Терминалы защиты и управления
RE_54_

Руководство оператора
1. О настоящем руководстве ...5
 1.1. Авторские права ...5
 1.2. Торговые знаки ...5
 1.3. Гарантии ...5
 1.4. Общие сведения ...5
 1.5. Использование символов ..6
 1.6. Терминология ..6
 1.7. Сопутствующие документы7
 1.8. Редакции документа ...7

2. Информация по технике безопасности9

3. Терминалы RE_54_ ..11

4. Характеристики графического HMI и мнемосхем13
 4.1. Дисплей ...14
 4.1.1. Подсветка дисплея ..14
 4.1.2. Контрастность дисплея15
 4.1.3. Выбор языка ..15
 4.1.4. Выбор стандарта обозначения функциональных блоков16
 4.1.5. Главное окно ..17
 4.1.6. Вспомогательное окно17
 4.1.7. Проверка дисплея при подаче питания18
 4.2. Назначение кнопок ..18
 4.2.1. Кнопки перемещения курсора, очистки и ввода18
 4.2.2. Кнопка выбора режима управления20
 4.2.3. Включение выключателя с задержкой21
 4.2.4. Управление объектом на панели мнемосхемы22
 4.2.5. Функция аварийного отключения24
 4.3. Программирование ...24

5. Уровни работы HMI ..25
 5.1. Квитирование и сброс светодиодов, информационных сообщений, выходов и регистров26
 5.2. Пароли ..27
 5.3. Пользовательский уровень29
 5.3.1. Панель мнемосхемы30
 5.3.2. Панель измерений ...30
 5.3.3. Панель событий ..31
 5.3.4. Панель аварийной сигнализации32
5.4. Технический уровень ...33
 5.4.1. Система меню ...33
 5.4.2. Установка параметра ..34
 5.4.3. Сохранение параметров ...36

6. Сообщения во вспомогательном окне39
 6.1. Приоритет информационных и справочных сообщений39
 6.2. Справочные сообщения ..40
 6.3. Информационные сообщения ...40
 6.3.1. Индикация защиты ...40
 6.3.2. Самоконтроль (IRF) ..41
 6.3.3. Индикация контроля состояния42

7. Светодиодные индикаторы ...43
 7.1. Зеленый светодиод ..43
 7.2. Желтый светодиод ...44
 7.3. Красный светодиод ..44
 7.4. Блокировка ..45

8. Режимы тестирования ..47
 8.1. Тестирование функций ..47
 8.2. Тестирование управления ...47
 8.3. Тестирование мнемосхемы ..47
 8.4. Тестирование входов/выходов47
 8.5. Тестирование самоконтроля (IRF)49
1. О настоящем руководстве

1.1. Авторские права
Данный документ может быть изменен без предварительного уведомления. Информация не должна рассматриваться как какое-либо обязательство корпорации ABB Oy. Корпорация ABB Oy не несет никакой ответственности за ошибки любого характера, которые могут быть обнаружены в этом документе.
Корпорация ABB Oy ни при каких обстоятельствах не несет ответственности за прямой, косвенный, особый, случайный или последующий ущерб любого характера и происхождения, возникший в результате использования данного документа; корпорация ABB Oy также не несет никакой ответственности за случайный или последующий ущерб, возникший в результате использования любых программных или аппаратных средств, описанных в этом документе.
Воспроизведение содержания данного документа полностью или частично или его копирование без письменного разрешения корпорации ABB, а также передача третьим лицам и использование не по назначению запрещается.
Программное и аппаратное обеспечение, описанное в этом документе, предоставляется по лицензии и может использоваться, копироваться и раскрываться только в соответствии с условиями указанной лицензии.
Авторские права ©2005 ABB Oy
С сохранением всех прав.

1.2. Торговые знаки
ABB – зарегистрированный товарный знак ABB Group.
Все другие фабричные марки или наименования изделий, упомянутые в этом документе, могут быть зарегистрированными товарными знаками соответствующих держателей.

1.3. Гарантии
Информацию о гарантийных условиях можно получить в ближайшем представительстве ABB.

1.4. Общие сведения
Этот документ, являющийся Руководством оператора RE_54_, поясняет, как пользоваться графическим HMI терминалов REF 54_, REM 54_ и RET 54_.
Обратите внимание, что виды панели HMI, приведенные на рисунках этого Руководства, имеют иллюстративный характер.
Использование символов

В настоящем документе используются предупреждающие, предостерегающие и информационные знаки, которые указывают на соответствующие требования техники безопасности или сообщают другую важную информацию. В документе также используются знаки для выделения полезной для читателя информации. Соответствующие знаки должны толковаться следующим образом.

Знак предупреждения указывают на наличие опасности, которая может привести к травмам персонала.

Предостерегающие знаки указывают на важную информацию или предупреждение, относящееся к понятию, рассматриваемому в тексте. Они могут указывать на наличие опасности, которая способна привести к повреждению программного обеспечения или порче оборудования или иного имущества.

Информационные знаки привлекают внимание читателя к соответствующим фактам и условиям.

Хотя предупреждения об опасности относятся к травмам персонала, а предостережения связаны с повреждением оборудования или имущества, следует понимать, что эксплуатация поврежденного оборудования в определенных условиях влечет за собой ухудшение рабочих характеристик и может привести к увечью или даже к смерти. Поэтому необходимо строго соблюдать требования всех предупреждений и предостережений.

Терминология

Ниже приводится перечень терминов, которые следует знать. Перечень содержит термины, которые применяются только корпорацией АВВ или имеют применение или значение, отличающиеся от обычно используемых в промышленности.

<table>
<thead>
<tr>
<th>Термин</th>
<th>Описание</th>
</tr>
</thead>
<tbody>
<tr>
<td>LON</td>
<td>Локальная операционная сеть, протокол связи</td>
</tr>
<tr>
<td>MIMIC</td>
<td>Мнемосхема (графическое изображение схем реле на ЖКД)</td>
</tr>
<tr>
<td>SPA</td>
<td>Протокол связи, разработанный корпорацией АВВ</td>
</tr>
</tbody>
</table>
1.7. Сопутствующие документы

<table>
<thead>
<tr>
<th>Наименование руководства</th>
<th>Код MRS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Справочное техническое руководство по REF 54_ "Общие сведения"</td>
<td>1MRS750527-MUM</td>
</tr>
<tr>
<td>Справочное техническое руководство по REM 54_ "Общие сведения"</td>
<td>1MRS750915-MUM</td>
</tr>
<tr>
<td>Справочное техническое руководство по RET 54_ "Общие сведения"</td>
<td>1MRS755225</td>
</tr>
<tr>
<td>Техническое описание функций (компакт-диск)</td>
<td>1MRS750889-MCD</td>
</tr>
</tbody>
</table>

1.8. Редакции документа

<table>
<thead>
<tr>
<th>Версия</th>
<th>Дата</th>
<th>История</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>07/2004</td>
<td>Перевод оригинальной английской версии H</td>
</tr>
<tr>
<td>B</td>
<td>09.03.2009</td>
<td>Перевод оригинальной английской версии N</td>
</tr>
</tbody>
</table>
2. Информация по технике безопасности

<table>
<thead>
<tr>
<th>🚨</th>
<th>На разъемах могут возникать опасные напряжения даже при отключенном напряжении питания.</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Всегда следует соблюдать государственные и местные нормы и правила электробезопасности.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Устройство содержит компоненты, чувствительные к электростатическим разрядам. Следует избегать лишних контактов с электронными компонентами.</td>
</tr>
<tr>
<td>⚠️</td>
<td>Корпус устройства должен быть надлежащим образом заземлен.</td>
</tr>
<tr>
<td>🚫</td>
<td>К выполнению электромонтажных работ допускаются только квалифицированные электрики.</td>
</tr>
<tr>
<td>🚫</td>
<td>Несоблюдение этих правил может привести к летальному исходу, травмам персонала или к существенному повреждению имущества.</td>
</tr>
<tr>
<td>🚫</td>
<td>Нарушение пломбирующей ленты на задней панели устройства приводит к аннулированию гарантии, при этом надлежащее функционирование изделия не может быть гарантировано.</td>
</tr>
<tr>
<td>🚫</td>
<td>Если сменный блок извлечен из корпуса, не касайтесь деталей внутри корпуса. Элементы реле, находящиеся внутри корпуса, могут иметь потенциал высокого напряжения, и прикосновение к ним может привести к травме.</td>
</tr>
</tbody>
</table>
Терминалы RE_54_

Терминалы серии RE_54_ построены на многопроцессорной базе, которая увеличивает производительность. Цифровая обработка сигналов в сочетании с мощным центральным процессором и распределенными средствами управления входов/выходов облегчают параллельное выполнение операций, повышают быстродействие и точность. HMI, включающий многофункциональный жидкокристаллический дисплей, делает местное использование терминала RE_54_ простым и безопасным. HMI информирует пользователя о том, как следует действовать.

Терминал RE_54_ является составным элементом системы автоматизации подстанции ABB, он расширяет функциональные возможности и придает большую универсальность концепции системы. Это оказалось возможным вследствие применения современных технологий как для аппаратных, так и для программных решений.
4. Характеристики графического HMI и мнемосхем

На передней панели терминала находятся:

- графический ЖКИ дисплей с разрешающей способностью 128 x 160 пикселей, содержащий 19 строк, разделенных на два окна;
- главное окно (17 строк), в которое выводится подробная информация о мнемосхемах, объектах, событиях, измерениях, управлении, аварийных сигналах и параметрах терминала;
- вспомогательное окно (2 строки) для связанных с терминалом индикаторов защиты и аварийных сигналов и для вывода справочных сообщений;
- три кнопки управления объектами;
- восемь произвольно программируемых светодиодов аварийной сигнализации различных цветов и с разными режимами работы в зависимости от конфигурации (выключен, зеленый, желтый, красный; горит постоянно, мигает);
- светодиодный индикатор для тестирования управления и блокировки;
- три светодиодных индикатора защиты;
- группа кнопок интерфейса HMI с четырьмя стрелочными кнопками и кнопками для очистки экрана [C] и ввода [E];
- оптически изолированный порт канала последовательной связи;
- регулятор яркости фоновой подсветки и контрастности;
- произвольно программируемая кнопка [F];
- кнопка дистанционного/местного управления (выбор режима управления [R/L]);
- добавлена функция выбора языка интерфейса HMI;
- выбор стандарта обозначения функциональных блоков.

Рис. 4.-I Терминал, вид спереди
4.1. Дисплей

В режиме ожидания в главном окне отображается панель мнемосхемы с изображением схемы конфигурации (созданной с помощью утилит Relay Configuration Tool (утилита конфигурирования реле) и Relay Mimic Editor (редактор мнемосхем реле)). Пользователь может изменить панель для режима ожидания в MAIN MENU/Configuration/Display mode (ГЛАВНОЕ МЕНЮ/Конфигурация/Режим дисплея).

Настройка панели режима ожидания

1. При работе с панелью мнемосхемы на пользовательском уровне нажмите и удерживайте в течение 2 с кнопку [E], затем введите пароль для входа на технический уровень.
2. Нажимайте [↑] или [↓] для выбора Configuration (последний пункт) в MAIN MENU.
3. Нажмите [→] для перехода в меню Configuration.
4. Нажмите [↑] или [↓] для выбора режима дисплея.
5. Нажмите [→] для перехода в меню Display mode (Режим дисплея).
6. Нажмите [↑] или [↓] для выбора панели Default (Панель по умолчанию).
7. Нажмите (Е) для перехода в режим настройки.
8. Нажмите [↑] или [↓] для выбора панели режима ожидания.
9. Подтвердите установку нажатием [E].

В качестве панели режима ожидания можно выбрать только панель пользовательского уровня.

4.1.1. Подсветка дисплея

Обычно подсветка дисплея выключена.

- Для включения подсветки нажмите кнопку на HMI.

Если на панели не производилось никаких действий, то по истечении заранее установленного времени ожидания (время подсветки) подсветка выключается. При включении питания подсветка включается для проверки дисплея, а затем она снова выключается (с задержкой, определяемой временем ожидания). Пользователь может изменять время подсветки в MAIN MENU/Configuration/MIMIC (ГЛАВНОЕ МЕНЮ/Конфигурация/Мнемосхема) [17].

Для установки времени подсветки

1. При работе с панелью мнемосхемы на пользовательском уровне нажмите и удерживайте в течение 2 с кнопку [E] и введите пароль для входа на технический уровень.
2. Нажимайте [↑] или [↓] для выбора Configuration (последний пункт) в MAIN MENU.
3. Нажмите [→] для перехода в меню Configuration
4. Нажмите [↓] для выбора пункта MIMIC [17].
5. Нажмите [→] для перехода в меню MIMIC [17].
6. Курсор находится на первом пункте меню Backlight time (Время подсветки), поэтому вы можете нажать [Е] для входа в режим настройки.
7. Установите активный разряд (см. п. 8 ниже) или нажмите [→] для активизации нужного разряда.
8. Нажимайте [↑] или [↓] для прокрутки до достижения желаемой цифры (диапазон: 1...20 мин).
9. Подтвердите установку нажатием [Е].

Для получения более полной информации по сохранению параметров см. главу “Сохранение параметров” на стр. 36.

Подсветка может также включаться с помощью функционального блока MMIWAKE в конфигурации. Например, для управления подсветкой может использоваться дискретный вход терминала.

4.1.2. Контрастность дисплея

Для получения наилучшей четкости отрегулируйте контрастность на панели мнемосхемы на пользовательском уровне или через MAIN MENU (ГЛАВНОЕ МЕНЮ) на техническом уровне (см. главу “Уровни работы HMI” на стр. 25.)

• Для увеличения контрастности нажимайте [Е] и [↑].
• Для уменьшения контрастности нажимайте [Е] и [↓].

Кратковременно нажимайте кнопку со стрелкой столько раз, сколько необходимо для получения желаемой контрастности.

Рис. 4.1.2.1 Регулировка контрастности дисплея

Пользователь может также регулировать контрастность, устанавливая параметр “Контрастность” в MAIN MENU/Configuration/MIMIC (ГЛАВНОЕ МЕНЮ/Конфигурация/Мнемосхема) [17].

В случае сохранения пользователем выбранной настройки контрастности в энергонезависимой памяти (см. главу “Сохранение параметров” на стр. 36), контрастность автоматически устанавливается на заданном уровне после перезагрузки терминала.

4.1.3. Выбор языка

Для изменения языка дисплея

1. При работе с панелью мнемосхемы на пользовательском уровне нажмите и удерживайте в течение 2 с кнопку [Е] и введите пароль для входа на технический уровень.
2. Нажимайте [↑] или [↓] для выбора Configuration (последний пункт) в MAIN MENU.
3. Нажмите [→] для перехода в меню Configuration.
4. Курсор находится в первом пункте меню Languages (Языки), поэтому можно перейти в меню Languages, нажав [→].
5. Активный язык помечен звездочкой (*).
6. Нажимайте [↓], чтобы переместить курсор на желаемый язык.
7. Подтвердите выбор нажатием [E].
 • После подтверждения курсор автоматически вернется в MAIN MENU.

Для получения более полной информации по сохранению параметров см. главу “Сохранение параметров” на стр. 36.

Терминалы поставляются с двумя предустановленными языковыми наборами. В примере рис. 4.1.3.-1 вторым предустановленным языком является немецкий. Подробнее о языковых наборах см. Техническое справочное руководство терминала.

4.1.4. Выбор стандарта обозначения функциональных блоков

Пользователь может выбрать стандарт обозначения функциональных блоков. Доступны три варианта: ABB, ANSI и IEC. ABB — используются такие же обозначения функциональных блоков, как в терминалах, выпущенных ранее версии 3.5; ANSI — используются обозначения функциональных блоков, принятые в стандарте ANSI; IEC — используются обозначения функциональных блоков, принятые в стандарте IEC.

Для настройки панели обозначения функциональных блоков
1. При работе с панелью мнемосхемы на пользовательском уровне нажмите и удерживайте в течение 2 с кнопку [E] и введите пароль для входа на технический уровень.
2. Нажимайте [↑] или [↓] для выбора Configuration (последний пункт) в MAIN MENU.
3. Нажмите [→] для перехода в меню Configuration.
4. Нажмите [↑] или [↓] для выбора режима дисплея.
5. Нажмите [→] для перехода в меню Display mode (Режим дисплея).
6. Нажмите [↑] или [↓] для выбора стандарта обозначения функциональных блоков.
7. Нажмите (E) для перехода в режим настройки.
8. Нажмите [↑] или [↓] для выбора нужного варианта.
9. Подтвердите установку нажатием [E].

4.1.5. Главное окно

Главное окно обеспечивает пользователя информацией с помощью различных панелей и меню, например:

- На пользовательском уровне:
 - конфигурация мнемосхемы, положения выключателей, положения разъединителей и т. д.;
 - события;
 - измерения;
 - аварийные сигналы.
- На техническом уровне:
 - настройка параметров;
 - регистрируемые данные;
 - входные/выходные данные функций.

В режиме ожидания, если панель мнемосхемы используется как панель режима ожидания, в изображении конфигурации (созданное с помощью утилит Relay Configuration Tool и Relay Mimic Editor), на панели мнемосхемы представляются положения выключателей и разъединителей, если они включены в конфигурацию.

4.1.6. Вспомогательное окно

Во вспомогательном окне выводятся два вида сообщений с подробными данными самого терминала, функций защиты и т. д.:

- справочные сообщения для пользователя в процессе работы;
- информационные сообщения.

Вспомогательное окно отображается всегда, независимо от вида главного окна.
4.1.7. Проверка дисплея при подаче питания

При подключении к терминалу напряжения питания включается подсветка и запускается короткая проверка дисплея. Проверка охватывает светодиоды и дисплей:

- Девять светодиодов одновременно включаются с разными цветами (красный → зеленый → желтый - ВЫКЛЮЧЕНИЕ). Одновременно на короткое время включаются три светодиода защиты и светодиодные индикаторы дистанционное/местное/запрет/логика (3 цикла для светодиодов).
- ЖКД проверяется кратковременным инвертированием изображения на экране.

После проверки дисплея его экран переходит в обычное состояние (с изображением мнемосхемы), и происходит отключение подсветки по истечении заранее установленного времени ожидания.

4.2. Назначение кнопок

4.2.1. Кнопки перемещения курсора, очистки и ввода

НМИ содержит нажимные кнопки для работы с терминалом.

При работе на техническом уровне кратковременное нажатие кнопки [↑] или [↓] интерпретируется как

- перемещение на один шаг вверх или вниз в меню.
 - Если курсор находится в верхней строке, нажатие на [↑] приводит к перемещению курсора на последнюю строку меню.
 - Если курсор находится на последней строке, нажатие на [↓] приводит к перемещению курсора на верхнюю строку меню.

и

- в режиме задания параметра — минимальный шаг вверх или вниз (цифрового значения, символа, варианта из перечисления и т. д.).

![Кнопки перемещения курсора, очистки и ввода](image-url)
В приведенной ниже таблице кратко описывается назначение кнопок и их функции.

Таблица 4.2.1-1 Функции кнопок

<table>
<thead>
<tr>
<th>Кнопка</th>
<th>Пользовательский уровень:</th>
<th>Технический уровень:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Влево/Вправо</td>
<td>• перемещение между панелями;</td>
<td>• выбор соответствующего уровня меню (MAIN, Group, Subgroup or Parameter) (ГЛАВНОЕ, группа, подгруппа, параметр);</td>
</tr>
<tr>
<td></td>
<td>• переход к записанным данным и обратно из панели событий.</td>
<td>• активизация разряда численного параметра/строки символов.</td>
</tr>
<tr>
<td>Верх/Вниз</td>
<td>Пользовательский уровень (панель мнемосхемы):</td>
<td>Технический уровень:</td>
</tr>
<tr>
<td></td>
<td>• выбор события из панели событий и прокрутка записанных данных;</td>
<td>• перемещение курсора вверх или вниз для выбора желаемого пункта меню;</td>
</tr>
<tr>
<td></td>
<td>• регулировка контрастности дисплея.</td>
<td>• прокрутка до желаемого варианта из перечисленных;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• прокрутка до желаемого значения активизированного разряда/цифры для числового параметра или символа для строки символов;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• регулировка контрастности дисплея.</td>
</tr>
<tr>
<td>Очистка/Отмена</td>
<td>Пользовательский уровень:</td>
<td>Технический уровень:</td>
</tr>
<tr>
<td></td>
<td>• сброс светодиодов и любых действующих информационных сообщений;</td>
<td>• выход из режима установки;</td>
</tr>
<tr>
<td></td>
<td>• удаление информации о событиях или данных аварийной сигнализации в соответствии с выбранной панелью.</td>
<td>• удаление информационных сообщений всех видов; (нажмите и удерживайте [C] не менее 2 с).</td>
</tr>
<tr>
<td>Ввод</td>
<td>Пользовательский уровень:</td>
<td>Технический уровень:</td>
</tr>
<tr>
<td></td>
<td>• вход в ГЛАВНОЕ МЕНЮ на техническом уровне с панели мнемосхемы на пользовательском уровне (путем нажатия на [E] в течение 2 с и ввода пароля при необходимости);</td>
<td>• переход к панели мнемосхемы на пользовательском уровне из ГЛАВНОГО МЕНЮ на техническом уровне (путем нажатия на [E] в течение 2 с);</td>
</tr>
<tr>
<td></td>
<td>• переключение между режимами панели событий.</td>
<td>• включение режима установки параметра в меню параметров;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• подтверждение уставки.</td>
</tr>
</tbody>
</table>
4.2.2. **Кнопка выбора режима управления**

Кнопка выбора режима управления [R\L] (дистанционное/местное) используется для выбора режима управления в соответствии со следующей таблицей. По поводу обращения с паролем см. главу “Пароли” на стр. 27.

При изменении режима управления с помощью кнопки [R\L] выбранное место запоминается.

Таблица 4.2.2-1 **Кнопка выбора режима управления**

Местное				• Режим МЕСТНОГО управления указывается желтым свечением светодиодного индикатора [L].
------------	---	---	---	• Управление объектами может осуществляться с помощью кнопок [O] и [I].
				• Любой сигнал дистанционного управления, передаваемый по последовательному каналу связи, блокируется.
				• Действуют дискретные входы и логические функции.
Дистанционное				• Режим ДИСТАНЦИОННОГО управления указывается желтым свечением светодиода [R].
				• Управление объектами осуществляется дистанционно через последовательный канал связи.
				• Все кнопки местного управления блокируются.
				• Действуют дискретные входы и логические функции.
Запрет				• В режиме ЗАПРЕТА все светодиодные индикаторы выключены.
				• Местное и дистанционное управление блокируется.
				• Действуют дискретные входы и логические функции.
Логическое управление				• Режим ЛОГИЧЕСКОГО управления указывается свечением необозначенного светодиода.
				• Дискретные входы функции COLOCAT и программируемая логика используются для выбора режимов МЕСТНОГО или ДИСТАНЦИОННОГО управления или режима ЗАПРЕТА.
				• Действуют дискретные входы и логические функции.
Режим ЗАПРЕТА				• Включен режим ЗАПРЕТА.
Режим МЕСТНОГО управления				• Включен режим МЕСТНОГО управления.
				• Режим ДИСТАНЦИОННОГО управления выключен.
Режим ДИСТАНЦИОННОГО управления				• Включен режим ДИСТАНЦИОННОГО управления.
				• Режим МЕСТНОГО управления выключен.
В конфигурации должна быть предусмотрена функция логического переключения режима управления (COLOCAT), чтобы можно было выбирать ЛОГИЧЕСКОЕ управление с помощью кнопки [R\L] (более подробную информацию см. на компакт-диске "Технические описания функций").

Рис. 4.2.2.-1 Последовательность выбора режима управления при возможности выбора ЛОГИЧЕСКОГО управления (функция COLOCAT используется в конфигурации)

Рис. 4.2.2.-2 Последовательность выбора режима управления, когда ЛОГИЧЕСКОЕ управление не может быть выбрано (функция COLOCAT не используется в конфигурации)

4.2.3. Включение выключателя с задержкой

При включении выключателя с местного интерфейса HMI в целях безопасности иногда может потребоваться задержка выполнения операции фактического включения. За это время оператор может отойти назад, устранив тем самым опасность травмирования в случае аварийной ситуации.

Задержка является дополнительной функцией и её длительность может регулироваться. Параметр меню Control (Управление)/General (Общее)/CB close delay (Задержка на включение выключателя) используется для настройки задержки. Диапазон настройки составляет 0–30 секунд. Нулевая задержка, которая соответствует значению по умолчанию, означает, что функция задержки выключена.

Задержка влияет только на операции включения, операции отключения всегда выполняются незамедлительно. Если выбран режим ДИСТАНЦИОННОГО управления, то параметр не используется.

При нажатии кнопки замыкания [I] изображение выбранного выключателя на панели мнемосхемы начинает мигать, и начинается отсчет времени задержки.
По истечении времени задержки выключатель замыкается, а его изображение перестает мигать и возвращается к нормальному, неинвертированному режиму представления. При этом оставшееся время задержки отображается на вспомогательном окне интерфейса HMI.

Операция включения с задержкой может быть отменена путем нажатия любой кнопки или изменения режима управления. В течение задержки обычные функции кнопок [выбор], “включить” [I], “отключить” [O] и [R/L] (дистанционное/местное) выключены, но при нажатии этих кнопок операция включения с задержкой отменяется. Функции других клавиш ([F], [C], [E] и клавиш со стрелками) в течение задержки не меняются, но нажатие этих клавиш приводит также к отмене операции включения с задержкой.

В случае отмены операции включения с задержкой на вспомогательном окне в течение одной секунды отображается текст COCBx: closing cancelled (COCBx: включение отменено). Изображение выключателя перестает мигать и возвращается к нормальному, неинвертированному режиму представления.

4.2.4. Управление объектом на панели мнемосхемы

Для регулирования времени ожидания:
1. При работе с панелью мнемосхемы на пользовательском уровне нажмите и удерживайте в течение 2 с кнопку [E] и введите пароль для входа на технический уровень.
2. Нажмите [↓] для выбора пункта Control в MAIN MENU
3. Нажмите [→] для перехода в меню Control.
4. Курсор находится в первом пункте меню General (Общее), поэтому можно перейти в меню General, нажав [→].
5. Курсор находится на первом пункте меню, Select timeout (Время ожидания), поэтому вы можете нажать [E] для входа в режим установки.
6. Установите активный разряд (см. п. 7 ниже) или нажмите [→] для активизации другого разряда (диапазон: 10 ...600 с).
7. Нажимайте [↓] или [↑] для прокрутки до достижения желаемой цифры.
8. Подтвердите установку нажатием [E].

Положение соответствующего объекта в процессе блокировки отображается во вспомогательном окне. В зависимости от состояния функции блокировки либо выполняется команда на отключение или включение, либо, если команда не разрешена, загорается светодиод блокировки.

Вид управляющего импульса и его длительность настраиваются с помощью параметров “Fixed pulse” (Фиксированный импульс), “Forced pulse” (Форсированный импульс), “Open pulse” (Импульс на отключение) и “Close
"pulse" (Импульс на включение) в MAIN MENU/Control/ (ГЛАВНОЕ МЕНЮ/Управление).../(функциональный блок управления).../ Actual setting (Установка действительного значения). Для получения более подробной информации по виду импульсов на отключение и включение обратитесь к документации по функциональным блокам (компакт-диск “Technical Descriptions of Functions” (Техническое описание функций)).

Таблица 4.2.4-1 Управление объектом

<table>
<thead>
<tr>
<th>Состояние разъединителя</th>
<th>Кнопка</th>
<th>Выполняемая команда</th>
</tr>
</thead>
<tbody>
<tr>
<td>Close (Включен)</td>
<td>И</td>
<td>Отпустить</td>
</tr>
<tr>
<td></td>
<td>О</td>
<td>Отключить</td>
</tr>
<tr>
<td>Open (Free) (Отключен)</td>
<td>И</td>
<td>Включить</td>
</tr>
<tr>
<td></td>
<td>О</td>
<td>Земля</td>
</tr>
<tr>
<td>Earth (Земля)</td>
<td>И</td>
<td>Отпустить</td>
</tr>
<tr>
<td></td>
<td>О</td>
<td>Отключить</td>
</tr>
<tr>
<td>Undefined (Не определено)</td>
<td>И</td>
<td>Отпустить</td>
</tr>
<tr>
<td></td>
<td>О</td>
<td>Отключить</td>
</tr>
</tbody>
</table>

Возможные операции с трехпозиционным разъединителем зависят от его текущего состояния. Возможные операции и способ управления разъединителем с помощью кнопок отключения [O] и включения [I] приведены в табл. 4.2.4-2.
Функция аварийного отключения

В аварийных ситуациях необходима функция быстрого отключения выключателя. Это достигается одновременным нажатием кнопок [↑] и [0].

Функция аварийного отключения может быть реализована с помощью функции COCBDIR. Это означает, что в конфигурации должна быть настроена функция COCBDIR и ее выход OPEN (ОТКЛЮЧЕНИЕ) должен быть соединен с входом OPENDIR функции COCB1/2 (см. компакт-диск “Technical Descriptions of Functions” (Технические описания функций)).

В терминалах, выпущенных ранее версии 3.5, аварийное отключение может выполняться только при активной панели мнемосхемы. Начиная с версии 3.5 аварийное отключение выполняется независимо от активной панели.

Программирование

На передней панели терминала установлен разъем последовательного канала связи RS-232 для подключения к терминалу персонального компьютера (ПК) по специальному оптоволоконному кабелю 1MKC950001-2. Кроме того, для связи ПК с терминалом требуется специальная программа.
5. Уровни работы HMI

HMI имеет два основных уровня работы: пользовательский уровень и технический уровень. Пользовательский уровень предназначен для измерений и контроля, а технический уровень – для программирования и параметризации терминала.

Рис. 5.-1 Уровни работы HMI и их структура
5.1. Квитирование и сброс светодиодов, информационных сообщений, выходов и регистров

Информация, которую несут светодиоды, информационные сообщения, выходы и регистры, может быть квитирована и сброшена независимо от уровня работы HMI, отображаемой панели или меню.

- Информация светодиодов, информационных сообщений и выходов функций защиты квитируется одновременным нажатием кнопок [C] и [E] в течение не менее 2 секунд. Сообщение во вспомогательном окне подтверждает факт квитирования.

- Информация светодиодов, информационных сообщений, выходов функций и регистров, включая данные регистратора аварийных процессов, квитируется одновременным нажатием кнопок [C] и [E] в течение не менее 5 секунд. Сообщение во вспомогательном окне подтверждает факт квитирования.

Рис. 5.1.-1 Квитирование и сброс
5.2. Пароли

В HMI предусмотрены три пароля для различного применения. Проверка паролей 1 и 3 отключена по умолчанию.1

Таблица 5.2.-1 Пароли

<table>
<thead>
<tr>
<th>Пароль</th>
<th>Применение</th>
<th>Состояние</th>
<th>Значение по умолчанию</th>
</tr>
</thead>
</table>
| Пароль 1 (мнемосхема) | Выбор местное/дистанционное/запрет/логическое управление с помощью кнопки [RL]
• По истечении заранее установленного времени ожидания (время подсветки) пароль сбрасывается и его необходимо ввести снова кнопкой [RL]. Подробнее о заранее установленном времени ожидания см. раздел "Подсветка дисплея" на стр. 14.
• Пароль сбрасывается при входе на технический уровень. | Разрешено/Запрещено (может использоваться) | 100000 |
| Пароль 2 (параметр) | Вход в режим настройки параметров на техническом уровне
• Пароль остается введенным, пока пользователь находится на техническом уровне или пока не истечет время подсветки. | Всегда задействован | 200000 |
| Пароль 3 (Уровень HMI) | Вход на технический уровень из панели мнемосхемы в MAIN MENU (ГЛАВНОЕ МЕНЮ) | Разрешено/Запрещено (может использоваться) | 300000 |

Пользователь может задействовать пароли 1 и 3 в MAIN MENU/Configuration/Password (ГЛАВНОЕ МЕНЮ/Конфигурация/Пароль) (/MIMIC (Мнемосхема) или /Level (Уровень)).

Для задействования пароля (1 или 3)

1. Для входа на технический уровень при работе с панелью мнемосхемы на пользовательском уровне нажмите и удерживайте в течение 2 с кнопку [E].
2. Нажимайте [7] или [↓] для выбора Configuration (последний пункт) в MAIN MENU.
3. Нажмите [→] для перехода в меню Configuration.
4. Нажмите [↓] для выбора пункта Password (Пароль).
5. Нажимайте [→] для перехода в меню Password.
6. Нажмите [↓] или [↑] для выбора MIMIC (пароль 1) или Level (пароль 3).
7. Нажмите [→] для перехода в выбранное меню.

1. В терминалах, выпущенных ранее версии 3.5, все пароли проверяются по умолчанию.
9. Нажмите [↓] для установки параметра в состояние “Activate” (Активировать).
10. Подтвердите установку нажатием [E].
11. Для отключения другого пароля нажмите [+], чтобы вернуться в предыдущее меню, и повторите операции с 6 по 10.

Для того чтобы вернуть использование пароля, установите параметр “Activate passw.” (Активация пароля) в состояние “Do not activate” (Не активировать).

![Ввод пароля](image)

Рис. 5.2.-1 Ввод пароля

Если пользователь вводит пароль во вспомогательном окне, когда поступает информационное сообщение IRF (внутренняя неисправность реле) (см. главу "Информационные сообщения" на стр. 40), задание пароля автоматически отменяется, и на дисплей выводится это сообщение. Затем следует попытаться снова открыть пароль. Если пароль открыл (или попытка оказалась неудачной), во вспомогательном окне снова появляется сообщение. Сообщения удаляются с экрана после нажатия кнопки [C] в течение 2 с.

Пользователь может заменить все три пароля или только один из них в MAIN MENU/Configuration/Password (ГЛАВНОЕ МЕНЮ/Конфигурация/Пароль) /Level (Уровень), /MIMIC (Мнемосхема) или /Parameter (Параметр)). Максимальная длина пароля равна шести символам, и как цифры, так и символы могут выбираться с помощью кнопок [↑] и [↓].

Для изменения пароля
1. При работе с панелью мнемосхемы на пользовательском уровне нажмите и удерживайте в течение 2 с кнопку [E] и введите пароль для перехода на технический уровень.
2. Нажимайте [↑] или [↓] для выбора Configuration (последний пункт) в MAIN MENU.
3. Нажмите [→] для перехода в меню Configuration
4. Нажмите [↓] для выбора пункта Password (Пароль).
5. Нажмите [→] для перехода в меню Password.
6. Нажмите [↓] или [↑] для выбора MIMIC (пароль 1), Parameter (пароль 2) или Level (пароль 3).
7. Нажмите [→] для перехода в выбранное меню.
8. Нажмите [↓] для выбора пункта “Change password” (Изменение пароля) (в случае пароля параметров других параметров нет, поэтому курсор сразу установится на нужном параметре).
10. Во вспомогательном окне появится текст NEW PASSWORD (НОВЫЙ ПАРОЛЬ).
 Пользуйтесь кнопками со стрелками для ввода нового пароля, как при обычном вводе пароля (см. рис. 5.2.-1), и нажмите [E].
11. Проверьте новый пароль, повторно введя его согласно запросу во вспомогательном окне и нажмите [E].

5.3. Пользовательский уровень

На пользовательском уровне данные принимаются на четырех различных панелях, которые отображаются в главном окне:
1. Панель мнемосхемы
2. Панель измерений
3. Панель событий
4. Панель аварийной сигнализации

Вспомогательное окно дает общую информацию о том, как прокручивать данные на дисплее. Пользуйтесь кнопками со стрелками на пользовательском уровне следующим образом:
• Для перехода от одной панели к другой в главном окне нажимайте кнопку [→] или [←].
• Для прокрутки событий или перечней измерений, когда их больше, чем умещается на дисплее, нажимайте кнопку [↑] или [↓].

Манипуляции с кнопками со стрелками не влияют на индикацию, управление объектами или статус панели.

Используемая по умолчанию (при включении питания, по истечении времени ожидания и т. п.) панель терминала задается параметром “Default view” (Панель по умолчанию) в меню /MAIN MENU/Configuration/Display mode/ (ГЛАВНОЕ МЕНЮ/Конфигурация/Режим дисплея).

В терминалах, выпущенных ранее версии 3.5, панелью по умолчанию является панель мнемосхемы.
5.3.1. Панель мнемосхемы

Когда в главном окне открыта панель мнемосхемы, на экране отображается конфигурация устройства управления. Мнемосхема показывает в реальном времени положения объектов (разъединителей, выключателей и т. д.) в соответствии с состояниями предварительно заданных дискретных входов.

Функции кнопки [C] при работе с панелью мнемосхемы

- Нажимайте на [C] в течение 2 с для сброса индикации.
- Нажмите на [C] для отмены запроса пароля.

Рис. 5.3.1.-1 Панель мнемосхемы

5.3.2. Панель измерений

Если в главном окне открыта панель MEASUREMENT (измерения), на дисплее отображаются измеряемые терминалом величины. Прокрутка вверх и вниз по списку осуществляется кнопками [↑] и [↓].

Функции кнопки [C] при работе с панелью MEASUREMENT (измерения)

- Если имеются включенные индикаторы, нажимайте на [C] в течение 2 с для их сброса.
- Если нет включенных индикаторов, нажимайте на [C] в течение 2 с для сброса данных измерения суммарной энергии.

Рис. 5.3.2.-1 Панель измерений
5.3.3. Панель событий

Панель событий включает название устройства, номер канала, код, дату и время последних 100 действий. Самое последнее событие сохраняется наверху списка событий.

Функции кнопки [C] при работе с панелью EVENT (события)

- Если имеются включенные индикаторы, нажимайте на [C] в течение 2 с для их сброса.
- Если нет включенных индикаторов, нажимайте на [C] в течение 2 с для сброса записанных событий.

В различных режимах панели событий кнопка [E] меняется.

Рис. 5.3.3.-1 Панель событий

Перемещение по меню панели событий осуществляется, как показано на рисунке, т. е. предусмотрена возможность перехода от события срабатывания, отображаемого в панели событий, в меню регистрируемых данных, где содержатся данные об этом событии.

Рис. 5.3.3.-2 Принцип перемещения по панели событий

1. В некоторых функциональных блоках предусмотрена также возможность перехода по другим событиям, а не только по событиям срабатывания.
2. Регистрация данных производится не по всем событиям.
В режиме просмотра панель событий прокручивается, как обычно, кнопками [↑] и [↓]. Наличие курсора для выбора конкретного события не предусмотрено. Панель меняется при нажатии кнопок [→] или [←]. Очистить список событий можно кнопкой [C]. Очистка возможна только в режиме просмотра.

Выбор конкретного события предусмотрен в режиме выбора. По достижении курсором нижней части панели, когда имеется больше событий, отображается следующая группа событий (не более пяти) и курсор устанавливается на первое событие панели. При нажатии кнопки со стрелкой вправо на выбранном событии отображаются зарегистрированные данные (если такие имеются). Для возврата из панели зарегистрированных данных в панель событий нажмите кнопку [←]. В панели зарегистрированных данных нет курсора, но имеется возможность прокрутки.

5.3.4. Панель аварийной сигнализации

Панель аварийной сигнализации показывает все включенные в конфигурацию аварийные сигналы вместе с соответствующими текстами. Действующие (не квитированные оператором) аварийные сигналы выделяются среди недействующих с помощью светодиодов и определенных пользователем текстов.

Функции кнопки [C] при работе с панелью ALARM (аварийная сигнализация)

- Если имеются включенные индикаторы, нажимайте на [C] в течение 2 с для их сброса.
- Если нет включенных индикаторов, нажимайте на [C] в течение 2 с для квитирования аварийных сигналов.
- Квитирование действует в соответствии с конфигурацией.

Рис. 5.3.4.-1 Панель аварийной сигнализации
5.4. Технический уровень

Интерактивная связь между пользователем и HMI на техническом уровне осуществляется на основе меню, в котором содержится информация для программирования терминала.

- Для входа в ГЛАВНОЕ МЕНЮ на техническом уровне, находясь в панели мнемосхемы на пользовательском уровне, нажимайте на [E] в течение 2 с и введите пароль при необходимости.
- Для возврата на пользовательский уровень, находясь в MAIN MENU (ГЛАВНОЕ МЕНЮ), нажимайте на [E] в течение 1 с.

Рис. 5.4.-1 Переходы между пользовательским и техническим уровнем

5.4.1. Система меню

Меню на техническом уровне используется для считывания и установки параметров, считывания записанных величин и т. д. Система меню делится на три или четыре уровня (в зависимости от прав доступа):

- ГЛАВНОЕ МЕНЮ
- Меню группы
- Меню подгруппы
- Меню параметров
5.4.1. Структура меню на техническом уровне

Основной панелью на техническом уровне является MAIN MENU (ГЛАВНОЕ МЕНЮ), за которым в соответствии с иерархической структурой следуют меню группы, меню подгруппы и меню параметров. Для меню всех уровней первая строка на экране предназначена для заголовка, который указывает название текущего меню.

На техническом уровне используются кнопки со стрелками, а также кнопки [C] и [E]. Кнопка выбора места управления и кнопки управления объектами не используются в системе меню.

• Для перехода из одного меню в другое используются кнопки [→] или [←].
• Для выбора пункта меню используются кнопки [↑] или [↓].

5.4.2. Установка параметра

Параметры могут задаваться на последнем уровне меню — меню параметров. Каждый параметр описывается двумя строками:

1-я строка: текст параметра
2-я строка: задаваемое значение
(численная величина, строка символов, вариант из перечисления).

Таблица 5.4.2-1 Способы задания параметров

<table>
<thead>
<tr>
<th>Тип</th>
<th>Описание</th>
<th>Пример</th>
</tr>
</thead>
<tbody>
<tr>
<td>Числовые значения</td>
<td>Один из разрядов мигает и может быть изменен</td>
<td>Параметр “Start current” (ток пуска): например 001,0 % In</td>
</tr>
<tr>
<td>Строка символов</td>
<td>Один из символов (или разряд) мигает и может быть изменен</td>
<td>Параметр “Main header” (Основной заголовок) (функциональный блок MEDREC16): пример заголовок по умолчанию</td>
</tr>
</tbody>
</table>

Терминалы защиты и управления

Таблица 5.4.2-1 Способы задания параметров

<table>
<thead>
<tr>
<th>Тип</th>
<th>Описание</th>
<th>Пример</th>
</tr>
</thead>
<tbody>
<tr>
<td>Перечисление</td>
<td>Мигает весь текст: выберите один из предварительно заданных вариантов</td>
<td>Параметр "Operation mode" (режим работы):</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Не используется</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Независимая выдержка времени</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Мгновенный</td>
</tr>
</tbody>
</table>

Для установки параметра

1. Для выбора параметра (курсор перемещается на две строки за один раз) в меню параметров нажимайте кнопку [↓] или [↑].
2. Когда соответствующий параметр будет выделен, нажмите и удерживайте кнопку [E] в нажатом состоянии в течение 2 секунд.
3. Введите пароль (см. рис. 5.2.-1) и нажмите [E]. (пароль необходим при первой установке параметра, он продолжает действовать, пока пользователь остается на техническом уровне или пока не истечет время подсветки).
4. Установите параметр:
 • В случае перечисления вариантов (мигает весь текст) нажимайте кнопку [↓] или [↑] для прокрутки до достижения желаемого варианта.
 • В случае числовых значений или строки символов (мигает первый разряд/символ):
 I Для выбора разряда/символа нажимайте кнопки [→] или [←].
 II Для прокрутки до желаемого разряда/символа нажимайте кнопку [↓] или [↑].
 III Повторяйте пункты I и II для задания других разрядов/символов.
 • Если изменение параметра подтверждено нажатием [E], новое значение вступает в действие немедленно. Однако все изменения параметров должны быть сохранены в энергонезависимой памяти, как описано в разделе “Сохранение параметров” на стр. 36.
 • Если подтверждается недопустимое значение, то сообщение во вспомогательном окне указывает пользователю, что заданное значение выходит за пределы допустимого диапазона, и предыдущее значение параметра остается неизменным.

Специальные параметры для измерительных устройств в MAIN MENU/Configuration/Current trafo (ГЛАВНОЕ МЕНЮ/Конфигурация/Трансформатор тока), .../Rogow.sensor (Катушка Роговского), .../Voltage trafo (Трансформатор напряжения) и .../Volt. Divider (Делитель напряжения) становятся действующими только после того, как они будут сохранены с помощью параметра “Store” (Сохранение), и терминал будет переустановлен с помощью параметра “Software reset” (Сброс программы) в MAIN MENU/Configuration/General (ГЛАВНОЕ МЕНЮ/Конфигурация/Общие).
5.4.3. Сохранение параметров

Если значение параметра изменено, новая величина вступает в действие немедленно, за исключением специальных параметров для измерительных устройств (см. главу “Установка параметра” на стр. 34). Однако новые параметры должны быть записаны в энергонезависимую память следующим образом:

I: путем выполнения следующей последовательности

1. На техническом уровне выберите MAIN MENU/Configuration/General/Store (ГЛАВНОЕ МЕНЮ/Конфигурация/Общие/Сохранение).
2. Установите параметр “Store” (Сохранение) в состояние “Start/Progress” (Пуск/Выполнение).
3. Нажмите [E] для подтверждения, во вспомогательном окне подтверждается сохранение.

ИЛИ

II: путем перехода из MAIN MENU (ГЛАВНОЕ МЕНЮ) к панели мнемосхем

• Когда при работе в MAIN MENU (ГЛАВНОЕ МЕНЮ) нажимается кнопка [E] для выхода с технического уровня, если параметр был изменен, то во вспомогательном окне появляется текст “Save parameters E = Yes, C = No” (Сохранить параметры E = Да, C = Нет).
• Нажмите [E] для сохранения измененных значений в энергонезависимой памяти.
• Если нажать [C], параметры не будут сохранены в энергонезависимой памяти до тех пор, пока сохранение не будет инициировано в следующий раз.
• Если не нажимать ни на [C], ни на [E], то изменения будут записаны в память по истечении времени подсветки.
• Если параметр был изменен и это подтверждено нажатием кнопки [E], как описано в разделе “Задание параметров”, но выход с технического уровня не был осуществлен (см. выше), то изменения будут записаны в память по истечении времени подсветки.

На сохранение данных в энергонезависимой памяти указывает текст “--Storing--” (Сохранение), который появляется во вспомогательном окне. Заметим, что запись в память может быть инициирована также, например, по последовательному каналу связи.

В процессе записи информации в память не допускается отключение внешнего источника питания; сохраняемые данные будут сохранены в энергонезависимой памяти только при условии, что запись данных успешно завершена.
6. Сообщения во вспомогательном окне

Во вспомогательном окне выводятся сообщения двух видов:

1. Информационные сообщения, которые в свою очередь подразделяются на:
 • информацию о функциях терминала и о его состоянии (самодиагностика), выводимую вместе со светодиодной индикацией
 • текстовые сообщения без светодиодной индикации, обычно относящиеся, например, к контролю состояния объектов, аварийной сигнализации и предупреждениям.

2. Справочные сообщения

Все сообщения фиксируются, т. е. они остаются на дисплее до их квитирования оператором или до того, как появится другое сообщение с более высоким приоритетом.

Рис. 6.-1 Индикаторы защиты

6.1. Приоритет информационных и справочных сообщений

Сообщения во вспомогательном окне имеют определенные приоритеты. Если одновременно активизируется индикация различных данных, то на экран выводится сообщение с наивысшим приоритетом. По приоритетам сообщения располагаются в следующем порядке:

1. Внутренняя неисправность
2. Отключение, УРОВ
3. Пуск, блокировка, мониторинг (контроль состояния объектов)
4. Справочные сообщения

Что касается сообщений 1 и 2, то во вспомогательном окне отображается первое действующее сообщение, в то время как для сообщений 3 и 4 выводится последнее действующее сообщение.
6.2. Справочные сообщения

Справочные сообщения (приоритет 4) дают рекомендации оператору, как следует действовать дальше, см. пример, приведенный ниже.

Если во вспомогательном окне отображается информационное сообщение, то справочные сообщения не будут выводиться, пока окно не будет очищено.

6.3. Информационные сообщения

Информационные сообщения (приоритеты 1-3) автоматически дают краткую информацию о работе защиты и контроля состояния объектов, а также о неисправностях внутренних релейных устройств. Сообщения отображаются во вспомогательном окне в порядке приоритета и остаются активными до квитирования их оператором путем нажатия кнопки [C] в течение 2 секунд.

Если функция защиты срабатывает, во вспомогательном окне отображается название соответствующего функционального блока и текст “:TRIP” (Срабатывание), при этом загорается красный светодиод. В случае функций трехфазной или двухфазной защиты указывается также неисправная фаза.
Терминалы защиты и управления

Если защита сработала, но неисправность не исчезла, функция защиты формирует сигнал отключения с задержкой для УРОВ (устройство резервирования отказа выключателя). Красный мигающий светодиод сигнализирует о включении функции УРОВ. Название функционального блока, вызвавшего отключение, и текст "TRIP" (Срабатывание) также остаются во вспомогательном окне.

6.3.2. Самоконтроль (IRF)

Терминал RE_54_ оснащен системой расширенного самоконтроля. Система анализирует аварийные ситуации в процессе работы RE_54_ и информирует пользователя об имеющихся неисправностях через HMI и по каналу связи LON/SPA.

При обнаружении неисправности зеленый светодиод готовности начинает мигать. Одновременно терминал выдает сигнал неисправности на выходное реле системы самоконтроля RE_54_. Кроме того, на HMI появляется текстовое сообщение, указывающее на неисправность, и формируется событие E57, передаваемое по последовательному каналу связи (канал 0).

Текст индикации неисправности на дисплее HMI состоит из двух строк, показанных ниже:

Индикация неисправности имеет наивысший приоритет в HMI. Другие сообщения в HMI не могут перекрывать данных самоконтроля. Если на экран дисплея поступил сигнал о неисправности, то текст индикации неисправности остается на HMI. Текст индикации неисправности можно стереть с дисплея нажатием кнопки [C] в течение 2 секунд, но зеленый светодиод будет продолжать мигать. Мигание зеленого светодиода готовности не может быть остановлено.

В случае исчезновения внутренней неисправности, тест индикации неисправности остается на дисплее до тех пор, пока экран не будет очищен нажатием кнопки [C]. Зеленый светодиод готовности перестает мигать, и выход сигнализации самоконтроля выключается, переходя в обычное рабочее состояние. Кроме того, по последовательному каналу связи передается событие E56 (канал 0).
Код неисправности

Если в терминале REF 54_ появляется внутренняя неисправность, система самоконтроля формирует код IRF, который указывает тип неисправности. Код неисправности можно прочитать в MAIN MENU/Status/General/IRF code (ГЛАВНОЕ МЕНЮ/Состояние/Общие/Код IRF). Код указывает первую внутреннюю неисправность, обнаруженную системой самоконтроля.

Не сбрасывайте терминал, не считав перед этим код неисправности IRF. Код неисправности следует записать и указать при составлении заявки на ремонт.

Устранение неисправностей (REF 54_, версия 2.5 и более поздние, RET 54_)

Релейное устройство будет пытаться восстановиться либо путем перезапуска модуля (модуля входов/выходов или интерфейса человек-машина), который выдает сигнал неисправности, либо путем перезапуска всего релейного устройства. При перезапуске состояние неисправности (IRF) остается активным до тех пор, пока внутренняя программа самоконтроля не определит, что релейное устройство работает нормально. Если после трех перезапусков неисправность остается, релейное устройство переходит в состояние постоянной внутренней неисправности.

При возврате к нормальной работе текст индикации неисправности заменяется следующим: “internal fault *CLEARED*” (внутренняя неисправность УСТРАНЕНА), и зеленый индикатор READY возвращается в состояние постоянного свечения. Кроме того, событие 0/E56 передается по последовательному каналу связи.

Дополнительно текст индикации неисправности был заменен на более информативный текст, указывающий также код неисправности.

Индикация контроля состояния

Если терминал имеет функции контроля состояния, которые не относятся непосредственно к функциям защиты терминала или к состоянию его внутренних устройств, то они отображаются во вспомогательном окне с помощью сообщения SUPERV и поясняющего текста, см. пример, приведенный ниже.
7. Светодиодные индикаторы

HMI имеет три светодиода защиты. Основные функции светодиодов описываются ниже. Кроме того, имеются специальные режимы работы светодиодов, характерные для определенных функциональных блоков, которые более подробно рассматриваются в руководстве по функциональным блокам (см. компакт-диск “Technical Descriptions of Functions” (Техническое описание функций)).

Светодиоды могут работать в режимах с фиксацией и без фиксации:
• В режиме без фиксации светодиоды автоматически отключаются при пропадании неисправности (ступень защиты возвращается)
• В режиме с фиксацией светодиод продолжает гореть, несмотря на исчезновение неисправности, до тех пор пока не будет нажата кнопка [C] в течение 2 секунд.

7.1. Зеленый светодиод

Светодиод готовности может выполнять три различные функции.

<table>
<thead>
<tr>
<th>Светодиод постоянно светится: ГОТОВНОСТЬ</th>
<th>Обычный режим</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Нет внутренних неисправностей.</td>
</tr>
<tr>
<td></td>
<td>• Напряжение питания подано.</td>
</tr>
<tr>
<td>Мигание светодиода: IRF (внутренняя неисправность реле)</td>
<td>Произошла внутренняя неисправность релейного устройства (IRF), но напряжение питания подключено</td>
</tr>
<tr>
<td></td>
<td>• При возникновении внутренней неисправности во вспомогательном окне отображается сообщение при условии, что работают HMI и мнемосхема.</td>
</tr>
<tr>
<td></td>
<td>• Светодиод IRF фиксируется.</td>
</tr>
<tr>
<td></td>
<td>ИЛИ</td>
</tr>
<tr>
<td></td>
<td>Терминал находится в режиме тестирования.</td>
</tr>
<tr>
<td>Светодиод не активен: ВЫКЛ.</td>
<td>Напряжение питания не подключено к терминалу.</td>
</tr>
<tr>
<td></td>
<td>Прежде чем предпринимать какие-либо действия, проверьте, что напряжение питания не подсоединено.</td>
</tr>
</tbody>
</table>
7.2. Желтый светодиод

Таблица 7.2.-1 Функции желтого светодиода

<table>
<thead>
<tr>
<th>Светодиод не активен: ВЫКЛЮЧЕН</th>
<th>Обычный режим</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Активные функции отсутствуют</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Светодиод постоянно светится: ПУСК</th>
<th>Активизировалась функция защиты, и на дисплее указана причина пуска. Возможен выбор режима работы светодиода запуска: с фиксацией или без фиксации. Если в течение короткого времени было запущено несколько функций защиты, на дисплее отображается последний пуск.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Мигание светодиода: БЛОКИРОВКА

Светодиод продолжает мигать, пока функция защиты терминала блокирована.
• Индикатор блокировки не имеет фиксации, т. е. он отключается, как только снимается блокировка, или если рассматриваемая функция защиты больше не активна.
• Если функция защиты все еще активна после снятия сигнала блокировки, то включается светодиод пуска.

Сообщение, указывающее, какая функция заблокирована, выводится на дисплей.
• Если в одно и то же время заблокированы несколько функций защиты, то на дисплее отображается самая последняя блокировка.
• Если функция защиты заблокирована, в то время как активизируются другие функции защиты, то светодиод продолжает мигать (БЛОКИРОВКА имеет более высокий приоритет по отношению к ПУСКУ).

7.3. Красный светодиод

Таблица 7.3.-1 Функции красного светодиода

<table>
<thead>
<tr>
<th>Светодиод не активен: ВЫКЛЮЧЕН</th>
<th>Обычный режим</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Сработавшие функции отсутствуют</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Светодиод постоянно светится: TRIP (СРАБАТЫВАНИЕ)</th>
<th>Функция защиты сработала Индикатор срабатывания фиксируется, т. е. он должен сбрасываться нажатием кнопки [C] (или по последовательному каналу связи). Если несколько ступеней/функций защиты осуществляют срабатывание в течение короткого времени, то на дисплее остается первое срабатывание.</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>
7.4. Блокировка

Блокировка используется для запрета прохождения команд включения или выключения на управляемые объекты в определенных ситуациях. Программа блокировки RE_54_ работает в соответствии с принципом разрешения, т. е. любая управляющая операция, которую не разрешает блокировка, запрещается.

Когда объект выбирается кнопкой выбора, во вспомогательном окне отображается состояние программы блокировки. Самый нижний светодиод из программируемых светодиодов предназначен для индикации функции блокировки.

Таблица 7.3.-1 Функции красного светодиода

<table>
<thead>
<tr>
<th>Мигание светодиода: СРАБАТЫВАНИЕ (УРОВ)</th>
<th>Если срабатывание происходит от УРОВ, то мигает красный светодиод. Индикатор отключения (УРОВ) имеет фиксацию. Индикатор сбрасывается путем нажатия кнопки C в течение 2 секунд.</th>
</tr>
</thead>
</table>

Таблица 7.4.-1 Функции светодиода

<table>
<thead>
<tr>
<th>Светодиод не активен: ВЫКЛ.</th>
<th>Блокировка отсутствует, режим тестирования управления не включен</th>
</tr>
</thead>
<tbody>
<tr>
<td>Мигание светодиода: красный</td>
<td>Включен режим тестирования управления (блокировка шунтируется)</td>
</tr>
<tr>
<td>Светодиод постоянно светится: желтый</td>
<td>Прохождение управляющей команды запрещено (блокировка)</td>
</tr>
</tbody>
</table>
8. Режимы тестирования

Предусмотрены различные режимы тестирования для каждой из следующих четырех групп:

- Функция
- Управление
- Мнемосхема
- Тестирование входов/выходов
- Тестирование самоконтроля (IRF)

8.1. Тестирование функций

Выходы функционального блока могут быть активизированы на месте через HMI или дистанционно через последовательный канал связи. Выходы активизируются с помощью управляющих параметров функций.

Дополнительная информация по функциям представлена на компакт-диске “Technical Descriptions of Functions” (Технические описания функций).

8.2. Тестирование управления

Система обеспечивает превалирующий режим обхода блокировки (параметр “Interl bypass” (обход блокировки) в MAIN MENU/Control/Interl bypass (ГЛАВНОЕ МЕНЮ/Управление/Обход блокировки)), который отменяет все сигналы блокировки. После включения режима обхода блокировки активизируются сигналы разрешения блокировки всех объектов управления. Таким образом, возможны все виды управления, а разрешающие сигналы управляемых объектов не проверяются, пока объекты находятся под управлением. Пока включен этот режим, светодиод блокировки на HMI мигает красным светом. Кроме того, вспомогательное окно на панели мнемосхемы будет отображать особое состояние.

8.3. Тестирование мнемосхемы

Режим тестирования мнемосхемы вводится установкой параметра “Panel test” (Тестирование панели) в состояние “Start” (Включить) в MAIN MENU/Tests/Mimic (ГЛАВНОЕ МЕНЮ/Тестирование/Мнемосхема) [17]. Тестирование можно прервать нажатием любой кнопки. Если тестирование не прерывается, оно происходит таким же образом, как и при подаче питания (см. главу “Проверка дисплея при подаче питания” на стр. 18).

8.4. Тестирование входов/выходов

Режим тестирования предназначен для контроля дискретных входов/выходов, виртуальных входов/выходов сети LON и аналоговых входов/выходов RTD1, а также их влияния на работу терминала и дистанционной связи. Пользователь должен войти в режим тестирования (MAIN MENU/Tests/General/Test mode (ГЛАВНОЕ МЕНЮ/Тестирование/Общие/Режим тестирования)) до проведения тестирования, иначе изменения не будут действовать. Когда
включен режим тестирования, изменения положения объектов не будут
отражаться на панели мнемосхемы. Режим тестирования можно отменить,
установив параметр “Test mode” (Режим тестирования) в состояние “Not
active” (Не включен) или путем подачи питания.

Если пользователь забыл выйти из режима тестирования, он
останется активным, и светодиод готовности будет продолжать
мигать.

Для тестирования входов и выходов
1. На техническом уровне выберите MAIN MENU/Tests/General/
 Test mode (ГЛАВНОЕ МЕНЮ/Тестирование/Общие/Режим
tестирования).
2. Установите параметр “Test mode” (Режим тестирования) в состояние
 “Active” (Включен) и нажмите кнопку [E] для подтверждения.
3. Вернитесь в предыдущее меню (Tests), выберите плату входов/выходов,
 которая должна быть протестирована, и перейдите к выбранному меню
tестирования платы.
4. Выберите параметр и войдите в режим настройки.
5. Измените состояние одного или нескольких входов/выходов.
7. По завершении тестирования его режим можно отменить, установив
 параметр “Test mode” (Режим тестирования) в состояние “Not active”
 (Не включен).

Обратите внимание, что при активном режиме тестирования физические
изменения входов заблокированы, а программа конфигурации реагирует только
на команды пользователя, поданные из меню тестирования. Изменения
dискретных выходов, вызванные программой конфигурации, при помощи
функции OR объединяются с изменениями, внесенными пользователем через
меню тестирования. Подобным образом, выходной контакт активируется, если
хотя бы один из двух источников установлен в состояние “1”, в противном
случае он остается неактивным. Это означает, что выходной контакт,
активированный через программу конфигурации реле, невозможно
деактивировать через меню тестирования. Виртуальные выходы сети LON и
аналоговые выходы RTD1 контролируются пользователем непосредственно
через меню тестирования и не реагируют на изменения программы
конфигурации реле.

После деактивации режима тестирования все входы и выходы обновляются с
целью отображения фактического состояния физических входов и выходов
конфигурации реле. Любое изменение состояния входов или выходов
приводит к регистрации события, независимо от того, находится ли режим
tестирования в активном, неактивном или деактивированном состоянии.
8.5. Тестирование самоконтроля (IRF)

Пользователь должен войти в режим тестирования (MAIN MENU/Tests/General/Test mode (ГЛАВНОЕ МЕНЮ/Тестирование/Общие/Режим тестирования)) до проведения тестирования состояния IRF. Состояние IRF включается установкой параметра “Activate IRF” (Включение IRF) (MAIN MENU/Test/General/Activate IRF (ГЛАВНОЕ МЕНЮ/Тестирование/Общие/Включение IRF) в состояние “Activate IRF” (Включить IRF). Это приводит к отпусканню контакта реле IRF и формированию события (E57), означающего активизацию сигнала ошибки IRF.

Режим тестирования можно отменить, устанавливая параметр “Test mode” (Режим тестирования) в состояние “Not active” (Не включен) или путем подачи питания на реле. Если пользователь не отменил режим тестирования, он останется включенным, и светодиод готовности будет продолжать мигать.