auto Reclose) logical Input became a logical 1 and the relay went through the reclose cycle.</td>
</tr>
<tr>
<td>Ext. Trip CB Stuck</td>
<td>Indicates that the 52A contact opened and the 52B contact closed but current is still flowing through the relay.</td>
</tr>
<tr>
<td>Reclose Initiated</td>
<td>Indicates that the DPU1500R has entered into the reclose sequence.</td>
</tr>
<tr>
<td>CB Failed to Trip</td>
<td>Indicates the Trip Fail Timer has expired. See Trip Fail Timer in the Recloser Section for more details.</td>
</tr>
<tr>
<td>CB Failed to Close</td>
<td>Indicates the Close Fail Timer has expired. See Close Fail Timer in the Recloser Section for more details.</td>
</tr>
<tr>
<td>CB Pops Open</td>
<td>Indicates that the circuit breaker has opened after a CB fail to trip state has occurred. This open state could have occurred when the breaker finally opened (slow breaker) or when manually opened.</td>
</tr>
<tr>
<td>CB Pops Closed</td>
<td>Indicates that the circuit breaker has closed after a CB fail to close state has occurred. This could have only occurred external to the DPU1500R or a “Close” command issued via the DPU1500R MMI or WinECP program.</td>
</tr>
<tr>
<td>CB State Unknown</td>
<td>Indicates that the 52A and 52B circuit breaker auxiliary contact inputs to the DPU1500R are in an invalid state. See the Programmable Inputs Section specifically the 52A and 52B programmable inputs for valid input states.</td>
</tr>
<tr>
<td>Gmd. TC Enabled (IN)</td>
<td>Indicates that the “GRD” programmable input was asserted and the active ground overcurrent elements enabled. The “GRD” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “GRD” logical input is forced closed in the Operations Menu (see Operations Menu Section). This record indicates the state of the “GRD” input only.</td>
</tr>
<tr>
<td>Gmd. TC Disabled (IN)</td>
<td>Indicates that the “GRD” programmable input was de-asserted and the active ground overcurrent elements disabled. The “GRD” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “GRD” logical input is forced open in the Operations Menu (see Operations Menu Section). This record indicates the state of the “GRD” input only.</td>
</tr>
<tr>
<td>Phase TC Enabled (3I)</td>
<td>Indicates that the “PH3” programmable input was asserted and the active phase overcurrent elements enabled. The “PH3” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “PH3” logical input is forced closed in the Operations Menu (see Operations Menu Section). This record indicates the state of the “PH3” input only.</td>
</tr>
<tr>
<td>Phase TC Disabled (3I)</td>
<td>Indicates that the “PH3” programmable input was de-asserted and the active phase overcurrent elements disabled. The “PH3” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “PH3” logical input is forced open in the Operations Menu (see Operations Menu Section). This record indicates the state of the “PH3” input only.</td>
</tr>
<tr>
<td>Primary Set Active</td>
<td>Indicates that a transition from an Alternate settings group took place and that the Primary settings are active at this point in the record.</td>
</tr>
<tr>
<td>Alt 1 Set Active</td>
<td>Indicates that a transition from a Alternate 2 or Primary settings group took place and that the Alternate 1 settings are active at this point in the record.</td>
</tr>
<tr>
<td>Alt 2 Set Active</td>
<td>Indicates that a transition from a Alternate 1 or Primary settings group took place and that the Alternate 2 settings are active at this point in the record.</td>
</tr>
<tr>
<td>Zone Step</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Records</td>
<td>Indicates that a zone sequence coordination operation occurred. See the Zone Sequence Coordination Section for details.</td>
</tr>
<tr>
<td>Recloser Enabled</td>
<td>Indicates that the “43A” programmable input became asserted or was unmapped to a physical input or feedback term. This record indicates the state of the “43A” input only. This log will appear even if the Recloser is disabled at 79-1 in the active settings group.</td>
</tr>
<tr>
<td>Recloser Disabled</td>
<td>Indicates that the 43A programmable input became de-asserted or was mapped to a non active physical input or feedback term. This record indicates the state of the “43A” input only. This log will appear even if the Recloser is disabled at 79-1 in the active settings group.</td>
</tr>
<tr>
<td>Zone Seq. Enabled</td>
<td>Indicates that the programmable input “ZSC” was asserted and the Zone Sequence Coordination function was enabled. This record indicates the state of the “ZSC” input only. This log will appear even if the Zone Sequence Coordination function is disabled in the Configuration settings.</td>
</tr>
<tr>
<td>Zone Seq. Disabled</td>
<td>Indicates that the programmable input “ZSC” was de-asserted and the Zone Sequence Coordination function was disabled. This record indicates the state of the “ZSC” input only. This log will appear even if the Zone Sequence Coordination function is disabled in the Configuration settings.</td>
</tr>
<tr>
<td>50P/N-1 Disabled (b>>1)</td>
<td>Indicates that the “50-1” programmable input was de-asserted and the active 50P-1 and 50N-1 instantaneous overcurrent elements disabled. The “50-1” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “50-1” logical input is forced open in the Operations Menu (see Section 8). This record indicates the state of the “50-1” input only. This log will appear even if the 50P-1 and 50N-1 elements are disabled in the active settings group.</td>
</tr>
<tr>
<td>50P/N-2 Disabled (b>>2)</td>
<td>Indicates that the “50-2” programmable input was de-asserted and the active the 50P-2 and 50N-2 instantaneous overcurrent elements disabled. The “50-2” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “50-2” logical input is forced open in the Operations Menu (see Section 8). This record indicates the state of the “50-2” input only. This log will appear even if the 50P-2 and 50N-2 elements are disabled in the active settings group.</td>
</tr>
<tr>
<td>50P/N-3 Disabled (b>>3)</td>
<td>Indicates that the “50-3” programmable input was de-asserted and the active the 50P-3 and 50N-3 instantaneous overcurrent elements disabled. The “50-3” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “50-3” logical input is forced open in the Operations Menu (see Section 8). This record indicates the state of the “50-3” input only. This log will appear even if the 50P-3 and 50N-3 elements are disabled in the active settings group.</td>
</tr>
<tr>
<td>50P/N-1 Enabled (b>>1)</td>
<td>Indicates that the “50-1” programmable input was asserted and the active the 50P-1 and 50N-1 instantaneous overcurrent elements enabled. The “50-1” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “50-1” logical input is forced open in the Operations Menu (see Section 8). This record indicates the state of the “50-1” input only. This log will appear even if the 50P-1 and 50N-1 elements are disabled in the active settings group.</td>
</tr>
<tr>
<td>50P/N-2 Enabled (b>>2)</td>
<td>Indicates that the “50-2” programmable input was asserted and the active the 50P-2 and 50N-2 instantaneous overcurrent elements enabled. The “50-2” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “50-2” logical input is forced open in the Operations Menu (see Section 8). This record indicates the state of the “50-2” input only. This log will appear even if the 50P-2 and 50N-2 elements are disabled in the active settings group.</td>
</tr>
<tr>
<td>50P/N-3 Enabled (b>>3)</td>
<td>Indicates that the “50-3” programmable input was asserted and the active the 50P-3 and 50N-3 instantaneous overcurrent elements enabled. The “50-3” programmable input must be assigned to a physical input or feedback term for this record to appear. It will also appear if the “50-3” logical input is forced open in the Operations Menu (see Section 8). This record indicates the state of the “50-3” input only. This log will appear even if the 50P-3 and 50N-3 elements are disabled in the active settings group.</td>
</tr>
</tbody>
</table>
Table 7-2 (cont.)

<table>
<thead>
<tr>
<th>Alarm</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blown Fuse Alarm</td>
<td>Indicates that “BFUA” programmable logical output has operated. See the Programmable Outputs Section specifically the “BFUA” output for more details.</td>
</tr>
<tr>
<td>OC Trip Counter</td>
<td>Indicates that the Overcurrent Trip Counter has exceeded the Overcurrent Trip Counter Alarm setting. See Section 6, specifically the “OCTC” output, for more details.</td>
</tr>
<tr>
<td>Accumulated KSI</td>
<td>Indicates that the KSI summation has exceeded the KSI Alarm setting. See Section 6, specifically the “KSI” output, for more details.</td>
</tr>
<tr>
<td>79 Counter 1 Alarm (O->I-1)</td>
<td>Indicates that the number of reclose operations has exceeded the Reclose Counter 1 Alarm setting. See Section 6, specifically the “79CA1” output, for more details.</td>
</tr>
<tr>
<td>Phase Demand Alarm</td>
<td>Indicates that the phase demand current has exceeded the Phase Demand Current Alarm setting. See Section 6, specifically the “PDA” output, for more details.</td>
</tr>
<tr>
<td>Neutral Demand Alarm</td>
<td>Indicates that the neutral demand current has exceeded the Neutral Demand Current Alarm setting. See Section 6, specifically the “NDA” output, for more details.</td>
</tr>
<tr>
<td>Low PF Alarm</td>
<td>Indicates that the power factor has gone below the Low Power Factor Alarm setting. See the Section 6, specifically the “LPFA” output, for more details.</td>
</tr>
<tr>
<td>High PF Alarm</td>
<td>Indicates that the power factor has risen above the High Power Factor Alarm setting. See Section 6, specifically the “HPFA” output, for more details.</td>
</tr>
<tr>
<td>Trip Coil Failure</td>
<td>Indicates that the logical input “TCM” indicated a trip coil failure. See Section 6, specifically the “TCM” input.</td>
</tr>
<tr>
<td>KVAR Demand Alarm</td>
<td>Indicates that the demand KiloVARs have exceeded the Demand KiloVAR Alarm setting. See Section 6, specifically the “VARDA” output, for more details.</td>
</tr>
<tr>
<td>79 Counter 2 Alarm (O->I-2)</td>
<td>Indicates that the number of reclose operations has exceeded the Reclose Counter 2 Alarm setting. See Section 6, specifically the “79CA2” output, for more details.</td>
</tr>
<tr>
<td>Pos. KVAR Alarm</td>
<td>Indicates that the positive KiloVARs have exceeded the Positive KiloVAR Alarm setting. See Section 6, specifically the “PVARA” output, for more details.</td>
</tr>
<tr>
<td>Neg. KVAR Alarm</td>
<td>Indicates that the negative KiloVARs have exceeded the negative KiloVAR Alarm setting. See Section 6, specifically the “NVARA” output, for more details.</td>
</tr>
<tr>
<td>Load Alarm</td>
<td>Indicates that the load current has exceeded the Load Current Alarm setting. See Section 6, specifically the “LOADA” output, for more details.</td>
</tr>
<tr>
<td>Cold Load Alarm</td>
<td>Logs when the cold load timer is counting down. Also see CLTA logical output description.</td>
</tr>
<tr>
<td>Pos Watt Alarm 1</td>
<td>Indicates that the positive kilowatts have exceeded the Positive Kilowatt Alarm 1 setting. See Section 6, specifically the “Pwatt1” output, for more details.</td>
</tr>
<tr>
<td>Pos Watt Alarm 2</td>
<td>Indicates that the positive kilowatts have exceeded the Positive Kilowatt Alarm 2 setting. See Section 6, specifically the “Pwatt2” output, for more details.</td>
</tr>
<tr>
<td>BFT Operation</td>
<td>Indicates operation of the Breaker Failure Trip (BFT) logical output.</td>
</tr>
<tr>
<td>ReTrip Operation</td>
<td>Indicates operation of the ReTrip logical output.</td>
</tr>
</tbody>
</table>
Table 7-2 (cont.)

<table>
<thead>
<tr>
<th>Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM Failure</td>
<td>Indicates a failure of the DPU1500R Read Only Memory. Contact ABB technical support at this time.</td>
</tr>
<tr>
<td>RAM Failure</td>
<td>Indicates a failure of the DPU1500R Random Access Memory. Contact ABB technical support at this time.</td>
</tr>
<tr>
<td>Self Test Failed</td>
<td>Indicates a failure of the DPU1500R during the self check procedure. See the servicing section for more details.</td>
</tr>
<tr>
<td>EEPROM Failure</td>
<td>Indicates a failure of the DPU1500R Non-Volatile Memory. Contact ABB technical support at this time.</td>
</tr>
<tr>
<td>BATRAM Failure</td>
<td>Indicates a failure of the DPU1500R Battery Backed-up Random Access Memory. Contact ABB technical support at this time.</td>
</tr>
<tr>
<td>DSP Failure</td>
<td>Indicates a failure of the DPU1500R Digital Signal Processor. Contact ABB technical support at this time.</td>
</tr>
<tr>
<td>Control Power Fail</td>
<td>Indicates that the control power has dropped below the control power operating threshold as outlined in the Specifications section.</td>
</tr>
<tr>
<td>Editor Access</td>
<td>Indicates that a settings change has been made.</td>
</tr>
<tr>
<td>Springs Charged</td>
<td>Indicates the state of the Spring Charging Contact, “SCC”, programmable input. This record will appear when the “SCC” input transitions from a logical 0 to a logical 1. See Section 6, specifically the “SCC” input, for more details.</td>
</tr>
<tr>
<td>Springs Discharged</td>
<td>Indicates the state of the Spring Charging Contact, “SCC”, programmable input. This record will appear when the “SCC” input transitions from a logical 1 to a logical 0. See Section 6, specifically the “SCC” input, for more details.</td>
</tr>
<tr>
<td>79S Input Enabled (O->I1)</td>
<td>Indicates the state of the single shot reclose, “79S”, programmable input. This record will appear when the “79S” input transitions from a logical 0 to a logical 1. See Section 1 for more details on the 79S function.</td>
</tr>
<tr>
<td>79S Input Disabled (O->I1)</td>
<td>Indicates the state of the single shot reclose, “79S”, programmable input. This record will appear when the “79S” input transitions from a logical 1 to a logical 0. See Section 1 for more details on the 79S function.</td>
</tr>
<tr>
<td>79M Input Enabled (O->I)</td>
<td>Indicates the state of the multi shot reclose, “79M”, programmable input. This record will appear when the “79M” input transitions from a logical 0 to a logical 1. See Section 1 for more details on the 79M function.</td>
</tr>
<tr>
<td>79M Input Disabled (O->I)</td>
<td>Indicates the state of the multi shot reclose, “79M”, programmable input. This record will appear when the “79M” input transitions from a logical 1 to a logical 0. See Section 1 for more details on the 79M function.</td>
</tr>
<tr>
<td>TCM Input Closed (TCS)</td>
<td>Indicates the state of the Trip Circuit Monitor, “TCM”, programmable input. This record will appear when the “TCM” input transitions from a logical 0 to a logical 1. See Section 6, specifically the “TCM” input, for more details.</td>
</tr>
<tr>
<td>TCM Input Opened (TCS)</td>
<td>Indicates the state of the Trip Circuit Monitor, “TCM”, programmable input. This record will appear when the “TCM” input transitions from a logical 1 to a logical 0. See Section 6, specifically the “TCM” input, for more details.</td>
</tr>
</tbody>
</table>
Table 7-2 (cont.)

<table>
<thead>
<tr>
<th>Ext Trip Enabled</th>
<th>Indicates that the programmable input “Open” was asserted. This record indicates the state of the programmable input “Open” only. It does not imply an actual breaker trip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ext Trip Disabled</td>
<td>Indicates that the programmable input “Open” was de-asserted.</td>
</tr>
<tr>
<td>Event Cap 1 Init</td>
<td>Indicates that the programmable input “ECI1” was asserted and an event capture taken. The data from the event is stored in the Fault Records.</td>
</tr>
<tr>
<td>Event Cap 1 Reset</td>
<td>Indicates that the programmable input “ECI1” was de-asserted.</td>
</tr>
<tr>
<td>Event Cap 2 Init</td>
<td>Indicates that the programmable input “ECI2” was asserted and an event capture taken. The data from the event is stored in the Fault Records.</td>
</tr>
<tr>
<td>Event Cap 2 Reset</td>
<td>Indicates that the programmable input “ECI2” was de-asserted.</td>
</tr>
<tr>
<td>Wave Cap Init</td>
<td>Indicates that the programmable input “WCI” was asserted and an oscillographic record stored. The data from the event is stored in the Waveform Capture Records.</td>
</tr>
<tr>
<td>Wave Cap Reset</td>
<td>Indicates that the programmable input “WCI” was de-asserted.</td>
</tr>
<tr>
<td>Ext Close Enabled</td>
<td>Indicates that the programmable input “Close” was asserted. This record indicates the state of the programmable input “Close” only. It does not imply an actual breaker close.</td>
</tr>
<tr>
<td>Ext Close Disabled</td>
<td>Indicates that the programmable input “Close” was de-asserted.</td>
</tr>
<tr>
<td>52a Closed (XO)</td>
<td>Indicates the state of the programmable logic input “52A”. This record indicates the state of the programmable input “52A” only. It does not imply an actual breaker state. The “52A Closed” record indicates that the “52A” logical input was at a logical 1 at the time of the logging.</td>
</tr>
<tr>
<td>52a Opened (XO)</td>
<td>Indicates the state of the programmable logic input “52A”. This record indicates the state of the programmable input “52A” only. It does not imply an actual breaker state. The “52A Opened” record indicates that the “52A” logical input was at a logical 0 at the time of the logging.</td>
</tr>
<tr>
<td>52b Closed (XI)</td>
<td>Indicates the state of the programmable logic input “52B”. This record indicates the state of the programmable input “52B” only. It does not imply an actual breaker state. The “52B Closed” record indicates that the “52B” logical input was at a logical 1 at the time of the logging.</td>
</tr>
<tr>
<td>52b Opened (XI)</td>
<td>Indicates the state of the programmable logic input “52B”. This record indicates the state of the programmable input “52B” only. It does not imply an actual breaker state. The “52B Opened” record indicates that the “52B” logical input was at a logical 0 at the time of the logging.</td>
</tr>
<tr>
<td>46 Unit Enabled (Insc>)</td>
<td>Indicates that the programmable input, “46” transitioned from a logical 0 to a logical 1, enabling the negative sequence time overcurrent element if used. This log indicates the state of the “46” input only.</td>
</tr>
<tr>
<td>46 Unit Disabled (Insc>)</td>
<td>Indicates that the programmable input, “46” transitioned from a logical 1 to a logical 0, disabling the negative sequence time overcurrent element if used. This log indicates the state of the “46” input only.</td>
</tr>
<tr>
<td>CRI Input Closed</td>
<td>Indicates that the programmable input Clear Reclose and Overcurrent Counters, “CRI”, transitioned from a logical 0 to a logical 1. See Section 6, specifically the “CRI” input, for more details.</td>
</tr>
<tr>
<td>CRI Input Opened</td>
<td>Indicates that the programmable input Clear Reclose and Overcurrent Counters, “CRI”, transitioned</td>
</tr>
</tbody>
</table>
Table 7-2 (cont.)

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC Blocked</td>
<td>Indicates that the programmable input Auto Reclose Timer Block, “ARCI”, transitioned from a logical 0 to a logical 1. See Section 6, specifically the “ARCI” input, for more details on “ARCI” operation.</td>
</tr>
<tr>
<td>ARC Enabled</td>
<td>Indicates that the programmable input Auto Reclose Timer Block, “ARCI”, transitioned from a logical 1 to a logical 0. See Section 6, specifically the “ARCI” input, for more details on “ARCI” operation.</td>
</tr>
<tr>
<td>TARC Opened</td>
<td>Indicates that the programmable input Trip and Auto Reclose, “TARC”, transitioned from a logical 1 to a logical 0. See Section 6, specifically the “TARC” input for more details on “TARC” operation.</td>
</tr>
<tr>
<td>TARC Closed</td>
<td>Indicates that the programmable input Trip and Auto Reclose, “TARC”, transitioned from a logical 0 to a logical 1. See Section 6, specifically the “TARC” input for more details on “TARC” operation. Logs when an External Trip and Auto reclose occurred.</td>
</tr>
<tr>
<td>☙ SEF Enabled (I/O >)</td>
<td>Indicates that the Sensitive Earth Fault programmable logic input, “SEF” has transitioned from a logical 0 to a logical 1 enabling the SEF element if used. See the Sensitive Earth Fault section for details on SEF operation.</td>
</tr>
<tr>
<td>☙ SEF Disabled (I/O >)</td>
<td>Indicates that the Sensitive Earth Fault programmable logic input, “SEF” has transitioned from a logical 1 to a logical 0 disabling the SEF element if used. See the Sensitive Earth Fault section for details on SEF operation.</td>
</tr>
<tr>
<td>Supervisory Disable</td>
<td>Indicates that the logical input “Local/SupV” has transitioned from a logical 1 to a logical 0.</td>
</tr>
<tr>
<td>Supervisory Enabled</td>
<td>Indicates that the logical input “Local/SupV” has transitioned from a logical 0 to a logical 1.</td>
</tr>
<tr>
<td>CB Slow to Trip</td>
<td>Indicated that the “Slow Breaker Time” setting in the configuration settings has expired.</td>
</tr>
</tbody>
</table>

חשיבות: SEF Model only
Operations Summary

The Operations Summary includes:

- Summation of breaker interruption duty on a per-phase basis in KSI (thousand symmetrical amperes)
- Number of overcurrent trips
- Total number of reclosures (both counters)
- Number of breaker operations (overcurrent, load current and no load)
- Number of successful reclosings by reclosure sequence number (1st, 2nd, 3rd and 4th)

Save the Operations Summary as a file using WinECP.
Monitoring and Control

The DPU 1500R contains a unique feature that allows control, testing, and monitoring of relay functions from the front-panel MMI or WinECP program. It allows monitoring of physical and logical I/O, real-time metering, breaker control (open and close), alarm reset, and state forcing of both physical and logical I/O. All control actions are password protected.

Physical I/O Status

The status of all inputs one through six, outputs one through six, and the Master Trip output is available with WinECP. The Physical I/O Status screen (see Figure 8-1) displays the physical, open/close status of all contact inputs and the energized/de-energized status of all output relays. Use this display to confirm continuity through each optically isolated contact input for both the opened (no voltage applied) and closed (voltage applied) states and to confirm the status of each output relay. Input status is also available through the front-panel MMI by accessing the Test Menu. Output relay status is not available through the front-panel MMI.

Logical Input Status

The Logical Input Status screen (Figure 8-2) displays which functions are enabled or disabled based on the physical input logic. Use this function to verify the actions of programmed logic schemes. With this screen it is possible to view intermediate logic to confirm that the scheme works correctly and produces the desired results. Note that the GRD (3I), PH3 (IN), 46 (Insc>, 50-1 (I>>1), 50-2 (I>>2), 50-3 (I>>3), TCM (TCS), ZSC, and SEF* (I0 >) input functions are enabled by default. Therefore, they need not be mapped to physical inputs in the Programmable Input Logic Map (see Section 6) if it is desired to use them. This feature is not available through the front-panel MMI.

* SEF model only
Logical Output Status

The logical output status shown in Figure 8-3 displays which output functions are energized and de-energized. Use this display to confirm whether or not the functions are programmed correctly in the Primary, Alternate 1, Alternate 2, Programmable Inputs and Alarm Settings tables. Also use it to check that the settings provide the desired results. **This feature is not available through the front-panel MMI.**

Metering Status

The present values of Load, Demand, and Min/Max Demand metering can be viewed in real-time with WinECP and through the front-panel MMI. Use the Monitoring Menu in Win ECP, and the Meter Menu on the front-panel MMI. See Section 3 for more information.

Forcing I/O

To aid in DPU1500R commissioning and testing, the state of all Physical Inputs and Outputs, and Logical Inputs can be forced through WinECP or front-panel MMI. This feature can be accessed in WinECP through the Control Menu, and through front-panel MMI through the Operations Menu. When one or more input/output is in the forced condition the “Normal” LED on front panel will blink on and off. All forcing of I/O is password protected. See Figures 8-4 through 8-6.
Figure 8-5. Forcing Logical Inputs

Figure 8-6. Forcing Physical Outputs
Pulsing Physical Outputs

Sometimes it is desired to pulse an output instead of setting it through the Force Physical Output command. In this case, the Pulse Physical Output command can be used. When the output is pulsed, it will stay asserted for approximately 1 second. The Pulse Physical Output command is password protected, and is available through the Control Menu in WinECP, or the Test Menu through the front-panel MMI.

Circuit Breaker Open and Close

The circuit breaker can be opened or closed through both WinECP and the front-panel MMI. Use the Control – Breaker Menu in WinECP, and the Operations Menu through the MMI. The Open and Close commands are password protected. See Figure 8-8.
Resets

Certain registers can be reset with WinECP. Targets, Sealed In Alarms, and Min/Max Demand registers can all be reset through the Control-Reset Menu (see Figure 8-9). The Sealed In Alarms can be selectively reset, or can be reset all at once by choosing “De-energize All” (see Figure 8-10). Targets, alarms, and seal-in alarms can also be reset through the front-panel MMI. See page 5-1 in Section 5 for details.

![Figure 8-9. Target Reset](image1)

![Figure 8-10. Seal-In Alarm Reset](image2)
Oscillographic Data Acquisition

Oscillographic data acquisition can be started or stopped with WinECP. Use the Control Menu to start and stop data acquisition (Figure 8-11). The status of the oscillographic data recorder can be viewed through the Monitoring Menu (Figure 8-12). This feature is not available through the front-panel MMI.

![WinECP - Oscillographic Data Acquisition](image1)

Figure 8-11. Starting Oscillographic Data Acquisition

![WinECP - Oscillographic Data Acquisition Status](image2)

Figure 8-12. Oscillographic Data Acquisition Status
Installation

The DPU1500R unit comes enclosed in a metal case. Follow the instructions and diagrams in this section to install the DPU1500R.

Receipt of the DPU1500R

When you receive the DPU1500R, examine it carefully for shipping damage. If any damage or loss is evident, file a claim at once with the shipping agent and promptly notify the nearest ABB sales office.

Before installing the unit, it is suggested that the following procedures be performed:

On units equipped with an MMI

- Power up the relay. The LEDs should light and a slight clicking sound will be heard.
- Using the arrow keys, go to the Main Menu, scroll to Settings, press <E>, scroll to Unit Information, press <E>. Verify unit information against front panel nameplate.
- Press <C> to return to the Settings Menu, scroll to Show Settings, press <E>. Check default settings against the tables supplied in this manual.
- After checking the default settings, press <C> twice to return to the Main Menu. Scroll to Test and press <E>, at the Self Test selection, press <E>. The unit will self test.
- After performing the self test, press <C> twice to return to the Main Menu. Scroll to Settings and press <E>, in the Settings Menu, scroll to Change Settings and press <E>. In the Settings Menu, scroll to Clock, and set the unit clock.
- Press <E> to enter the correct time and return to the Settings Menu.
- Set the PASSWORD by scrolling to Configuration and press <E>. At the Password prompt, press <E> again. Once in the Change Confi Sett Menu, scroll to Relay Password and enter a password. This will be the main password for entry to the unit. Press <E> to enter the password and return to the Change Confi Sett Menu. Scroll to Test Password, and enter a different password. This password allows low level entry to the Test options of the unit.

WARNING: If the password entered in the Relay Password Section is lost or forgotten, the unit cannot be accessed. If this situation occurs, contact ABB Allentown Technical Support at 1-800-634-6005.

On units not equipped with an MMI, connect a PC to the RS-232 port on the front of the unit and use the WinECP (Windows External Communication Program) and follow the same process as outlined above.

Installing the DPU1500R

The DPU1500R is enclosed in a standard 3U (3 rack units), 19 x 5-inch case designed for rack mounting. Figure 9-2 shows the dimensions of the DPU1500R.
Figure 9-1. Main Circuit Board Jumpers
Case Dimensions (Standard 19" Rack Mount 3 Units High)

Dimensions are in: inches [millimeters]

Figure 9-2. Dimensions
Panel Mounting Kit

The complete kit will include a bezel, its associated hardware and gasket, as well as a lens cover with its associated hardware. This kit will provide a means for panel mounting and dustproofing.

Ordering Information:

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Panel Mounting Kit</td>
<td>604513-K1</td>
</tr>
<tr>
<td>Vertical Panel Mounting Kit</td>
<td>604513-K2</td>
</tr>
</tbody>
</table>

Spare Parts List:

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezel/gasket assembly only</td>
<td>604513-K3</td>
</tr>
<tr>
<td>Horizontal lens cover assembly</td>
<td>613724-K1</td>
</tr>
<tr>
<td>Vertical lens cover assembly</td>
<td>613724-K2</td>
</tr>
</tbody>
</table>

Horizontal Mounting

Note: The Bezel Assembly is available as an option for mounting the DPU1500R units in a panel application.

Note: Below is the panel drilling cutout for the DPU1500R unit and the bezel assembly.

NOTE: DIMENSIONS ARE INCHES [MILLIMETERS]
Vertical Mounting

![Diagram of Vertical Mounting]

NOTE:
DIMENSION VALUES IN BRACKETS ARE MILLIMETERS.

- 0.03 [0.7] MAX. RADII
- 5.0 [12.7] D. HOLES TYP. 6 PLACES
- 9.250 [235.0]
- 17.50 [444.5]
- 18.500 [469.9]
Rear Terminal Block Connections

Apply only rated control voltage marked on the front panel of the unit to the positive terminal and the negative terminal. Wire the ground stud on the rear of the case to the equipment ground bus with at least #10 gauge wire. Figure 9-3 shows the rear terminal block layout and numbers.

With exception of the CTs and burden board, you can totally withdraw the DPU1500R from its case.

Use input IN6 as a Trip Coil Monitor (TCM) input. When the breaker is closed, a small trace current of 6 milliamperes is passed from the positive terminal through the negative terminal and the trip coil circuit. If an open circuit is detected while the breaker is closed, the Trip Circuit Failure Alarm (TCFA) contacts are actuated and a "Trip Coil Failed" message appears on the MMI display.

![Figure 9-3. Rear Terminal Block](image-url)

Table 9-1. Minimum Connections

<table>
<thead>
<tr>
<th>Required Connections</th>
<th>Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control Voltage Input</td>
<td>Positive: 1, Negative: 2, Common Negative: 3</td>
</tr>
<tr>
<td>Current Inputs</td>
<td>IA: 54 & 53; IB: 52 & 51; IC: 50 & 49</td>
</tr>
<tr>
<td>52A (XO) Contact Input</td>
<td>4(+)</td>
</tr>
<tr>
<td>52B (XI) Contact Input</td>
<td>5(+)</td>
</tr>
<tr>
<td>43A (AR) Contact Input</td>
<td>6(+)</td>
</tr>
<tr>
<td>TRIP Output Contact</td>
<td>29 & 30 (N.O./N.C. Jumper #J1)</td>
</tr>
<tr>
<td>SELF-CHECK ALARM Output Contacts</td>
<td>15 & 16 N.O.; 14 & 15 N.C. (DPU1500R powered down)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Optional Connections</th>
<th>Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Inputs</td>
<td>VA: 31; VB: 32; VC: 33; VN: 34</td>
</tr>
</tbody>
</table>
Note: In this case, OUT 2 is shown programmed as the breaker close contact. Inputs 1, 2 and 3 are mapped to the 52A (XO), 52B (XI) and 43A (AR) logic functions respectively. Refer to Section 6 for other available I/O logic mapping functions. Self check alarm contacts are shown in the powered down condition. When control power is applied, contacts will change state.

Figure 9-4. Typical Minimum External Connections
Figure 9-5. Typical Connections for Units with Sensitive Earth Fault Option
Figure 9-6. Typical VT and CT Connections for Directional Sensitive Earth Fault Units
Optional Features

In addition to the protection functions, the DPU1500R has load profile, oscillographic waveform capture and user-programmable curve optional features.

Load Profile

An optional load profile feature records per-phase demand kilowatts, demand kiloVARs and line-to-ground voltages. You can select a 5-, 15-, 30- or 60-minute time interval (Demand Meter Constant) for which the load profile record then contains 13.3, 40, 80 or 160 days of information, respectively (default is 15 minutes and 40 days). The load profile feature requires Wye-connected VTs to accurately measure per-phase kilowatts and kiloVARs for unbalanced loads. For Delta-connected VTs, the load profile feature records three-phase kilowatts and kiloVARs, per-phase and ground demand currents and line-to-line voltages. You can retrieve this load profile data only through the Windows External Communications Program (see page 10-2), which stores the load profile and its header in a comma-delimited ASCII file. You can view this file by using any text editor program (word processor or spreadsheet). The graph in Figure 10-2 is a sample of the type of load profile data analysis that can be performed.

![Figure 10-1. Sample Load Profile for (-A-) Wye-Connected VTs and (-B-) Delta-Connected VTs](image)

Figure 10-1. Sample Load Profile for (-A-) Wye-Connected VTs and (-B-) Delta-Connected VTs

![Figure 10-2. Load Profile Analysis](image)

Figure 10-2. Load Profile Analysis
Using the Load Profile Feature

Use WinECP and follow these steps to retrieve and view the optional Load Profile feature information.

1. From the File Menu, choose Export (Figure 10-3). There are two Load Profile options from which to choose. The “Load Profile All” option will upload all the load profile data that is in the buffer. The “Load Profile” option will only upload the data that has been added to the buffer since the last upload. Choosing this option will reduce the transfer time if data was previously exported.

2. Create a file name in the “Save As” dialog box, and click “Save”. The file will be saved in comma delimited format (.dla).

3. To view the Load Profile data, open the .dla file with a spreadsheet or word processor program. Follow the program manufacturer’s directions for comma delimited data displaying. Many spreadsheet programs, such as Microsoft Excel, have features that allow data to be displayed in graphical form. Consult your spreadsheet’s literature for instructions.

Figure 10-3. Load Profile Data Transfer
Oscillographic Data Storage (Waveform Capture)

To enhance disturbance analysis, the DPU1500R can be furnished with optional oscillographic data storage that captures the waveform data for each of the four input currents and three input voltages. The storage capacity is 64 cycles of each waveform. Retrieve the waveform data from the DPU1500R by using the File-Export Menu in the Windows External Communications Program. Fault analysis is enhanced by an Oscillographic Display and Analysis Program that uses a Microsoft® Windows-based Graphical User Interface.

You can program the DPU1500R to capture eight, four, two or one record(s) containing 8, 16, 32 or 64 cycles of data. Thirty-two points per cycle for each of the seven analog inputs, the 52a (XO) and 52b (XI) contact inputs and numerous protective and logic functions are stored in each waveform record. The capturing of waveform data can be triggered when the trip output is actuated, the breaker is opened or the waveform capture input (WCI) is initiated. You can also program the DPU1500R to trigger the capturing of waveform data on trip of the following functions: 50N-1 (IN>>1), 50P-1 (3I>>1), 50N-2 (IN>>2), 50P-2 (3I>>2), 50N-3 (IN>>3), 50P-3 (3I>>3), 51N (IN>), 51P (3I>), 46 (InsC>), and 27 (U<) (see Figure 10-3).

To provide as many cycles of prefault and fault data as possible, you can program the trigger position at any quarter-cycle within the fault record. The time stamp of a waveform record is captured at the time of trigger.

Figure 10-4. Oscillographics Analysis Tool

Figure 10-5. Waveform Capture Setting Screen
NOTE: Download the captured waveform records to a file before changing any Waveform Capture settings. Changing settings may lose waveform records. From the factory, Waveform Capture is running, all trigger sources are set to “NO”. The proper sources must be set to “YES” for the capturing of Waveforms.

The Waveform Capture feature also allows the user to choose certain data recording options. In addition to the Trigger Sources, there are four other settings in the Waveform Capture folder. They are Record Type, Trigger Position, Single-Shot Mode, and Append Record Mode. The factory default condition has Oscillographic Data Acquisition set to “ON”.

Record Type:
There are four types of records, “0”, “1”, “2”, and “3”. Selecting “0” will yield eight records of eight cycles each. “1” gives four records of sixteen cycles each, “2” gives two records of 32 cycles each, and “3” gives one 64 cycle record.

Trigger Position Setting:
This setting is the amount of pre-event data that will be recorded with each oscillographic record (in quarter cycles). For example, if you wish to have one cycle (4 quarter cycles) of pre-trigger data recorded, choose “4” for the Trigger Position setting.

Single-Shot Mode:
Single-Shot Mode can either be “ON” or “OFF”. When it is “OFF”, the oldest oscillographic record will be overwritten when the buffer becomes filled. When “ON”, oscillographic records will be recorded until the buffer is filled to capacity. The buffer size is determined by the Record Type setting chosen (0, 1, 2, or 3). After the buffer is filled, data acquisition will be stopped. If more data recording is desired, the “Start Oscillographic Data Acquisition” command must be selected from the Control Menu in WinECP.

Append Record Mode:
Append Record Mode can either be “ON” or “OFF”. When it is “ON”, a new record will be generated if a trigger occurs while a previous oscillographic record is being recorded. Append Record mode will only work when the Record Type setting is either 1, 2, or 3.

Saving a Captured Waveform Record

1. Select “Export-Oscillographs” from the File Menu.
2. Select the record you want to save and click “Save To File”. See Figure 10-6.
3. Type the path and filename you want for the record and click “Save”.

NOTE: Download the captured waveform records to a file before changing any Waveform Capture settings. Changing settings may lose waveform records. From the factory, Waveform Capture is running, all trigger sources are set to “NO”. The proper sources must be set to “YES” for the capturing of Waveforms.

The Waveform Capture feature also allows the user to choose certain data recording options. In addition to the Trigger Sources, there are four other settings in the Waveform Capture folder. They are Record Type, Trigger Position, Single-Shot Mode, and Append Record Mode. The factory default condition has Oscillographic Data Acquisition set to “ON”.

Record Type:
There are four types of records, “0”, “1”, “2”, and “3”. Selecting “0” will yield eight records of eight cycles each. “1” gives four records of sixteen cycles each, “2” gives two records of 32 cycles each, and “3” gives one 64 cycle record.

Trigger Position Setting:
This setting is the amount of pre-event data that will be recorded with each oscillographic record (in quarter cycles). For example, if you wish to have one cycle (4 quarter cycles) of pre-trigger data recorded, choose “4” for the Trigger Position setting.

Single-Shot Mode:
Single-Shot Mode can either be “ON” or “OFF”. When it is “OFF”, the oldest oscillographic record will be overwritten when the buffer becomes filled. When “ON”, oscillographic records will be recorded until the buffer is filled to capacity. The buffer size is determined by the Record Type setting chosen (0, 1, 2, or 3). After the buffer is filled, data acquisition will be stopped. If more data recording is desired, the “Start Oscillographic Data Acquisition” command must be selected from the Control Menu in WinECP.

Append Record Mode:
Append Record Mode can either be “ON” or “OFF”. When it is “ON”, a new record will be generated if a trigger occurs while a previous oscillographic record is being recorded. Append Record mode will only work when the Record Type setting is either 1, 2, or 3.

Saving a Captured Waveform Record

1. Select “Export-Oscillographs” from the File Menu.
2. Select the record you want to save and click “Save To File”. See Figure 10-6.
3. Type the path and filename you want for the record and click “Save”.

Figure 10-6. Oscillographic Data Exporting
Oscillographic Analysis Tool

ABB’s Oscillographic Analysis Tool enhances the fault analysis capabilities of the ABB 1500R Protection Units. The Oscillographic Analysis Tool displays the waveform data captured by these units. Besides all analog wave forms, this program shows digital input/output, pickup, and fault information.

The analog wave forms are displayed simultaneously in individual windows. Each window contains a trigger indicator, a left cursor, and a right cursor. You can move either cursor to any position within the window for that wave form. When you move the cursor in one window, it moves in the other windows as well. Each waveform window can be resized to enhance viewing and can be deleted individually.

The time location of the left and right cursors and the difference in time between the cursors are provided in the Main Display window. Other information in the Main Display window includes the file name from which the waveform records were extracted; the date, time, and trigger position of the sample taken at the Protection Unit; the unit ID number; and the catalog number.

You can overlay an individual analog wave form onto any other analog wave form. For example, you can overlay Va onto la to examine the phase relationship.

You can scale all current wave forms with respect to the largest amplitude within that group. This is called the Actual Scale and is the default setting. But you can also scale wave forms with respect to the largest amplitude encountered for that wave form only; this is called the Normalized Scale. The Normalized Scale accentuates noise and other characteristics of the wave form.

A zoom feature allows you to position the left and right cursors within the wave form and then “zoom in” to closely examine that section of the wave form.

System Requirements and Installation

The Oscillographic Analysis Tool installs with WinECP. See Section 5, “Interfacing with the Relay” for more information.

Using the Oscillographic Analysis Tool

The Oscillographic Analysis Tool is a menu-driven program. A parent window contains windows for the analog wave forms and for digital information.

Opening a File

1. Start the Oscillographics Analysis Tool from the File Menu in WinECP.
2. Click on “Continue” at the prompt.
3. Under the File Menu, select “Load Graph Data File”.
4. The “Open” window appears. Oscillographic Analysis Tool files are listed as *.CAP files, including the TEST.CAP file. Click on the file you want and select “OK”, or double-click on the filename.

The file loads and the individual analog waveform windows appear.
Analog Display Windows

The analog waveform windows appear within the Main Display window. The Main Display window appears to the right of the analog waveforms and lists the file name, date and time the data was captured at the Protection Unit, and locations of the trigger point and the left and right cursors.

Figure 10-7. Analog Display Window

The left cursor is at the far left side of each analog waveform window, and the right cursor is at the far right side. You can "drag" the cursors by moving the mouse cursor close to the left or right cursors. Hold down the left mouse button while dragging the left or right cursor to the desired position. Release the mouse button.

After you move the left or right cursor, the time value for that cursor changes in the parent window. Also, the cursor position in all the other analog waveform windows mirrors your cursor movement. The trigger cursor cannot be moved.

To resize an analog waveform window, move the mouse to the border on that window. A double-headed arrow appears when the mouse is properly positioned. Hold down the left mouse button and drag the window border to the desired position. Release the mouse button.

Each analog waveform window can be deleted. Simply click on the DELETE button in the window. That waveform window disappears, and the other waveform windows shift to take up the empty space.

Menu Commands

Each menu on the Oscillographic Analysis Tool parent window has specific features.
Hardcopy Menu

Under the Hardcopy menu is the command “Print Graph.” When you want to print a copy of the window(s) you are viewing, select this command.

Assign Colors Menu

Use this menu to assign colors to the analog wave forms. This is especially helpful when you overlay two wave forms.

When you select Analog Trace, a list of the analog traces appears.

Click on the trace you want, and a window with color patterns appears. Click on a color and select “OK.”

Trace Overlay Menu

Use the Trace Overlay menu to overlay any analog wave form on any other analog wave form. This way you can directly compare the two. From the Trace Overlay menu, choose “Select From Existing Traces.” You can also use this menu to remove overlays.
After selecting from the Trace Overlay menu, a window appears that requests you to enter a base trace and an overlay trace. Enter each trace and select “Enter.” The overlay trace appears in the window of the base trace. Enter other traces as you desire, and select “Done” when you are finished.

NOTE: Only one waveform may be overlaid onto any base trace.

Scale Traces Menu

You can scale analog waveforms to an Actual Scale or a Normalized Scale. Actual Scale shows an analog waveform in relation to the other six waveforms. When you choose Normalized Scale, the waveform is scaled with respect to the largest amplitude for that waveform only. In other words, the peaks expand to fit that individual window. From the Scale Traces menu, select Actual Scale or Normalized Scale. The program launches in Actual Scale.

Select Status Trace Menu

You can present digital input/output, pickup and fault information in a window by using the Select Status Trace menu. Follow these steps to display digital information.

1. Select the digital information you want under the menu.
2. A window appears with a list of the different parameters measured. Double click on the parameters you want. As you double click on a parameter, a digital line appears in the graph window.
3. When you have selected all the parameters you want, click on Done.
Zoom Menu

Zooming in allows you to enlarge a selected portion of the analog wave form. To do this, set the left and right cursors to the desired range. Then select “Zoom In” from the “Zoom” Menu. The portion you selected enlarges. Use “Zoom Out” to return to the original size.

Math Button

At the top of the Main Display window is a button marked “Math.” Press this button to perform math functions associated with the analog wave forms.

Spectral Analysis

The Spectral Analysis Tool window appears when you click on the Math button. By using this tool, you can create a spectrum window for a selected region of waveform data.

Follow these steps to perform a spectral analysis:

1. Click on the Math button at the top of the Main Display window.
2. The Spectral Analysis Tool window appears.
3. Select the wave form you want by scrolling up or down in the “Wave Form” box. Double-click on the desired wave form. An extended cursor appears in place of the left cursor in the window of the selected wave form. (The default is the uppermost wave form.)
4. Select the desired sample interval by scrolling up or down in the “Sample Interval” box. Double-click on the interval you want. The extended cursor in the waveform window changes size accordingly. (Default = 32 or one cycle for a 50-Hz or 60-Hz wave form.)
5. Move the extended cursor over the section of the wave form on which you want to perform the spectral analysis. Do this by clicking on the left vertical of the cursor and dragging in the waveform window.
6. Click on the FFT (Fast Fourier Transformer) button in the Spectral Analysis Tool window. The Spectral Analysis Display window appears with the generated spectrum. The harmonic content as a percentage of the fundamental (50 or 60 Hz) appears in the Spectral Analysis Tool window for the harmonics (2nd to the 11th).
7. As you wish, move the cursor within the Spectral Analysis Display window by clicking the left mouse button in the region you want. The cursor snaps to that position, and the frequency appears in the “Frequency” box of the Spectral Analysis Tool window.
8. Double-click on the upper left corner of the Spectral Analysis Display window to close it, or click on “Done” in the Spectral Analysis Tool window to remove the Spectral Analysis Display and Spectral Analysis Tool windows.
Customer-Programmable Curves

An external PC-based program, CurveGen, is used to create and program time-current curves for the DPU1500R. With CurveGen you can program time-overcurrent curves other than the ones currently provided in the DPU1500R (see Tables 1-1 and 1-2). You can manipulate the curves in the time and current domains just like any other curve currently programmed into the DPU1500R. CurveGen generates all of the necessary variables for the user-defined curves to be stored in the DPU1500R (i.e. the alpha’s, beta’s and pointers to the curve table). The method of accomplishing this task is curve definition.

The standard curve entered into the DPU1500R has the form of:

\[
t = \left(\frac{A}{M^p - C} \right) + B \left(\frac{14n - 5}{9} \right)
\]

M is the per-unit current above the pickup value

t is total trip time at M

A, p, C and B are variables to be defined.

To define the curve, you must define the variables in this equation. There are two ways to do this:

1. Enter variables by hand: With the CurveGen program you can define all four variables by hand. This is designed for users who do not want curves based on already established functions but instead are ready to define curves through mathematical manipulation.

2. Determine variables via curve fitting: Define a series of time versus current points and fit them to the standard equation listed above.

With the CurveGen program you can enter these series of time/current points from an already defined curve. CurveGen then fits the four variables to these points. There are two ways to enter these points into the CurveGen program:

1. Enter all sampled points by hand. The ability to remove, sort, plot, edit and view points gives you total power over the curve to be generated.

2. File entry: CurveGen can also read files with points defined in them. The ability to remove, sort, plot, edit and view points gives you total power over the curve to be generated.

Once all the points are entered, the CurveGen program is cued to fit a standard curve. After A, p, C and B have been determined, you can plot the curve against the points given as well as determine the overall error of the curve versus the plotted points.

After all four variables have been determined, you can generate a linear approximation of the curve. A maximum error criteria must be satisfied before CurveGen can determine the coefficients needed for the DPU1500R. Errors and warnings indicate whether or not the error criteria can be met or if the number of entries in the curve table is above the maximum value allowed.

When the curve tables have been defined by CurveGen, download them into the DPU1500R. When you want a customer-defined curve, select "Export Option" from the File Menu in WinECP.
CurveGen Software Release 1.0

PC Requirements

386 processor or higher
Disk Space:
- 200K in specified Directory
- 6 MB in Windows/System Directory
Memory:
- 480K RAM in the lower 640K for setup

Installation

Step 1: While in the windows desktop, insert disk 1 of 2 into drive a:
Step 2: Click on **File**.
Step 3: Click on **Run**.
Step 4: Type `a:\setup` and press enter.
Step 5: Follow the installation instructions.
Step 6: If you encounter errors during the installation, go into your windows/system directory and delete the following files:
- 0C25.DLL
- COMDLG16.DLL
- TABCTL.OCX
- THREED.OCX
- VCFI16.OCX
Repeat installation from **Step 1**.

Using CurveGen

Click on the CurveGen 1.0 icon to run CurveGen. At this point, the user has two options. Curve coefficients can be calculated by the software by manually entering data points.

The standard equations for timing curves are shown below:

Trip Time (ANSI) = \(\frac{A}{(M^p-C)+B} \times \left(\frac{14n-5}{9} \right) \)
Trip Time (IEC) = \(\frac{A}{(M^p-C)+B} \times n \)

Where A, B, C and P are the coefficients to be computed and/or entered

n = time dial
M = Relay current in multiples of tap setting
Computing Coefficients

Step 1: If desired, the user may enter a description in the Description field.

Step 2: Under Standard, the user should select either ANSI curves or IEC curves.

Step 3: Under the data entry method, the user should select Compute Coefficients. At this point, the Compute Coefficients Tab towards the top of the screen should appear. Click this tab.

Step 4: Using the mouse, place the cursor on Row 1, Column 1 (Current M)

Step 5: Type the desired multiple of tap, M, and press the TAB key. Now type the corresponding time. Press the TAB key again to enter a second point. Continue until at least 5 data points are keyed in (100 points max). Please note that whether you are using ANSI or IEC type curves, the points you enter are equivalent to a time dial of 1.

Step 6: After all points are entered, click on solve. The computed coefficients will appear on the screen. In order to see these points on a graph, hit the Apply button.
Step 7: Click on the Relay Data tab. At this point, you’ll see that the coefficients previously calculated appear under Coefficients. Under Curve Series, select default. Time dial 1 through 10 should appear on the screen for ANSI or 0.05 to 1 for IEC. Any combination of valid time dials can be used.

Step 8: Select Apply. At this point, a graph will appear on the screen. The graph format can be changed by selecting different options under the Graph Menu at the top of the screen. The Curves can also be printed for a clearer view.

Step 9: If you are satisfied with the results, select Save As under File and Type in a filename with a .crv extension. This is the file to be used when downloading curves to your DPU1500R relay.

Step 10: The user also has the ability to save the worksheet. To do this, select Save Worksheet As under File and type in a filename with a .wrk extension.
Manually Entering Coefficients

Step 1: If desired, the user may enter a description in the Description field.

Step 2: Under Standard, select ANSI or IEC.

Step 3: Under Data Entry Method select Manually Enter Coefficients.

Step 4: The user can now enter the known coefficients A, B, C and P.

Step 5: Under Curve Series, select Default. Time dial 1 through 10 should appear on the screen for ANSI or 0.05 to 1 for IEC. Any combination of valid time dials can be used.

Step 6: Select Apply. At this point, a graph will appear on the screen. The graph format can be changed by selecting different options under the Graph Menu at the top of the screen. The Curves can also be printed for a clearer view.

Step 7: If you are satisfied with the results, select Save As under File and type in a filename with a .crv extension. This is the file to be used when downloading curves to your DPU1500R relay.

Step 8: The user also has the ability to save the worksheet. To do this select Save Worksheet As under File and type in a filename with a .wrk extension.

Downloading Curves

By using the File Export, you can send (transmit) curve data that you have created via the CurveGen program from your computer to the DPU1500R. You can also download (receive) curve data from the DPU1500R into your computer for storage and for modification through the CurveGen program.

To transmit or receive curve data, highlight the selection you want and press Enter. Type in the curve’s filename (including all directories) and press Enter again. The curve data is sent or retrieved as you selected.
Maintenance and Testing

Because of its continuous self-testing, the DPU1500R requires no routine maintenance. However, you can conduct testing to verify proper operation. ABB recommends that an inoperative unit be returned to the factory for repair. If you need to return a unit, contact your local ABB sales office for a return authorization number.

High-Potential Tests

High-potential tests are not recommended. If a control wire insulation test is required, completely withdraw the DPU1500R from its case and perform only a DC high-potential test.

Withdrawing the DPU1500R from its Case

The DPU1500R can be disassembled to install optional equipment or to change jumper settings of the selectable output contacts, between normally open (NO) and normally closed (NC). Follow these steps to disassemble the unit:

WARNING: Removal of the relay from the case exposes the user to dangerous voltages. Use extreme care. Do not insert hands or other foreign objects into the case.

1. Loosen the knurled screws on the face of the DPU1500R and gently remove the face and attached circuit board by grasping the knurled screws and pulling the unit straight forward. Pulling the board out at an angle or otherwise stressing the board on extraction may damage the unit. Once removed from the case, position the unit face down on a static secured mat.

2. Install the desired options according to the instructions provided with those options. The output relays are on the top-left-rear section of the board (when viewed from the front) under the metal shield. Movable jumper links alongside the output relays set the selectable output contacts to normally open (NO) or normally closed (NC). To access the jumper links it is necessary to remove the shield, which is secured by a screw and 1/4” PCB mounting stud. If an AUX COM board is installed, it will be necessary to remove the board completely, proper ESD precautions taken, to allow access to the shield.

3. To reinstall the unit into the case, carefully align and insert the lips on both sides of the board into the guide rails on the inside walls of the case and gently push the unit straight inward until it fully seats in the case. Secure the knurled screws.

System Verification Tests

Besides continuously monitoring a Self-Check output contact, perform routine hardware tests to verify that the DPU1500R is functioning properly. Run these tests via the MMI or via the communications port and the Windows External Communications Program. The tests are:

1. Confirm pass/fail status of each Self-Check element by using the Test Menu.

2. Confirm continuity of current and voltage through each input sensor by using the Meter Menu.

3. Confirm continuity through each optically isolated contact input for both the opened and closed condition by using the Test Menu.

4. Verify operation of each output contact by using the Test Menu.

5. Confirm that all relay settings are correct by using the Show Settings Menu.

6. Check the Fault and Operation Records for proper sequential operation.
Testing the DPU1500R

When the DPU1500R is in service, its functions depend on the state of the breaker monitored through the 52a (XO) and 52b (XI) contacts. Therefore, to fully test the system, apply a test circuit that simulates circuit breaker operation. Figure 11-1 shows a typical test circuit using a latching relay as the simulated breaker.

A Breaker Simulator Test Accessory is available from the factory. Instruction Book IB 7.7.1.7-9 applies to this accessory and is available on request. Catalog numbers: 110/125 Vdc = 200S4004; 48 Vdc = 200S4003; 24 Vdc = 200S4009.

If it is not possible to use a breaker simulator, place the DPU1500R in the Functional Test Mode. This mode allows testing of the programmed overcurrent functions and reclose sequence (when the test current is removed) without simulating the operation of the 52a (XO) and 52b (XI) contacts.

If you do not place the unit in Functional Test Mode and do not connect the 52a (XO) and 52b (XI) contacts during testing, the DPU1500R will go into the Breaker Failure state (and Lockout) on the first test trip.

The DPU1500R stays in the Functional Test Mode for fifteen minutes or until you exit whichever occurs first. Use the “C” key on the MMI to reset the recloser when it is in Lockout in the Test Mode. In the Test Mode the fault sequence is written only to the Operations Record.

The tests described below confirm the relay’s protective capabilities and metering accuracy. Test only those functions that will be enabled when the relay is placed into service. Testing the enabled functions ensures that the relay settings are correct for the desired application. Check the Fault and Operations Records after each test to confirm proper sequential operation of the relay logic.

NOTE: The following test procedures are written from the perspective of using the MMI. You can also use the WinECP to change settings and run the test. See Section 5, "Settings," for basic instructions on using WinECP.

Use a single-phase current test set to confirm continuity through the four current input sensors and the proper operation/settings of 51P (3I>) , 51N (IN>) , 50P-1 (3I>>1) , 50N-1 (IN>>1) , 50P-2 (3I>>2) , 50N-2 (IN>>2) , 50P-3 (3I>>3) , 50N-3 (IN>>3) and 46 (Insc>) functions. Test the phase functions by injecting current into the Ia and Ib input sensors. Test the neutral (ground) functions by injecting current into the Ic and In input sensors. Test the 46 function by injecting current into one phase input sensor (since $I_2 = 1/3 I_a$ when $I_b = I_c = 0$).

You must have a three-phase current and voltage test set to fully test the proper operation of the fault locator and the accuracy of the watts, VARs and power factor metering capabilities. (You must have 3-phase current sources, 3-phase voltage sources and a digital timer.)

Use a single-phase voltage test set to confirm the proper operation/settings of the 27 (U<) and 79V (O->IU<) functions.

Properly ground all equipment used in testing.

Tables 11-1 and 11-2 show the factory default settings on which the tests are based. These are the same default settings shown in Tables 5-1 and 5-2.
Table 11-1. Factory Defaults for Testing Primary Settings

<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>51P (3I>) Curve</td>
<td>Ext Inv</td>
</tr>
<tr>
<td>51P (3I>) Pickup A</td>
<td>6.0</td>
</tr>
<tr>
<td>51P (3I>) Time Dial</td>
<td>5.0</td>
</tr>
<tr>
<td>50P-1 (3I>>1) Curve</td>
<td>Standard</td>
</tr>
<tr>
<td>50P-1 (3I>>1) Pickup X</td>
<td>3.0</td>
</tr>
<tr>
<td>50P-2 (3I>>2) Select</td>
<td>Disable</td>
</tr>
<tr>
<td>50P-3 (3I>>3) Select</td>
<td>Disable</td>
</tr>
<tr>
<td>46 (Ins C>) Curve</td>
<td>Disable</td>
</tr>
<tr>
<td>51N (IN>) Curve</td>
<td>Ext Inv</td>
</tr>
<tr>
<td>51N (IN>) Pickup A</td>
<td>6.0</td>
</tr>
<tr>
<td>51N (IN>) Time Dial</td>
<td>5.0</td>
</tr>
<tr>
<td>50N-1 (IN>>1) Select</td>
<td>Standard</td>
</tr>
<tr>
<td>50N-1 (IN>>1) Pickup X</td>
<td>3.0</td>
</tr>
<tr>
<td>50N-2 (IN>>2) Select</td>
<td>Disable</td>
</tr>
<tr>
<td>50N-3 (IN>>3) Select</td>
<td>Disable</td>
</tr>
<tr>
<td>79 (O->I) Reset Time</td>
<td>10</td>
</tr>
<tr>
<td>79-1 (O->I1) Select</td>
<td>50P-1, 51N, and 50N-1 Enable</td>
</tr>
<tr>
<td>79-1 (O->I1) Open Time</td>
<td>LOCK</td>
</tr>
<tr>
<td>79 Cutout (O->I-CO) Time</td>
<td>Disable</td>
</tr>
<tr>
<td>Cold Load Time</td>
<td>Disable</td>
</tr>
<tr>
<td>2 Phase 50P (3I>>)</td>
<td>Disable</td>
</tr>
<tr>
<td>27 (U<) Select</td>
<td>Disable</td>
</tr>
<tr>
<td>79V (O->IU<) Select</td>
<td>Disable</td>
</tr>
</tbody>
</table>

Table 11-2. Factory Defaults for Testing Configuration Settings

<table>
<thead>
<tr>
<th>Function</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase CT ratio</td>
<td>100</td>
</tr>
<tr>
<td>VT Ratio</td>
<td>100</td>
</tr>
<tr>
<td>VT Connection</td>
<td>120 wye</td>
</tr>
<tr>
<td>Positive Sequence X/Mi (km)</td>
<td>.001</td>
</tr>
<tr>
<td>Positive Sequence R/Mi (km)</td>
<td>.001</td>
</tr>
<tr>
<td>Zero Sequence X/Mi (km)</td>
<td>.001</td>
</tr>
<tr>
<td>Zero Sequence R/Mi (km)</td>
<td>.001</td>
</tr>
<tr>
<td>Line Length Miles (km)</td>
<td>20</td>
</tr>
<tr>
<td>Trip Fail Time</td>
<td>18</td>
</tr>
<tr>
<td>Close Fail Time</td>
<td>18</td>
</tr>
<tr>
<td>Phase Rotation</td>
<td>ABC</td>
</tr>
<tr>
<td>Protection Mode (Prot. Mode)</td>
<td>Fund</td>
</tr>
<tr>
<td>Reset Mode</td>
<td>Instant</td>
</tr>
<tr>
<td>ALT1</td>
<td>Enable</td>
</tr>
<tr>
<td>ALT2</td>
<td>Enable</td>
</tr>
<tr>
<td>MDT Mode</td>
<td>Disable</td>
</tr>
<tr>
<td>Standard Unit (Std. Unit)</td>
<td>Standard</td>
</tr>
<tr>
<td>Cold Load Time Mode (C L Time Mode:)</td>
<td>Seconds</td>
</tr>
<tr>
<td>Zone Seq Coordination</td>
<td>Disable</td>
</tr>
<tr>
<td>Target Mode</td>
<td>Last</td>
</tr>
<tr>
<td>Local Edit (Remote Edit)</td>
<td>Enable</td>
</tr>
<tr>
<td>Meter Mode (WHr Display)</td>
<td>kWhr</td>
</tr>
<tr>
<td>LCD Light</td>
<td>On</td>
</tr>
<tr>
<td>Unit ID (ID)</td>
<td>DPU1500R</td>
</tr>
<tr>
<td>Demand Meter Constant (Demand Minutes)</td>
<td>15</td>
</tr>
<tr>
<td>LCD Contrast</td>
<td>16</td>
</tr>
<tr>
<td>Relay Password</td>
<td>[] 4 spaces</td>
</tr>
<tr>
<td>Test Password</td>
<td>[] 4 spaces</td>
</tr>
<tr>
<td>CT Ratio ⊗</td>
<td>1</td>
</tr>
<tr>
<td>SE V0 PT Ratio ⊗⊗</td>
<td>1</td>
</tr>
</tbody>
</table>

⊗ SEF model only
⊗ ⊗ Directional SEF model only
Programmable inputs I1 (52a), I2 (52b) and I3 (43a) must be wired to enable their respective functions and programmed in the Input Mapping screen. Programmable output OUT 2 (Close) must be wired to enable the respective function and programmed in the output mapping screen.

Figure 11-1. Typical Test Circuit

Functional Test Mode (Password Protected)

Use the Functional Test Mode to test programmed overcurrent functions and the reclose sequence (upon removal of test current) without simulating operation of the 52a (XO) and 52b (XI) contact inputs. The DPU1500R stays in Functional Test Mode for fifteen minutes or until you exit, whichever occurs first. Use the <C> key on the MMI to reset the recloser when it is in Lockout in the Test Mode. The MMI display shows the time remaining in the Functional Test Mode (except when the Trip Coil Monitor function has been enabled). The test sequences are written only into the Operations Record.

Verify Self-Checking Test Via MMI

Follow these steps to verify the pass/fail status of each self-check element on the DPU1500R:

1. Connect the proper control power to the unit. Wait for initialization to be complete. The green STATUS LED should be lit and the red RECLOSER OUT LED should also be lit if the recloser is disabled by the active settings table.
2. From the MMI, press “E” to get the Main Menu.
3. Scroll down to “TEST” and press “E.”
4. The first choice is “Self Test,” so press “E.” All elements under the “Self Test” should read “pass.”
5. Press “C” to return to the meter display.
Phase Angle Conventions

For tests that follow, refer to Figure 3-1 for phase angle and metering conventions used in the DPU1500R. In general, all angles are in “degrees leading.”

Metering Test

1. Apply 3-phase voltages and currents as shown in Figure 11-2. The values for these are:
 - $I_a (L1) = 3.0 \ A \ < 0^\circ$
 - $I_b (L2) = 3.0 \ A \ < 240^\circ$
 - $I_c (L3) = 3.0 \ A \ < 120^\circ$
 - $V_{an} (UL1) = 120.0 \ V \ < 0^\circ$
 - $V_{bn} (UL2) = 120.0 \ V \ < 240^\circ$
 - $V_{cn} (UL3) = 120.0 \ V \ < 120^\circ$

2. From the MMI Main Menu, press “E” twice to gain access to the Metering Menu.

3. Press “E” on the “Load” choice. The following should be within the ranges listed:
 - $I_a (L1) = 300.0 \ (\pm 6 \ A)$; the $\pm 6A$ was calculated by taking 1% of the product of the pickup setting [6.0 A] x the Phase CT Ratio [100]: .01 x [6.0 x 100] = 6.
 - $I_b (L2) = 300.0 \ < 240^\circ \ (\pm 6 \ A)$

![Figure 11-2. Metering Test](image-url)
4. Connect the DPU1500R as shown in Figure 11-4. Apply 3.0 A to C (L3)-Phase and the Neutral. Read the current from the Metering Menu as above. The currents Ic and In should be 300.0 ±6 A.

Pickup—Time Overcurrent

Follow these steps to check the time overcurrent of the pickup current.

1. Connect the DPU1500R as shown in Figure 11-3.

2. Apply 5.5 A, gradually increasing the current until the PICKUP LED just lights. This should be within ±3% of the pickup (see Table 11-1) or ±0.18 A (±18.0 A primary). This confirms the continuity and accuracy of phases A (L1) and B (L2).

3. Decrease the input current to 0 and reset targets, if necessary, by pressing the target reset push button.

4. Connect the DPU1500R as shown in Figure 11-4. Repeat Step 2 to confirm the continuity and accuracy of phase C (L3) and Neutral.
Figure 11-3. Test Circuit for Time Overcurrent, 50P-1 (3I>>1), 2-Phase 50P(3I>>) and 46 (Insc>) Functions

Figure 11-4. Test Circuit for 51N (IN>), 50N-1(IN>>1), 50P-2 (3I>>2), 50N-2 (IN>>2), 50P-3 (3I>>3), 50N-3 (IN>>3) and 2-Phase 50P (3I>>) Functions
5. To confirm the ground pickup, lower the 51N (IN>) setting to 5.0 A. To do this:
 a. Access the settings menu by pressing “E” on the MMI.
 b. Scroll to “Settings.”
 c. Hit “E” and scroll to “Change Settings.”
 d. Hit “E” again to access “Prim Settings.”
 e. Enter the password (four spaces for factory default) and press “E.”
 f. Scroll to “51N Pickup A” and Press “E.”
 g. Press the left arrow key until 5.0 is displayed; hit “E” to accept this value.
 h. Press “C” twice to get out of settings change.
 i. Press right or left arrow key to respond “YES” to the “Save Settings” prompt. Press “E.”
 j. Press “C” until the present metering values are displayed.

6. Apply 4.5 A to the DPU1500R as shown in Figure 11-4. Gradually increase the current until the PICKUP LED just lights. This should be within ±3% of the pickup (5 A). This confirms the ground pickup.

7. Decrease the input current to 0 and reset targets, if necessary, by pressing the target reset push button.

8. Repeat step 5 above to reset the 51N (IN>) pickup to 6.0 amps.

Pickup—Instantaneous Overcurrent

Follow these steps to test the instantaneous overcurrent of the pickup current:

1. To test the 50P-1 (3I>>1) phase instantaneous unit:
 a. Connect the DPU1500R as shown in Figure 11-3.
 b. Apply approximately 85% of the instantaneous pickup current (18 A from Table 11-1) to the relay or 15.3 A.
 c. Gradually increase the current until the INSTANT ANEOUS LED lights. This should be ±7% of the setting or ±1.26 A (±126 A primary). This confirms phases A (L1) & B (L2). Targets that should be lit are A (L1), B (L2) and INSTANTANEOUS.
 d. Decrease the input current to 0 and reset targets by pressing the target reset push button.

2. To test the 50N-1 (IN>>1) ground instantaneous unit:
 a. Disable the 50P-1 (3I>>1) function via the “Change Settings”, “Primary Settings” Menus.
 b. Connect the DPU1500R as shown in Figure 11-4.
 c. Apply approximately 85% of the instantaneous pickup current (18 A from Table 11-1) to the relay or 15.3 A.
 d. Gradually increase the current until the INSTANTANEOUS LED lights. This should be ±7% (from Table 11-1) of the setting or ±1.26 A (±126 A primary). Targets N and INSTANTANEOUS should be lit.
 e. Decrease the input current to 0 and reset targets by pressing “C” on the MMI.

3. To test the 50P-2 (3I>>2) phase instantaneous unit:
 a. Enable the 50P-2 (3I>>2) function and disable the 50N-1 (IN>>1) function via the “Change Settings”, “Primary Settings” Menus.
 b. Connect the DPU1500R as shown in Figure 11-3.
 c. Apply approximately 85% of the instantaneous pickup current (18 A from Table 11-1) to the relay or 15.3 A.
d. Gradually increase the current until the INSTANTANEOUS LED lights. This should be ±7% of the setting or ±1.26 A (±126 A primary). Targets C (L3) and INSTANTANEOUS should be lit.
e. Decrease the input current to 0 and reset targets by pressing “C” on the MMI.

4. To test the 50N-2 (IN>>2) ground instantaneous unit
 a. Enable the 50N-2 (IN>>2) function and disable the 50P-2 (3I>>2) function via the “Change Settings”, “Primary Settings” Menus.
 b. Connect the DPU1500R as shown in Figure 11-4.
 c. Apply approximately 85% of the instantaneous pickup current (18 A from Table 11-1) to the relay or 15.3 A.
 d. Gradually increase the current until the INSTANTANEOUS LED lights. This should be ±7% of the setting or ±1.26 A (±126 A primary). Targets N and INSTANTANEOUS should be lit.
 e. Decrease the input current to 0 and reset targets by pressing “C” on the MMI.

5. To test the 50P-3 (3I>>3) phase instantaneous unit:
 a. Enable the 50P-3 (3I>>3) function and disable the 50N-2 function via the “Change Settings”, “Primary Settings” Menus.
 b. Connect the DPU1500R as shown in Figure 11-3.
 c. Apply approximately 85% of the instantaneous pickup current (18 A from Table 15) to the relay or 15.3 A.
 d. Gradually increase the current until the INSTANTANEOUS LED lights. This should be ±7% of the setting or ±1.26 A (±126 A primary). Targets C (L3) and INSTANTANEOUS should be lit.
 e. Decrease the input current to 0 and reset targets by pressing “C” on the MMI.

6. To test the 50N-3 (IN>>3) ground instantaneous unit:
 a. Enable the 50N-3 (IN>>3) function and disable the 50P-3 (3I>>3) function via the “Change Settings”, “Primary Settings” Menus.
 b. Connect the DPU1500R as shown in Figure 11-4.
 c. Apply approximately 85% of the instantaneous pickup current (18 A from Table 11-1) to the relay or 15.3 A.
 d. Gradually increase the current until the INSTANTANEOUS LED lights. This should be ±7% of the setting or ±1.26 A (±126 A primary). Targets N and INSTANTANEOUS should be lit.
 e. Decrease the input current to 0 and reset targets by pressing “C” on the MMI.

7. To test the 2-Phase 50P (3I>>) Trip function:
 a. Enable the 50P-2 (3I>>2) and 2-Phase 50P (3I>>) function via the “Change Settings”, “Primary Settings” Menus.
 b. Connect the test set as shown in Figure 11-3.
 c. Apply approximately 85% of the instantaneous pickup current (18 A from Table 11-2) to the relay or 15.3 A.
 d. Gradually increase the current until the 50P-2 (3I>>2) relay trips. This should be ±7% of the setting or ±1.26 A (±126 A primary). This confirms phases A (L1) & B (L2). Targets A (L1), B (L2) and INSTANTANEOUS should be lit.
 e. Decrease the input current to 0 and reset targets by pressing “C” on the MMI.
 f. Connect the test set as shown in Figure 11-4, repeat tests c, d and e. This should confirm that the relay does not trip and no INST targets light.

8. Disable the 50P-2 (3I>>2) and the 2-Phase 50P (3I>>) functions via the “Change Settings”, “Primary Settings” Menus. Connect the DPU1500R as shown in Figure 11-4 and map GRD (IN) to an available input (ex: IN4) with logic “C”, in the programmable inputs screen. (This will disable the GRD (IN) function.) Apply the fault as in step 2 and confirm that the relay will not trip on 50N-1(IN>>1).
Timing Tests

Follow these steps to test the timing of the DPU1500R:

1. Connect the DPU1500R as shown in Figure 11-5.

2. Apply a fault current of 12 A to the relay. This current is 2x the default pickup current of 6.0 A. The relay should trip between 14.5 and 16.7 seconds (derived from the Extremely Inverse Curve, Figure 1-4, by using the default values in Table 11-1).

3. Apply a fault current of 24 A to the relay (4x the default pickup current). The relay should trip between 3.0 and 3.5 seconds.

4. Apply a fault current of 36 A to the relay (6x the default pickup current). The relay should trip between 1.4 and 1.6 seconds.

Figure 11-5. Test Circuit for Timing and Recloser Lockout
Negative Sequence Testing

Follow these steps to test the 46 (Insc>) function:

1. Disable all instantaneous functions - 50P-1 (3I>>1), 50P-2(3I>>2), 50P-3 (3I>>3).

2. Raise the 51P (3I>) Pickup setting to 12A to prevent a 51P (3I>) operation during this test.

3. Set the 46 (Insc>) function according to the following values:
 - Curve: Extremely Inverse
 - Pickup: 3.5A
 - Time Dial: 5.0

4. Apply the following currents as shown in Figure 11-3:
 - \(I_a (L1) = 12 \, A \angle 0^\circ \)
 - \(I_b (L2) = 12 \, A \angle 180^\circ \)
 - \(I_c (L3) = 0 \)

 This phase-to-phase fault simulation will produce a two per unit negative-sequence current, \(6.9A \, I_2 \), \((12A \times 58\% = 6.9A) \), in the DPU1500R.

 - \(I_n = 0 \)

5. In this case, \(I_2 \) is determined in the relays as follows:
 \[
 I_2 = \frac{1}{3} (I_a + a^2 I_b + aI_c)
 \]
 where:
 - \(a = 1 \angle 120^\circ \)
 - \(a^2 = 1 \angle -120^\circ \)

 since \(I_c = 0 \), then
 \[
 I_2 = \frac{1}{3} (I_a + (1 \angle -120^\circ) \, I_b)
 \]
 \[
 = \frac{1}{3} (12 \angle 0 + (1 \angle -120^\circ) (12 \angle 180^\circ)
 \]
 \[
 = \frac{1}{3} (12 \angle 0 + 12 \angle 60^\circ)
 \]
 \[
 = \frac{1}{3} (20.7 \angle 30^\circ)
 \]

 \[\therefore \, I_2 = 6.9 \angle 30^\circ\]

 therefore, we are at approximately 2x pickup.

6. The relay should trip between 14.3 and 16.3 seconds (from the Extremely Inverse Curve, Figure 1-6) and only the NEGATIVE SEQUENCE LED should light.
Reclosing Sequence Test

Follow these steps to test the reclosing sequence:

1. Change the Primary Settings.
 a. Press the “E” key.
 b. Scroll to “Settings” and press “E.”
 c. Scroll to “Change Settings” and press “E.”
 d. Scroll to “Prim Settings” and press “E.”
 e. Enter the password (four spaces for default) and press “E.”
 f. Scroll down to each of the following and change the value as necessary by using the right arrow key. Verify or change the following PRIMARY settings for this test:
 50P-1 (3I>>1) Curve = Standard
 50P-1 (3I>>1) PickupX = 1.0
 2-Phase 50P (3I>>) = Disable
 79 (O->I) Reset Time = 10 seconds
 79-1 (O->I1) Select = 50P-1 (3I>>1), 51N (IN>, 50N-1 (IN>>1) enabled
 79-1 (O->I1) Open Time = 0.3 seconds
 79-2 (O->I2) Select = 50P-1 (3I>>1), 51N (IN>, 50N-1 (IN>>1) enabled
 79-2 (O->I2) Open Time = 10 seconds
 79-3 (O->I3) Select = 50P-1 (3I>>1), 51N (IN>, 50N-1 (IN>>1) enabled
 79-3 (O->I3) Open Time = 15 seconds
 79-4 (O->I4) Select = 50P-1 (3I>>1), 51N (IN>, 50N-1 (IN>>1) enabled
 79-4 (O->I4) Open Time = 15 seconds
 79-5 (O->I5) Select = 50P-1 (3I>>1), 51N (IN>, 50N-1 (IN>>1) enabled
 79-5 (O->I5) Open Time = LOCK
 Trip Fail Time = 18 cycles
 g. Press “E” when the value you want is displayed.
 h. Press “C” twice.
 i. Press the right arrow key to “Yes” and press “E” to save settings.

2. Set the relay to Functional Test Mode. This eliminates the need for a breaker.
 a. Press the “E” key to access the Main Menu.
 b. Scroll to “Test” and press “E.”
 c. Scroll to “Func. Test Mode” and press “E.”
 d. Enter the password (four spaces for default) and press “E.”
 e. Press right arrow key to “Yes” and press “E.”
 f. The DPU1500R will remain in the Functional Test Mode for 15 minutes, unless reset.

3. Test the Recloser Lockout function.
 a. Connect the DPU1500R as shown in Figure 11-5.
 b. Apply a fault current of 12 A to the relay. Once the relay has tripped, it remains open according to the settings in Step 1f; then the relay should reclose. Be sure the current is removed within the “Trip Fail Time” setting in the configuration settings.
 c. Before the reset time of the relay has expired, apply a subsequent fault current. The relay will trip and reclose.
 d. Continue to apply the fault until Recloser Lockout occurs. This should be on the fourth trip.
Loss of Control Power and Self-Check Alarm Contact Test

Follow these steps to test the loss of control power and the self-check alarm contact:

1. With control power applied to the DPU1500R, check the self-check alarm contact and the STATUS LED. Normal status is indicated by a green LED.
2. Interrupt the control power to the DPU1500R. The self-check contacts should return to their normal state.
3. Reapply control power and check the DPU1500R to see that all settings were properly retained.

New Firmware Installation

Introduction

These instructions give guidance for the installation of the modification/upgrade kit part number UP-587X-xxx. Specific instructions included with any update kit would supersede the instructions given here.

Precautions

To avoid personal shock, use caution when working with energized devices. Only competent technicians familiar with good safety practices should service the relay.

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in the installation. If particular problems arise which are not covered sufficiently please contact our Technical Support Group at 800-634-6005, or 610-395-7333, or Fax 610-395-1055.

Should the downloading process be interrupted before completion, a special recovery procedure may be possible for units with surface mount construction. Refer to the procedure “Recovery from Download Failure” given below.

Modification Kit

The modification kit consists of a new External Communications Program floppy disk, a Flash Program Interface (FPI) floppy disk, and two System Application Firmware (SAF) floppy disks (a CPU firmware version for the through-hole-component circuit-board design; and, a CPU firmware version for the surface-mount-component circuit-board design). In Step 2 of the modification procedure you must select the proper SAF disk for the particular unit you are updating. The modification kit will give details on making this identification.

Modification Procedure

1. Establish communications via a computer connected to the front port using your WinECP communications program.
2. Record the serial number, catalog number, and existing versions of firmware Installed in the relay by viewing the Unit Information menu item.

 Important: if the existing CPU version is of the form V1.xx or V2.xx, then select the SAF disk labeled V1.xx or V 2.xx, for “through-hole” designs. If the CPU version is of the form V3.xx, then select the SAF disk labeled V3.xx, for “surface-mount” designs.
3. Download all settings groups, each in turn, to the pc hard drive or a floppy disk.
4. Consider reviewing and saving the information contained in the various records, as these could be lost in the updating process.
5. In order to update the flash memory of the unit, the communication port and the pc must be set to 9600, 8, N, 1. Review, and change your set-up if necessary.
6. Insert the FPI disk into your computer's floppy drive and copy to the hard drive.
7. Remove the FPI disk from the drive, insert the SAF disk that was selected in Step 2 and copy it to the hard drive. Be sure to check file name (c:\dpuvx_xx.abs)
8. Start the FPI program.
9. At the Monitor Type ? prompt, select appropriate choice and press <Enter>. Press <Enter> again to start.
10. At the Communications Options screen, install the correct settings. Press <Enter>. If all communications settings are correct, the Successful Connection To.... screen appears. Press <Enter> to continue. The next screen to appear should be the Main Menu. (If any communications problem exists, the Communications Status screen appears. If this happens, reset the comm settings and recheck your communications cable connections. Then press <Enter>.)
11. From the Main Menu screen, select “Update Unit Software” and press <Enter>.
12. At the Warning screen, select “Continue with Unit Software Update” and press <Enter>.
13. At the Load New Firmware Data screen, type in the correct file name, press <Enter>. This will highlight the default action, [Read from Disk]. Press <Enter> again.
14. Downloading should begin, and take about 30 minutes to complete. During the process the Target LED's on the front panel of the relay will blink intermittently and in sequence per the following:

<table>
<thead>
<tr>
<th>Computer display</th>
<th>Relay LED's</th>
<th>MMI if present</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitor Has Been Entered</td>
<td>Phase A (L1) blinks</td>
<td>DPU1500R Monitor</td>
</tr>
<tr>
<td>Flash Erase</td>
<td>Phase B (L2) blinks</td>
<td>Flash Memory Erase in Progress</td>
</tr>
<tr>
<td>Flash Programming</td>
<td>Phase C (L3) blinks</td>
<td>Flash Memory Download in Progress</td>
</tr>
</tbody>
</table>

15. When complete, the message “Successfully Completed Downloading! Hit Any Key To Return To Main Menu” will appear.
16. Press <Enter>. This will cause the systems to reboot and the message “Please Wait While System Reboots”. Then the Main Menu will reappear. Select Quit Program and press <Enter>.
17. Load the External Communications Program and establish communications with the relay.
18. Restore all original settings and counters, and verify before placing the relay back in service.

Recovery from Download Failure in Surface Mount Units

Should the downloading process fail you will see an error message. The following procedure can be implemented to retry the downloading:
A. Press the System Reset relay on the front panel of the relay.
B. If the “Fail” and “C” LED's are on and the “B” LED is flashing, go to step C. If the “A” LED is on, then remove control power from the relay for at least 10 seconds. Then reapply control power. If the “Fail” and “C” LED's are now on, and the “B” LED is flashing, then go to step C.
C. Continue using the FPI program through the front port of the relay. Go back to the beginning of the program and try to establish communication. You will get “comm error - default settings will be shown”. Hit Enter.
D. The “comm status” screen is displayed.
 Do Not select “Re-try to Connect”
 Do Not select “Exit - return to DOS”
Hit the ESC key.

E. Select “Update Unit Software”. Do Not select “Recover from Failed Download”. Then select “Continue with Unit Software Update” on the “Warning Message Screen”.

F. If steps A-E are successful you will now be at step 13.
Ordering Information—How to Select a Catalog Number

Communications—Hardware Port Connections and Setup
Communications Protocols

Panel Mounting Kits and Dimensions

Spare Parts

Parts and Assemblies

The following table lists the parts and assemblies involved in the DPU1500R

Table 12-1. DPU1500R Parts and Assemblies Table

<table>
<thead>
<tr>
<th>Part and Assembly Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>125-Vdc Power Supply Assembly</td>
<td>613806-K2</td>
</tr>
<tr>
<td>48-Vdc Power Supply Assembly</td>
<td>613806-K3</td>
</tr>
<tr>
<td>24-Vdc Power Supply Assembly</td>
<td>613806-K1</td>
</tr>
<tr>
<td>RS-232 Port Front or Rear Comm 1</td>
<td>613800-T2</td>
</tr>
<tr>
<td>RS-232 Card (non isolated Comm 2)</td>
<td>613811-T1</td>
</tr>
<tr>
<td>RS-232 Card (isolated Comm 3)</td>
<td>613630-T10</td>
</tr>
<tr>
<td>Aux Comm & RS-232 Card (isolated comm 3)</td>
<td>613624-T8</td>
</tr>
<tr>
<td>INCOM (isolated)</td>
<td>613624-T6</td>
</tr>
<tr>
<td>Aux Comm & INCOM (isolated)</td>
<td>613624-T7</td>
</tr>
<tr>
<td>RS-485 (isolated)</td>
<td>613630-T6</td>
</tr>
<tr>
<td>Horizontal Panel Mount Kit</td>
<td>604513-K1</td>
</tr>
<tr>
<td>Vertical Panel Mount Kit</td>
<td>604513-K2</td>
</tr>
<tr>
<td>Bezel/gasket assembly only</td>
<td>604513-K3</td>
</tr>
<tr>
<td>Horizontal lens cover only</td>
<td>613724-K1</td>
</tr>
<tr>
<td>Vertical lens cover only</td>
<td>613724-K2</td>
</tr>
</tbody>
</table>

Replacing Power Supplies

To replace an existing power supply with a power supply of the same voltage, simply remove the DPU1500R relay from its case. The power supply board is located on the underside of the relay. Remove the four (4) mounting screws and the two (2) white plastic connectors. Reinstall with new board.

If the user is replacing the power supply with a power supply with a different voltage, follow the above procedure and note the following:

1. When going from a 125 VDC supply to a 48 VDC supply, Jumper J3 on the CPU board should be installed. This jumper should be ordered separately. The part number is 610428-001. On relays with serial numbers ending with an “S”, the existing jumper J3 needs to be moved to the LOW position. This serial number must be read from the back of the relay case.

2. When going from a 48 VDC supply to a 125 VDC supply, Jumper J3 should be removed. On relays with serial numbers ending with an “S”, the existing jumper J3 needs to be moved to the high position. This serial number must be read from the back of the case.

3. When converting from a 24 VDC supply to a 48 or 125 VDC supply or vice versa, the unit MUST be sent back to the factory.

Jumper J3 is located on the CPU Board near the two (2) rear RS-232 ports.

Please note that the unit catalog number will not be modified when changing the power supplies. Therefore, when changing power supply voltages, the sixth digit in the catalog number will be wrong. If the user wants this remedied, please contact the factory.
Panel Mounting Kit

The complete kit will include a bezel, its associated hardware and gasket, as well as a lens cover with its associated hardware. This kit will provide a means for panel mounting and dustproofing.

Ordering Information:

<table>
<thead>
<tr>
<th>Kit</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal Panel Mounting Kit</td>
<td>604513-K1</td>
</tr>
<tr>
<td>Vertical Panel Mounting Kit</td>
<td>604513-K2</td>
</tr>
</tbody>
</table>

Spare Parts List:

<table>
<thead>
<tr>
<th>Part</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezel/gasket assembly only</td>
<td>604513-K3</td>
</tr>
<tr>
<td>Horizontal lens cover assembly</td>
<td>613724-K1</td>
</tr>
<tr>
<td>Vertical lens cover assembly</td>
<td>613724-K2</td>
</tr>
</tbody>
</table>

Horizontal Mounting

Note: The Bezel Assembly is available as an option for mounting the DPU1500R units in a panel application.

Note: Below is the panel drilling cutout for the DPU1500R unit and the bezel assembly.

Note: Dimensions are Inches [Millimeters]
Vertical Mounting

NOTE:
DIMENSION VALUES IN BRACKETS ARE MILLIMETERS.

VERTICAL PANEL CUTOUT

22 [5.6] D. HOLES TYP. 6 PLACES

50 [12.7]

17.50 [444.5]

18.500 [469.9]

9.250 [235.0]

MAX. RADII

0.03 [0.7]

NOTE:
DIMENSION VALUES IN BRACKETS ARE MILLIMETERS.

MOUNTING PANEL
(SHOWN FOR REFERENCE ONLY)

2000R, RACK MOUNT EARS REMOVED

6.662 [154.0]

5.562 [141.3]

5.63 [143.0]
Communications Ports

The DPU1500R has a standard 9-pin RS-232C interface on the front for serial port communications. Connect a 9-pin RS-232C cable and 9-pin null modem adaptor from this port to your personal computer to have direct point-to-point communications using WinECP software provided with the relay. Refer to the Windows External Communications in Section 5 of this manual for the proper communications parameters.

As an option, one or two serial port terminations can be provided at the rear of the DPU1500R. This rear port, can be a 9-pin RS-232C, 3-wire RS-485, 2-wire INCOM, IRIG-B or SCADA Interface Unit (SIU) connection. The full communication hardware configuration is on every DPU1500R and DPU2000R, but not all ports are operational. Please consult the Select Communication Options Table on 12-10 to determine which ports are available for a given catalog number. The front or rear RS-232C ports can interface with a modem using a straight through cable and a remotely connected computer. The RS-232C ports can also interface directly to a PC with the use of a null modem cable. The RS-232C ports are configured as data terminal equipment.

The DPU1500R supports various byte-oriented protocols. The command message structure and substructures for these protocols are available upon request. Contact the nearest ABB sales office or ABB at its Allentown, PA factory and request the “Protocol Document” for the unit type (DPU1500R and the specific protocol of interest). The following protocols are available in the DPU1500R relay:

- **STANDARD**—ABB 2000 series-specific ASCII oriented 10 byte communication protocol available through all ports
- **INCOM**—a two-wire communications system and protocol
- **DNP 3.0 (IEC870-5)**—a protocol available through the Auxiliary Communications port
- **Modbus**—a protocol available through the Auxiliary Communications port

Pin Connections

The pin connections for the various communications ports are shown in Tables 12-2 and 12-3.

Table 12-2. RS-232 Pin Connections

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Receive data–Relay receives data through this pin.</td>
</tr>
<tr>
<td>3</td>
<td>Transmit data–Relay transmit data through this pin.</td>
</tr>
<tr>
<td>5</td>
<td>Signal ground–Front port has signal ground tied to the chassis; rear port signal ground is fully isolated.</td>
</tr>
</tbody>
</table>
RS-485 Port

For all communications hardware options with a single RS-485 port, that port is provided at terminals 55(+), 56 (-), and 57 (com). See Table 12-3.

For communications hardware option #8, dual RS485 ports, terminals 55, 56, and 57 are designated RS485 Rear Port #2, and pins 1(+), 2 (-), and 7(com) of the COM3 DB-9 connector represent RS485 Rear Port #1.

The RS485 port on the DPU1500R has three associated resistors and jumper links that allow insertion or removal of these resistors, depending on the location of the relay in the network. Jumper link J6 on the communications card is for the termination resistor. A termination resistor should be inserted at the first and last devices on the network. Typically J6 would be set for “IN” for the last relay on the RS485 network; and, J6 would be set in the “OUT” position for all other relays in the loop. The first unit on the network, typically an ABB 245X series convertor, has the terminating resistor built-in. For communication hardware option “8,” dual RS485 ports, J6 is for Port #2 and a similar jumper, J16 is provided for RS485 Port #1.

Jumper links J7 and J8 insert or remove “pull-up” resistors. These resistors establish a known voltage level on the RS485 bus when no units are transmitting, in order to reduce noise. These jumpers should be set to the “IN” position on only one relay at either end of the RS485 loop. If an ABB communications convertor, catalog series 245X, is used on the network, it has these resistors built-in, and all relays can have J7 and J8 in the out position. For communications hardware option “8”, dual RS485 ports, J7 and J8 are for Port #2, and J17 and J18 are for Port #1.

The RS485 cable should be shielded 3 conductor twisted cable. The shield should be grounded at one end of the communications circuit, preferably where the RS485 circuit begins; eg: at the convertor unit. A typical RS485 connection diagram, drawing 604765, is available on request from the factory.

Recommended cables are Alpha #58902, Belden #9729, #9842, #9829 and Carol #58902.

Communications Settings

Change communications settings via the man-machine interface (MMI) on the front of the DPU1500R or through WinECP. When you use the MMI, the communications ports are blocked from downloading settings but can still retrieve data. Similarly, when a communications port is downloading new settings, the MMI and other communications ports are blocked from changing or downloading settings but not from retrieving data.

Table 12-3. RS-485, INCOM, and IRIG-B Pin Connections

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>IRIG-B Minus</td>
</tr>
<tr>
<td>63</td>
<td>IRIG-B Positive</td>
</tr>
<tr>
<td>62</td>
<td>INCOM</td>
</tr>
<tr>
<td>61</td>
<td>INCOM</td>
</tr>
<tr>
<td>60</td>
<td>+5 VDC at 100 milliamperes</td>
</tr>
<tr>
<td>59</td>
<td>Direction minus</td>
</tr>
<tr>
<td>58</td>
<td>Direction positive</td>
</tr>
<tr>
<td>57</td>
<td>RS-485 common/VDC return</td>
</tr>
<tr>
<td>56</td>
<td>RS-485 minus (aux. comm. port)</td>
</tr>
<tr>
<td>55</td>
<td>RS-485 positive (aux. comm. port)</td>
</tr>
</tbody>
</table>
Use the MMI to change all communications settings, such as baud rate, data bits, parity and stop bits. You can change settings locally or remotely. If you use a computer or modem to change the settings, be certain that the communications settings on your equipment match those of the DPU1500R.

Set the communications settings (baud rate, [parity, data bits, stop bits]) for the front and rear ports as follows:

- Front port: 300, 1200, 2400, 4800 or 9600 [n, 8, 1 or n, 8, 2]
- Rear port: 300, 1200, 2400, 4800, 9600 or 19,200 [n, 8, 1 or n, 8, 2 or e, 8, 1 or odd, 8, 1 or e, 7, 1 or n, 7, 2 or odd, 7, 1].

Communication Port Configurations

The DPU15000R platform provides several variations of communication ports, such as a 9-pin RS-232, RS-485, and INCOM™. Also available is a list of factory supported common communication protocols for networking the unit.

RS-232 ports are available in two different configurations, Isolated and Non-Isolated. Isolated ports provide isolation between the communication port and the rest of the relay.

COM 1 port is configured as a non-isolated port only. Units having an MMI display use the RS-232 port on the front panel as COM 1, thereby permanently disabling the RS-232 port marked COM 1 on the rear of the unit. Units not having an MMI Display permit the user to select, via P4 jumper setting (F=Front, R=Rear), either the front or rear (labeled COM 1) RS-232 connectors to act as COM 1.

COM 2 port is a non-isolated configuration and COM 3 port is an isolated configuration. Refer to the following list of options to select the most suitable configuration.

The DPU1500R series also features ABB’s innovative RS-485 isolated communications capability available when the optional Auxiliary Communication board is installed. This isolated RS-485 configuration provides superior communication quality recommended for applications in areas of high electrical noise or that require connecting cables longer than 10 feet (3m).

Figure 12-1: Rear Terminal Blocks and Communication Ports
NOTE: Non-isolated RS-232 ports are susceptible to electrical noise. For that reason it is recommended that connecting cables be no longer than 10 feet (3m) when connecting to a non-isolated port. Devices connected to non-isolated ports must have the same ground return as the DPU1500R unit.

Refer to the Select Communication Options Table when making option selections.

In addition to the standard front or rear non-isolated RS-232 port (COM 1), the following rear communication port options are available:

Option 0

This option provides RS-232 communication via the non-isolated COM 2 port and is suitable only in applications where communication to the unit is local through a direct connection to a PC or remote through an external isolating communication device, such as an RS-232 to fiber optic converter, which is connected to the relay using a short cable.

Options 1 through 5 are provided on an independent communication card installed in the unit.

Option 1

This option provides RS-232 communication via the isolated COM 3 port for transient immunity and isolation and must be used where communication cable lengths are greater than 10 feet (3m) or a common ground is not guaranteed. In general, RS-232 communication is limited to a maximum distance of 50 feet (15m). Aux Com and COM 2 ports are disabled in this configuration.

Option 2

This option provides RS-232 communication via isolated COM 3 port and RS-485 communication via the isolated Aux Com port. The auxiliary port is an isolated RS-485 configuration that supports several communication protocols (See Communication Protocol Category On Ordering Sheet). COM 2 ports are disabled in this configuration.

Option 3

This option provides INCOM™ availability, via the INCOM port, in applications where either the Cutler-Hammer INCOM™ or ABB WRELCOM™, network is used. COM 2 and COM 3 ports are disabled in this configuration.

Option 4

This option provides RS-485 communication, via the isolated Aux Com port and INCOM™ availability via the INCOM™ port. In this configuration, the INCOM™ port provides the same functionality as option 3. COM 2 ports are disabled in this configuration.

Option 5

This option provides RS-485 communication via the isolated Aux Com port, and is highly recommended for applications requiring communication over distances of up to 300 feet (100m). This option has an advantage over RS-232 by allowing networking of multiple relays via a simple 3 wire connection. COM 2 and COM 3 ports are disabled in this configuration.

An RS-485 to RS-232 converter can be used to connect the network to an external device such as a modem or a personal computer. Such converters are readily available in the marketplace for computer networking supplies.
The pinout for the DB9 port for option 8 is as follows:

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RS485 (+)</td>
</tr>
<tr>
<td>2</td>
<td>RS485 (−)</td>
</tr>
<tr>
<td>3</td>
<td>Direction (+) RTSA</td>
</tr>
<tr>
<td>4</td>
<td>Direction (−) RTSB</td>
</tr>
<tr>
<td>7</td>
<td>RS485 COMMON</td>
</tr>
<tr>
<td>8</td>
<td>+5VDC at 100ma</td>
</tr>
</tbody>
</table>

Communication Protocols

The Select Options Table shows the communication protocols and the respective hardware port assignments that are currently available.

The “Standard” protocol referenced throughout this publication refers to an ABB DPU1500R specific 10 byte ASCII oriented communication protocol. This protocol is standard for COM 1 and is selectable for other rear ports as per the Select Options Table. The Windows External Communication Program (WinECP) is provided at no charge with the relay. The protocol document is available on request.

Product specific protocol documents are available from the factory upon request.

- DNP 3.0 Protocol
- Modbus Protocol

RTU Emulation

Also available are external RTU Emulation devices that provide a pre-engineered interface between the DPU1500R and a SCADA host. Contact the factory for additional information on the ORION unit.
Ordering Instructions

The DPU1500R has a structured catalog number ordering system. The unit's catalog number is built up from 13 customer-selectable characters. Each character identifies features or functions that can be incorporated into the relay.

Sample Catalog Number

```
577 R 0 4 1 2 - 6 1 1 4
```

- **Configuration**
- **Current Range**
- **Control Voltage**
- **MMI Display and Mounting Orientation**
- **Communications Protocol**
- **Software Options**
- **Frequency**
- **Rear Communications Port Configuration**

How To Order

Using the Ordering Selection sheet, select those special features or options that are required to adapt the 1500R to your specific application. Create the catalog number, as shown above, by selecting the associated number or letter that refers to the desired feature or option from each category.

Important: Some of the combinations that can be created from the numbering charts can not be manufactured. Consult factory for feasibility when in doubt.
The table below illustrates all possible hardware configurations for the communication ports and the supported protocols. The Catalog Number Select Option columns list every communication option for which the relays can be configured.

The different protocol variations are outlined under the corresponding communication ports that support them. Select the row containing the protocol combination that best suits your communications requirements and use the corresponding catalog number options to fill in the brackets [] of the catalog number.

The auxiliary port labelled IRIG-B receives a demodulated IRIG-B signal for 1500R clock synchronization purposes.

For example, if your system requires DNP 3.0 (IEC870-5) protocol, the ordering catalog number would be 577R041[2]-6101[1] (4th row), or 577R041[4]-6101[1](10th row) based on your choice for the second port provided.

<table>
<thead>
<tr>
<th>Catalog Number Select Option</th>
<th>With Display</th>
<th>Without Display*</th>
</tr>
</thead>
<tbody>
<tr>
<td>577R041[] - 6101[]</td>
<td>NON ISOLATED RS-232</td>
<td>NON ISOLATED RS-232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>COM 1</th>
<th>COM 2</th>
<th>COM 3</th>
<th>AUX PORTS</th>
<th>RS-485</th>
<th>INCOM</th>
<th>IRIG-B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>1 0</td>
<td>ABB Ten Byte</td>
<td>ABB Ten Byte</td>
<td>ABB Ten Byte</td>
<td>DNP 3.0</td>
<td>ABB Ten Byte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 1</td>
<td>ABB Ten Byte</td>
<td>ABB Ten Byte</td>
<td>DNP 3.0</td>
<td>ABB Ten Byte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 4</td>
<td>ABB Ten Byte</td>
<td>Modbus®</td>
<td>ABB Ten Byte</td>
<td>Modbus® or ABB Ten Byte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 0</td>
<td>ABB Ten Byte</td>
<td>ABB Ten Byte</td>
<td>INCOM</td>
<td>IRIG-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 1</td>
<td>ABB Ten Byte</td>
<td>ABB Ten Byte</td>
<td>INCOM</td>
<td>IRIG-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 4</td>
<td>ABB Ten Byte</td>
<td>Modbus®</td>
<td>INCOM</td>
<td>IRIG-B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 0</td>
<td>ABB Ten Byte</td>
<td>ABB Ten Byte</td>
<td>ABB Ten Byte</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select Communication Options Table

An empty selection box indicates communication port is either not provided or is disabled.

* Main board jumper selectable front or rear.
Ordering Selections

Catalog Number Selection

| 5 7 7 | R 0 4 1 1 - 6 1 0 1 0 |

Configuration
- **Standard**: R
- **Sensitive Earth (SE) Fault**: E

Current Range

<table>
<thead>
<tr>
<th>Phase</th>
<th>Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard or Non Directional Sensitive Earth Fault</td>
<td></td>
</tr>
<tr>
<td>1.0 - 12.0 A</td>
<td>1.0 - 12.0 A</td>
</tr>
<tr>
<td>1.0 - 12.0 A</td>
<td>0.2 - 2.4 A</td>
</tr>
<tr>
<td>0.2 - 2.4 A</td>
<td>0.2 - 2.4 A</td>
</tr>
</tbody>
</table>

| Directional Sensitive Earth Fault |
1.0 - 12.0 A	1.0 - 12.0 A
1.0 - 12.0 A	0.2 - 2.4 A
0.2 - 2.4 A	0.2 - 2.4 A

Control Voltage
- 38 - 58 Vdc: 3
- 70 - 280 Vdc: 4
- 19 - 39 Vdc: 9

Man-Machine Interface
- **Horizontal/No Man Machine Interface**: 0
- **Horizontal/Man Machine Interface**: 1
- **Vertical/No Man Machine Interface**: 5
- **Vertical/Man Machine Interface**: 6

Rear Communications Port

- **RS-232 (non-isolated)**: 0
- **RS-232 (isolated)**: 1
- **Auxiliary Port & RS-232 (isolated)**: 2
- **INCOM™ (isolated)**: 3
- **Auxiliary Port & INCOM™ (isolated)**: 4
- **RS-485 (isolated)**: 5

Frequency
- 50 Hertz: 5
- 60 Hertz: 6

Software Options
- **No Oscillographics**: 0
- **Oscillographics**: 1

| No User Defined Curves (ANSI and IEC Curves Only) | 0 |
| User Defined Curves and ANSI and IEC Curves | 1 |

Load Profile
- **No Load Profile**: 0
- **Load Profile**: 1

Communications Protocol
- **Standard (10-Byte protocol)**: 0
- **DNP 3.0 (IEC 870-5)**: 1
- **Modbus®**: 4

website: www.abb.com/papd
Application Note

IRIG B Implementation in the DPU/TPU/GPU 2000/R and DPU1500R Units

IRIG B is a time code, which allows devices across the world to synchronize with a common time source to a resolution of one millisecond. IRIG B allows each device to synchronize with the frame received by an IRIG B receiver. ABB's DPU/TPU/GPU 2000/R and DPU1500R relays (herein referred to as an IED) offer IRIG B time synchronization capabilities.

Figure 1 illustrates a typical IRIG B installation. An IRIG B time receiver accepts the RF signal and transforms it into a one-second time synch frame. IEDs in the substation use the one-second time synch frame to govern their internal clocks and event recorders.

IRIG B is a general designation for time synchronization. There are many subsets to the IRIG B format. These were developed to provide functionality primarily for military applications dealing with missile and spacecraft tracking, telemetry systems, and data handling systems. IRIG B was embraced by the utility industry to answer a need to provide a sequence of events capability between a group of substations. Care must be exercised to match the device demodulating the signal from the satellite (downlink converter) with the IED's requiring specific IRIG B code formats.

DPU/TPU/GPU products support Pulse Width Code (X= 0), whereas, REL 3XX products having an IRIG B Poni Card support Pulse Width Code and Sine Wave Amplitude Modulated, and REL5XX products support Sine Wave Amplitude Modulated IRIG. If the IRIG signal supplied to the device is one in which the attached device cannot decode, the IED shall not synchronize with the signal and IED will not calculate time correctly.

The IRIG B time code has a one-second time frame. Every frame contains 30 bits of Binary Coded Decimal time information representing seconds, minutes, hours, days and a second 17 bit straight binary time-of-day. The frame
ABB Distribution Protection Unit 1500R/2000R

has internal time markers, which insure time-stamping accuracy to the millisecond. An eight-millisecond frame reference marker appears during the first ten milliseconds of each frame. Another eight-millisecond position identifier appears during the ninetieth millisecond of each one-hundred millisecond period mark. The 30 bit Binary Coded Decimal time data occurs in the first one hundred millisecond of each 1-second frame. Optional control functions are sometimes encoded in the data stream. These functions control deletion commands and allow different data groupings within the synchronization strings. Decoding an IRIG B pulse is quite a complex undertaking. A typical 1-second time frame is illustrated in Figure 2. It is interesting to note that the year is not included within the IRIG B frame. If the Control Function frame (CF) or Straight Binary Time of Day frame (SBT) is not used, the bits defined within those fields are to be set as a string of zeroes and sent to the IED IRIG B receiver.

![Figure 2. IRIG B Frame Construction](image)

IRIG B is defined for code format sets identified by a three digit format number. Permissible format numbers for the IRIG B subsets are:

IRIG B XYZ Where:
The first field “X” identifies the encoding type of the IRIG B signal. DPU/TPU/GPU products support Pulse Width Code (X= 0), whereas, REL 3XX products having an IRIG B PONI Card support Pulse Width Code and Sine Wave Amplitude Modulated, and REL5XX products support Sine Wave Amplitude Modulated IRIG. Manchester Modulated code was added in IRIG Standard 200-98 Dated May 1998. It is not supported in the ABB protective relay products which are IRIG B capable.

The second field “Y” determines if a carrier is included within IRIG B Data format.

The third field “Z” determines if a combination of the BCD time/Control Function/Straight Binary Time is included within the IRIG B time frame. The inclusion or exclusion of any of the fields may cause errors in receivers not designed for the field's inclusion/exclusion.

The following combinations may seem daunting, but only a subset of the listed formats are actually defined within the specification.

IF X =
0 = Pulse Width Code
1 = Sine Wave Amplitude Modulated
2 = Manchester Modulated Code

IF Y =
0 = No Carrier
2 =1Khz , 1mS
3 =10Khz, 0.1 mS
4 =100 Khz, 10 mS
5 =1Mhz, 1mS
IF Z=
0 = BCD Time, Control Function, Straight Binary Seconds
1 = Binary Coded Decimal Time, Control Function
2 = Binary Coded Decimal Time
3 = Binary Coded Decimal Time, Straight Binary Seconds

For the TPU/GPU/DPU 2000/2000R products, IRIG B 000 and 002 formats are supported. Consult the IRIG B generator manufacturer so that the correct IRIG B code format is supplied to the receiving devices.

Hardware Configuration

IRIG B time synchronization is available for the products listed in Table 1. Generally, three types of protective relays do not offer IRIG B, units without a communication card, units with Modbus Plus communication cards, and units with DNP 3.0 communication cards.

Table 1. IRIG B Inclusion listed by product part number

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48 X X X X X X 2 – X X X X</td>
<td>488 X X X X X 2 – X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 X X X X X 3 – X X X X</td>
<td>488 X X X X X 3 – X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48 X X X X X 4 – X X X X</td>
<td>488 X X X X X 4 – X X X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 2 – X X X X 0</td>
<td>588 X X X X 2 – X X X X 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 2 – X X X X 2</td>
<td>588 X X X X 2 – X X X X 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 2 – X X X X 3</td>
<td>588 X X X X 2 – X X X X 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 2 – X X X X 4</td>
<td>588 X X X X 2 – X X X X 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 3 – X X X X 0</td>
<td>588 X X X X 3 – X X X X 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 3 – X X X X 2</td>
<td>588 X X X X 3 – X X X X 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 3 – X X X X 4</td>
<td>588 X X X X 3 – X X X X 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 4 – X X X X 0</td>
<td>588 X X X X 4 – X X X X 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 4 – X X X X 2</td>
<td>588 X X X X 4 – X X X X 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 4 – X X X X 4</td>
<td>588 X X X X 4 – X X X X 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 8 – X X X X 0</td>
<td>588 X X X X 8 – X X X X 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 8 – X X X X 2</td>
<td>588 X X X X 8 – X X X X 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>587 X X X X 8 – X X X X 4</td>
<td>588 X X X X 8 – X X X X 4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

X = Don’t Care
Each of these units uses the AUX COM port located at the rear of the relay to accept the TTL IRIG B signal. The DPU/TPU/GPU 2000R and DPU1500R use Pins 63 and 64 to accept the IRIG B negative polarity and IRIG B positive polarity signals respectively, as illustrated in Figure 3. The DPU/TPU 2000 use pins 65 and 66 as illustrated in Figure 4.

ABB's implementation of IRIG B requires that the signal be daisy-chained to each device. Each device in the IRIG B network presents a load to the IRIG B receiver/converter. Daisy-chained inputs are simple parallel circuits. A sample calculation is shown for the example illustrated in Figure 5.

If the input impedance of each DPU/TPU/GPU 2000/R and DPU1500R is measured at its IRIG B connection, the impedance would be 1000 ohms. Each IRIG B input requires less than one mA to drive it.

Calculating the load impedance presented to the IRIG B source generator is illustrated in Figure 5. Each IED load on the IRIG B link presents a parallel impedance to the source. The general equation for parallel impedance is:

\[
\frac{1}{Z_{\text{total}}} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3} + \ldots
\]

\[
I_{\text{total}} = I_1 + I_2 + I_3 + \ldots
\]
This impedance equation simplifies to the form in Figure 5 when all IED loads are identical. If the loads are not identical, the general equation listed above must be used to calculate the load.

\[
Z_{\text{total}} = \frac{1}{N \times \frac{1}{1000}}
\]

where \(N \) = number of DPU/GPU/TPU 2000/R Units.

\[
Z_{\text{total}} = \frac{1}{3 \times \frac{1}{1000}}
\]

\[
Z_{\text{total}} = 333.33 \text{ ohms.}
\]

Thus the Source must be capable of driving a 333.33 ohm load.

Figure 5. Load Impedance Calculation

The calculated load impedance for the architecture presented in Figure 5 is 333.33 ohms. In this example the IRIG B receiver/converter must be capable of sending a three milli-amp TTL-level signal to a 333.33 ohm load. If the source is not matched with the load impedance, IRIG B will not operate correctly.

The cable recommended to connect the IRIG B devices shall have the following characteristics:

- Capacitance: less than 40 pF per foot line to shield
- Construction: 2-wire twisted pair shielded with PVC jacket

The maximum lead length of the entire relay is to be no more than 1000 feet. Cable types and vendors recommended and supported by ABB to interconnect the IRIG B devices are:

BELDEN 9841, BELDEN YM29560, or equivalent

An example of the terminal to terminal daisy-chain interconnection of three units is illustrated in Figure 6.
Software Configuration

Physical interconnection of the devices is only one part of the procedure to allow IRIG B time stamp. The ABB protective relays must be configured to allow for IRIG B to be enabled. The procedure follows:

1. Start ECP from the DOS operating system for the appropriate device being configured.
2. Highlight the Change Settings Menu.
3. Highlight and Select the Communications Menu.
4. Scroll down to the field “IRIG B”.
5. Depress the enter key and select the “ENABLE” selection. Two selections are displayed, ENABLE-mmm or ENABLE-cc. ENABLE-mmm will timestamp events and display the millisecond time as a number from 1 to 999. ENABLE-cc will timestamp events and display the millisecond time as a decimal fraction of a second from 1 to 99.
6. Return from the menu item.
7. Download the changed selections to the attached unit.

The unit is now synchronized to the IRIG B time source. All events shall be time stamped to the common IRIG B time source. The protective relays may also be configured for IRIG B time stamping from the front panel MMI of units which are equipped with a front panel interface.
Application Note AN-22

Bus Breaker Backup to Feeder Breaker

The Distribution Protection Unit 1500R/2000R (DPU1500R/2000R) has Multiple Device Trip (MDT) mode capability. When you enable its MDT mode, a DPU1500R/2000R on a bus breaker can be programmed to provide primary protection for the bus and backup protection to feeder breakers. If the relay protecting the feeder fails, the bus breaker DPU1500R/2000R provides isolated backup tripping to the faulted feeder breaker without tripping the bus breaker. Continuity of service will be maintained on all of the unfaulted feeders.

Component Requirements

The DPU1500R/2000R includes the logic and timing elements and the programming flexibility to allow such backup protection with few additional devices:

- DPU1500R/2000R for bus breaker (DPU/B)
- DPU1500R/2000R for each feeder breaker (DPU/Fn*)
- 1 Pickup Auxiliary relay (PA)
- 1 Auxiliary Tripping relay on the bus (Aux/B)
- Auxiliary Self-Check Failure relay (74/Fn*) for each feeder breaker
 \[n^* = \text{Number of feeder} \]

![Figure 13-8. Multiple Device Trip Mode Schematic](image-url)
Pickup Auxiliary (PA) Relay

During a feeder fault condition, the Pickup Auxiliary high-speed relay disables the 50P-1 and 50N-1 functions of the bus DPU1500R/2000R. This prevents the bus DPU1500R/2000R from tripping the bus breaker before the feeder relay has a chance to clear the fault.

When a feeder DPU1500R/2000R relay goes into pickup, its programmed pickup alarm (PUA) output contact closes. This opens the PA relay output contact, disabling the 50P-1 and 50N-1 functions of the bus DPU1500R/2000R.

The 50P-1 and 50N-1 functions of the bus relay are enabled when there is no pickup condition on any feeder relay or when the relay on the faulted feeder is in a failed state.

Using the Windows External Communications Program (WinECP), map the logical output condition PUA to your desired output contact for each feeder DPU1500R/2000R. Wire all these mapped output contacts to the PA relay (see Figure 13-9).

Auxiliary Tripping Relay (Aux/B)

The Aux/B relay allows for DC isolation among the feeder and bus breakers and provides the tripping output necessary to trip the feeder breakers when the feeder relay is in a failed state. If the Aux/B relay fails to trip the feeder breaker, the 51 function of the bus DPU1500R/2000R trips the bus breaker.

Auxiliary Self-Check Failure Relay (74/Fn)

For each feeder DPU1500R/2000R, wire the normally open self-check alarm contact to a 74/Fn auxiliary relay coil. In an energized and normal operating state, the alarming contact is closed. This energizes the 74/Fn relay, opening its normally closed contacts and blocking the DPU1500R/2000R on the bus breaker from tripping the feeder breaker. If the feeder relay fails, the alarm contact opens, the 74/Fn relay becomes de-energized, and the 74/Fn output contact closes, which allows the bus DPU1500R/2000R to trip the feeder breaker.

Setting the MDT Mode on the DPU1500R/2000R

Use the following Windows External Communications Program (WinECP) screens to program the DPU1500R/2000Rs for MDT mode:

- Configuration Settings
- Primary Settings
- Programmable I/O Screen
Programming the Bus DPU1500R/2000R

The bus DPU1500R/2000R provides high-speed tripping for bus faults, and local backup protection for feeder faults not cleared by their primary protective relays. The bus fault protection is accomplished with the 50-1 phase and ground instantaneous elements. A 50 ms time delay is added to coordinate with the blocking signal from the feeder DPUs. This blocking signal is from the pickup alarms (PUA) of each down stream feeder. Each PUA is isolated by an auxiliary relay, PA.

Local backup for feeder faults is accomplished with the 50-2 phase and ground instantaneous elements. A 0.3 second time delay is recommended to coordinate with the down stream feeder instantaneous elements. The 50-2 element should not be used for backup protection with feeder schemes (such as fuse saving schemes) that disable instantaneous elements in a multi-shot recloser sequence.

Follow these steps to program MDT mode on the DPU1500R/2000R on the bus breaker:

1. Enable Multiple Device Trip mode (MDT Mode) in the Configuration Settings.
2. Set the 50P-1 and 50N-1 functions in the Primary Settings table as follows (see Figure 13-10):
 a. Set the curve to “Definite Time.”
 b. Select the desired pickup.
 c. Set the Time Delay to 0.05 sec.
 d. Disable the 79 reclosing function by setting the 79-1 open time to “Lockout”.
3. To allow the feeder DPU1500R/2000R relays to control the high-speed instantaneous functions of the bus relay, map the 50-1 element to a physical input in the Programmable Inputs screen (Figure 13-12). Remove the 50-1 elements from the Master Trip settings and map it to a physical output (Figure 13-13 and 13-14). This is required because the 50-1 elements are supervised by the 74 auxiliary relay. Next, wire a normally closed contact from the PA auxiliary relay to the selected physical input on the Bus DPU.
4. The 50-2 provides local backup protection for failed feeder breakers. If this feature is desired, set the time delay in the Primary Settings (Figure 13-10) to 0.3 seconds. The 50-2 element should not be used for backup with feeder
Figure 13-11. Recloser Settings

Figure 13-12. 50-1 Input Control Logic

Figure 13-13. Master Trip Settings

Figure 13-14. 50-1 Output Logic
schemes (such as fuse saving schemes) that disable instantaneous elements in any one of the recloser sequences.

Programming the Feeder DPU1500R/2000R

The feeder instantaneous overcurrent relay requires a faster trip response than the bus instantaneous overcurrent relay. When a feeder fault occurs, timing coordination is crucial to allow the feeder relay to trip faster than the bus relay.

1. Set the 50P-1 and 50N-1 functions in the Primary Settings table as follows (see Figure 13-15):
 a. Set the curve to “Standard Instantaneous.”
 b. Select the desired pickup.

2. At the Programmable Input/Output Screen, map the PUA condition to the desired output. See Figure 13-16.

![Figure 13-15. Primary Settings for the Feeder DPU1500R/2000R](image)

![Figure 13-16. Pickup Alarm Input Logic](image)
Sample Operation

Condition 1. Feeder and Bus DPU1500R/2000R OK: Feeder Fault (see Figure 13-17).

The pickup alarm (PUA) picks up the pickup auxiliary relay (PA). The PA contact disables the 50-1 functions of the bus DPU1500R/2000R. The feeder relay trips for the fault and recloses after the set open interval time expires.

All auxiliary self-check relays (74/Fn) are picked up, blocking the bus DPU1500R/2000R from tripping the feeder breaker.

Figure 13-17. Feeder Fault: Bus and Feeder Relays OK

Condition 2: Feeder and Bus DPU1500R/2000R OK: Bus Fault (see Figure 13-18).

The pickup auxiliary relay (PA) is not energized, and therefore the 50-1 function of the bus DPU1500R/2000R is enabled. The 50-1 function trips the bus breaker after 0.05 seconds through the closed contacts of the energized (74/Fn) relays.
Condition 3: A Feeder DPU1500R/2000R Fails or Is Withdrawn from Its Case: Feeder Fault (see Figure 13-14)

The self-check alarm contact de-energizes the (74/Fn) relay. The (74/Fn) contact in the feeder trip circuit closes. The PA relay is not energized, thereby enabling the 50-1 functions of the bus DPU1500R/2000R. The bus DPU1500R/2000R's 50-1 functions energize the Aux/B relay, which trips the feeder breaker with no reclosing.

Figure 13-19. Feeder Fault: Feeder 3 DPU1500R/2000(R) Has Failed
Application Note AN-23

Zone Sequence Coordination

Introduction

In power systems, protection schemes include series combinations of reclosers on medium voltage overhead distribution radial feeder lines. The series combination consists of one or several down-line recloser(s) and a backup substation recloser. This is shown in Figure 13-5. The down-line and backup reclosers would be set for a typical operating sequence involving two fast or overcurrent trips. The trip times are coordinated so that the substation breaker does not normally operate for faults beyond the down-line device.

![Figure 13-20. Series Combination of Substation and Down-line Reclosers](image)

Application

If the fault F1 in Figure 13-20 were a permanent fault and the backup and down-line reclosers were set as described above, the down-line device would trip twice instantaneously and reclose and then begin to time out according to its time overcurrent setting. The backup recloser, however, sensing the same fault current, (series system) but having not tripped due to coordination, will now trip twice on its instantaneous trips since their times are faster than the down-line device’s time overcurrent trip; times. The sequence of operations is shown in Figure 13-21. These undesirable operations of the backup recloser not only interrupts power to more customers than required but also adds unnecessary wear on the mechanisms and contacts. Zone Sequence Coordination (ZSC) is a coordination method that prevents undesirable trips of a backup recloser for a fault beyond a down-line recloser. The DPU1500R/2000R provides the ZSC function in its standard software. The backup DPU1500R/2000R senses the down-line device’s interruption of the fault by entering and quickly exiting the 50/50N pickup state without issuing a trip and then advances to the next trip in the reclosing sequence. With the ZSC function enabled in the backup recloser, the down-line device alone will trip for fault F1 while the backup advances its recloser steps to remain coordinated. The correct operations are
shown in Figure 13-22.

Figure 13-21. Down-line and Backup Recloser Operations without ZSC
ZSC in the DPU-2000R

You can activate the ZSC feature by running the DPU1500R/2000R Operations software “WinECP.” Select **Settings** from the Main Menu and then select **Programmable Inputs**. Get the data from the DPU1500R/2000R and assign ZSC to one of the programmable inputs. Now you can remotely enable or disable the ZSC function via its programmed input terminals. With the relay's rated voltage applied to the ZSC terminals, the function is enabled. Conversely, without rated voltage applied to the ZSC terminals, the function is disabled. The status of the ZSC input terminals can be viewed by selecting **Test** in the main menu and then selecting **Contact Inputs**. The contact input status can be viewed with WinECP and the man-machine interface LCD display. All Zone Sequence Coordination steps are stored in the Operations Record logs.

To ensure correct Zone Sequence Coordination operation, the protection engineer must adhere to the following criteria when setting the relays. Assume the backup DPU1500R/2000R is RELAY #1 and the down-line DPU1500R/2000R is RELAY #2.

1. RELAY #1 must be set for a longer instantaneous time than RELAY #2. The recommended minimum coordination margin is .1 seconds.
2. RELAY #1 time overcurrent settings must be programmed for a longer delay than those of RELAY #2.
3. The 79 reset time of RELAY #1 must be programmed greater than the largest open interval time of RELAY #2.

Figure 13-22. Down-line and Backup Recloser Operations with ZSC
Application Note AN-24

Two-Phase, 50P Tripping

Introduction

The 2 Phase-50P Trip in the DPU1500R/2000R is used to increase sensitivity and improve clearing time for three-phase, phase-to-phase, and two-phase-to-ground faults on the main section of radial distribution lines. The 2 Phase-50P Trip is not sensitive to single-phase-to-ground faults. When the 2 Phase-50P Trip is enabled in the settings table, the 50P-1, 50P-2, and 50P-3 functions will trip only when 2 or 3 phases exceed these trip for phase-to-ground faults when the residual current exceeds the instantaneous 50N-1, 50N-2, or 50N-3 pickup settings.

On distribution lines, the phase and ground instantaneous overcurrent elements are often set very high in order to coordinate with large downstream fuses. When using the DPU1500R/2000R in these applications, the 50N-1 function can be set to coordinate with the large downstream fuses. By enabling the 2 Phase-50P Trip, the 50P-1 function can be set below the 50N-1 pickup setting to increase sensitivity and improve clearing time for three-phase, phase-to-phase, and two-phase-to-ground faults on the main section of the radial feeder.

For example, a 100A downstream fuse may require the upstream 50N-1 pickup setting to be 4000A or more. By enabling the 2 Phase-50P Trip, the 50P-1 function can be set at 2000A. For three-phase, phase-to-phase, and two-phase-to-ground faults greater than 2000A, a 50P-1 instantaneous trip will occur. No 50P-1 trip occurs for single-phase-to-ground faults where the current is greater than 4000A. For single-phase-to-ground faults where the current is greater than 4000A, a 50N-1 instantaneous trip will occur.

On manual closing of the circuit, consideration may need to be given to cold load inrush. In the DPU1500R/2000R, the 50P-1, 50P-2, 50N-1, and 50N-2 functions can be delayed from 0 to 200 seconds by the cold load pickup time (CLPT) setting.
Application Note AN-26

Single-Pole Tripping of Distribution Feeders

The DPU1500R/2000R internal logic and programmable outputs are flexible enough to provide single-pole tripping in distribution applications where a group of three single-phase reclosers is used. This scheme requires that the loads be single-phase connected line-to-neutral and provides the benefit of eliminating unnecessary interruptions of the non-faulted phases.

Follow these steps to implement single-pole tripping on the DPU1500R/2000R:

1. Enable Multiple Device Trip Mode in the Configuration Settings.
2. Assign three of the programmable outputs to the Trip A, Trip B, and Trip C attributes.
3. Assign three programmable outputs to the Close attribute for the Phase A, Phase B, and Phase C reclosers.

When the DPU1500R/2000R is in Multiple Device Trip mode, it does not monitor the open-close positions of the interrupting devices. The unit assumes the proper response of the interrupter if the fault current drops below 90% of the pickup setting of each of the active overcurrent elements.

Operation Considerations

When set up for single-pole tripping, the DPU1500R/2000R operates as follows:

- If simultaneous faults occur on two or more phases, the overcurrent trip timing is based on the highest phase current, and all phases with current above pickup are tripped simultaneously.
- If a fault on one phase results in a lockout condition, any subsequent trips on either of the other two phases result in a lockout condition on that phase also. No reclosing occurs.
- If one phase has tripped and is in its open interval timing, a trip on either of the other two phases moves the reclosing program forward one step, and the open interval timing begins again. Both reclosers are closed simultaneously at the end of this new open interval.

For example, Phase A has tripped and is in its open interval timing based on the 79-1 reclosing sequence. If a trip occurs at this time on Phase C, the reclosing sequence immediately moves to 79-2 and the open interval timer begins again.