Lightning & overvoltage protection Photovoltaic systems

OMPETENCE

ng protection

Recognized competence

ABB Laboratory at Bagnères-de-Bigorre, in France

ABB Lightning Protection Group, established in the South West of France, benefiting from acquired experience during the last decades, makes the most of its masterly skills in lightning and overvoltage protection technology. In addition to its present expertise concerning the global supply for lightning protection (both external and internal protection), Soulé henceforth proposes a range of lightning arresters overvoltages, dedicated against to photovoltaic installations, both standalone and connected facilities.

Moreover, ABB Lightning Protection Group benefits from a laboratory including various generators enabling arresters to be tested under real conditions with shock currents of different amplitudes, and this in order to optimize protection solutions specific to the customer as regards photovoltaic installations.

200 kV generator

ny do photovoltaic systems need to be protected

Photovoltaic system at an industrial site

Photovoltaic system at Villeurbanne, France

Providing power with photovoltaic solar panels is tremendously interesting in the context of renewable energy sources, as regards economical LV photovoltaic systems connected to the public electricity network, and also for standalone photovoltaic systems in isolated sites.

Because of their exposition, frequently in isolated sites and of the extended surface of photovoltaic systems (PV), lightning strikes are a major component in the risk to be assumed, both for the direct effect of lightning on the structure, and of the surge overvoltages on the installation.

Risk analysis on photovoltaic installations leads us to the following criteria: the extent, structure and exposition of the photovoltaic system as well as lightning strike density at the relevant site.

The consequences of lightning on the photovoltaic generator have repercussions on the entire equipment, because of the interconnection between the photovoltaic system and the electrical installation of the building. Moreover, the risk of financial losses should be taken into account, when considering the investment in solar panels at a photovoltaic site.

Photovoltaic system at the IUT of Tarbes, France

CONNECTED

of connected systems

Example of a 600 V installation diagram

Configuration of the surge arresters of the whole installation

Surge arrester location	Role	Options	Comment
A 	Single unit protection per solar panel (cell + connections)	Installation is recommended if distance L1 is larger than 10 m, or if coupling risks exist between different cables.	Connection to the chassis should be as short and rectilinear as possible. The lightning arrester depending on the environment should be installed in a leak-proof casing.
B	Protects the DC power supply head connection (building entrance)	Routine installation	The earthing bar should be as short and rectilinear as possible.
©	Fine protection of the converter input on the DC side	Installation is recommended if distance L2 is larger than 10 m	Connection to the earthing bar and to the ground of the converter on the DC side should be as short and rectilinear as possible.
	Fine protection of the converter output on the AC side	Routine installation	Connection to the earthing bar and to the ground of the converter on the AC side should be as short and rectilinear as possible.
E	AC head protection at the entrance of the building	Routine installation	Connection to the earthing bar should be as short and rectilinear as possible.

OVR PV surge arresters for protecting photovoltaic systems are particularly suitable:

- Modular systems with pluggable cartridges for easy maintenance (without breaking the circuit),
- -Mechanical surge arrester status indicator with safety reserve (s),
- Fitted with remote signaling contacts for monitoring the operating status (TS),
- No follow current
- No risk of + and inversion.

OVR PV surge arrester (A, B or C)

(A, B or C)

block diagram (A, B or C)

Dimensions

L. 42.5mm X H. 85mm X P. 63mm

Cartridges for maintenance in 600 V				
2 x OVR T2 40 275 C	2CTB803854R1000			
+ 1 x OVR T2 70 N C	2CTB803854R0000			
2xOVRT270275sC	2CTB803854R0700			
+1 x OVR T2 70 N C	2CTB803854R0000			
Cartridges for maintenance in 1000 V				
Cartinuges for ma				
3 x OVR T2 40 440 C	2CTB803854R0400			
3xOVRT270440sC	2CTB803854R0100			

Selection of surge arresters, DC portion

Surge an locati		Converter U max.	Risk	Current flow capacity	Designation / Part number	
AB	С	500 and 600 V	High	70 kA	OVR PV 70 600 s P TS/ 2CTB803953R5200	
AB	C	500 and 600 V	Low	40k A	OVR PV 40 600 P TS*/ 2CTB803953R5100	
A B	С	1000 V	High	70 kA	OVR PV 70 1000 s P TS/ 2CTB803953R6300	
AB	С	1000 V	Low	40 kA	OVR PV 40 1000 P TS/ 2CTB803953R6200	

*: without remote signaling (TS) - OVR PV 40 600 P / Part No. 2CTB803953R5000 **: without remote signaling (TS) - OVR PV 40 1000 P / Part No. 2CTB803953R6100

Selection of lightning arresters, AC portion (TT earthing system, Ph+N. Other surge arresters see OVR catalog)

Surge arrester location	Lightning rod presence	Distance between D and E	Designation / Part number
D	No	Between 1 and 5 m	OVR T2 1N 15 275 P / 2CTB803952R1200
D	No	> 5 m	OVR T2 1N 40 275 P / 2CTB803952R1100
E	Yes	1	OVR T1 3N 25 255 TS / 2CTB815101R0700*
E	No	/	OVR T2 1N 70 275 s P / 2CTB803952R0700

*: for limp = 15 kA (10/350), there are products based on varistor technology (please consult us)

OVR PV surge arrester

A B C

of standalone systems Protection

Lightning rod lÓ

Example of typical installation

External boundary of the protection area of the lightning rod Limit of equipotentiality of any conducting portion of the building Battery Module's MSB (Main <u>chassis</u> Switch Board) Charger Converter ≁ L2 L 1 G п С В Α

Configuration of the surge arresters on the whole installation

Surge arrester location	Role	Option	Comments
A	Single unit protection per solar cell (cell + connections)	Installation is recommended if distance L1 is larger than 10 m, or if coupling risks exist between the different cables	Connection to the chassis should be as short and rectilinear as possible. The lightning arrester depending on the environment should be installed in a leak-proof casing.
B	Protects the DC power supply head (building entrance)	Routine installation	Connection to the earthing bar should be as short and rectilinear as possible.
C	Fine protection of the charger (DC power supply input)	Installation is ecommended if distance L2 is larger than 10 m.	Connection to the earthing bar and to the converter's ground should be as short and rectilinear as possible.
Selection of low voltage surge arresters			

Converter Designation Surge arrester **Current flow** Risk location U max. Part number capacity OVR PV 6575sPTS Α В С 106V D.C. High 65kA 2CTB803953R3200 OVR PV 30 75 PTS A B C 106V D.C. Low 30kA 2CTB803953R3100

6

PVD surge arresters for protecting photovoltaic systems are particularly suitable:

- Modular systems with pluggable cartridges for easy maintenance (without breaking the circuit),
- Mechanical lightning arrester status indicator with safety reserve (s),

OVR PV surge arrester (A, B or C)

Low voltage 75V OVR PV surge arrester block diagram (A, B or Č)

Dimensions			
L 35mm x H 85mm x D 63mm			
Cartridges for maintenance			
	2CTB902954D1200		

- Fitted with remote signaling

- No risk of + and - inversion.

contacts for monitoring the operating status (TS),

- No follow current,

Cartridges for maintenance		
5kA:2xOVRT26575sC	2CTB803854R1300	
30kA: 2x OVR T2 30 75 C	2CTB803854R1500	

OVR TC 200FR/ 2CTB813814R0000

Series

ABB Lightning Protection Group 22, rue du 8 Mai 1945 95340 – Persan France

Tel : +33 (0) 1 30 28 60 88 Fax : +33 (0) 1 30 28 60 79