Legal disclaimer

This document contains information about one or more ABB products and may include a description of or a reference to one or more standards that are relevant to the ABB products. The presence of any such description of a standard or reference to a standard is not a representation that all of the ABB products referenced in this document include all the features of the described or referenced standard. In order to determine the specific features included in a particular ABB product, the product specifications for the particular ABB product apply.

The buyer acknowledges the proprietary and confidential nature of the information contained in this document and agrees that all rights to and concerning the information contained in this document remain vested in ABB, in particular with regard to any intellectual property rights. Nothing contained herein shall oblige ABB to furnish any particular information to the buyer.

The information in this document is subject to change without notice and should not be construed as a binding declaration of ABB. ABB assumes no responsibility for any errors or omissions in this document.

Products described or referenced in this document are designed to be connected with networks and provide information and data through network interfaces. The products must be connected to a secure network. It is the sole responsibility of the buyer of the products to provide and continuously ensure a secure connection between the product and the system network and/or any other networks that may be connected to the product. ABB is in no event liable for the security of the network used by buyer.

The buyer of the product must establish and maintain appropriate measures, including, but not limited to, the installation of firewalls, application of authentication measures, encryption of data, installation of antivirus programs, and so on, to protect these products, the network, its system, and interfaces against security breaches, unauthorized access, interference, intrusion, leakage, and/or theft of data or information. Any liability of ABB in this regard is excluded.

ABB may perform functionality testing on the products and may release updates. However, it is the sole responsibility of the buyer of the product to ensure that any product updates or other major system updates (to include but not limited to code changes, configuration file changes, third-party software updates or patches, hardware change out, and so on) are compatible with the security measures implemented. The buyer of the product must verify that the system and associated products function as expected in the environment in which they are deployed. ABB has no obligations in this regard.

In no event shall ABB be liable for any damages inclusive but not limited to indirect, special, incidental or consequential damages of any nature or kind whatsoever arising from the use of this document, nor shall ABB be liable for any damages inclusive but not limited to indirect, special, incidental or consequential damages arising from the use of any software or hardware described in this document.

This document and parts thereof must be kept strictly confidential and must not be reproduced or copied without the prior written permission from ABB, and the contents thereof must not be disclosed or made available to any third party nor used for any unauthorized purpose.

The software or hardware described in this document may be furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

Trademarks

ABB is a registered trademark of ASEA BROWN BOVERI LTD.

All rights to copyrights, registered trademarks, and trademarks reside with their respective owners.

Copyright © 2011 ABB
All rights reserved
Contents

1. About this manual ... 13
 1.1. Equipment covered by this manual .. 13
 1.2. Structure of the user documentation .. 13
 1.3. Terms and abbreviations ... 14
 1.4. Related documents .. 16
 1.5. Target groups and required qualification ... 17
 1.5.1. Handling .. 17
 1.5.2. Mechanical installation ... 17
 1.5.3. Electrical installation .. 17
 1.5.4. Operation .. 17
 1.5.5. Maintenance ... 18
 1.6. User’s responsibilities ... 18
 1.7. Intended use of equipment ... 18
 1.8. Quality certificates and applicable standards ... 19
 1.9. Items covered by delivery .. 20
 1.10. Identifying the delivery ... 20

2. Important safety information .. 21
 2.1. Safety standards .. 21
 2.2. Safety messages .. 21
 2.3. Product safety labels .. 22
 2.4. General safety instructions .. 23
 2.5. The 7 steps that save lives .. 24
 2.6. Possible residual risks .. 26
 2.7. Main circuit breaker protection device ... 27
 2.7.1. Safety and protection requirements .. 28
 2.7.2. Minimum requirements for MCB and MCB control ... 28
 2.8. Maintenance recommendation .. 29

3. Power electronics and cabinet features ... 31
 3.1. Overview .. 31
 3.2. Drive topology .. 32
 3.3. Power supply configurations .. 33
 3.3.1. Main power supply configurations .. 33
 3.3.2. Auxiliary power supply configurations .. 34
 3.4. Drive topology .. 35
 3.4.1. Overview ... 35
 3.4.2. Control compartment and terminal compartment .. 35
 3.4.3. Rectifier and inverter compartment ... 37
 3.4.4. Grounding switch ... 38
 3.4.5. Rectifier .. 38
 3.4.6. Protection IGCTs .. 38
 3.4.7. Inverter .. 39
 3.4.8. Filter .. 39
 3.4.9. Optional Braking Chopper .. 39
 3.5. Cooling system .. 43
 3.5.1. Fan configurations ... 43
7.1. Safety .. 79
7.2. Overview of installation work ... 79
7.3. Cable requirements ... 79
7.4. Cable entries .. 80
 7.4.1. Cable entry with EMC plates .. 80
 7.4.2. Cable entry with type 1 sealing modules .. 81
 7.4.3. Cable entry with type 2 sealing modules .. 81
 7.4.4. Cable entry with cable glands ... 82
7.5. Power cables, ground cables and equipotential bonding conductor 82
 7.5.1. Preparing the cable entry and the cables ... 83
 7.5.2. Connecting the cables .. 88
 7.5.3. Minimum creepage distance between cable and busbar 90
 7.5.4. Bolted connections .. 91
7.6. Auxiliary power, control and serial communication cables .. 92
 7.6.1. Preparing the cable entry and the cables ... 92
 7.6.2. Connecting the cables .. 97
7.7. Power supply cable for redundant fan unit ... 98
7.8. Final checks ... 99
8. Commissioning .. 101
 8.1. Overview ... 101
 8.1.1. Required qualification ... 101
 8.1.2. Commissioning procedure .. 101
 8.1.3. Commissioning checklist ... 101
 8.1.4. Customer assistance ... 101
 8.1.5. Customer acceptance ... 101
 8.2. Commissioning checklists ... 102
 8.2.1. Mechanical installation checklist ... 102
 8.2.2. Electrical installation checklist .. 102
 8.2.3. Main circuit breaker (MCB) checklist ... 103
 8.2.4. Input transformer checklist ... 103
 8.2.5. Motor checklist ... 103
 8.2.6. Insulation tests checklist .. 103
 8.2.7. Power supply checklist ... 104
 8.2.8. Miscellaneous checklist ... 104
9. Operation .. 105
 9.1. Safety ... 105
 9.2. Overview .. 105
 9.3. Operating conditions ... 105
 9.4. Sound pressure level ... 105
 9.5. Local operator panel ... 106
 9.6. Status messages .. 107
 9.6.1. Start sequence of the drive .. 108
 9.6.2. Stop sequence of the drive ... 109
 9.6.3. Emergency off sequence of the drive .. 110
 9.7. Starting the drive .. 110
 9.7.1. Checks before starting the drive .. 110
 9.7.2. Starting the drive remotely ... 111
 9.7.3. Starting the drive locally .. 111
 9.8. Stopping the drive .. 113
 9.9. Emergency-off .. 114
10. CDP control panel

10.1. Overview .. 117
10.2. CDP control panel functions ... 118
10.3. CDP control panel modes .. 118
 10.3.1. Identification mode ... 118
 10.3.2. Actual signals mode ... 119
 10.3.3. Parameters mode ... 126
 10.3.4. Functions mode .. 132
10.4. Local and remote control .. 134
 10.4.1. Local control .. 134
 10.4.2. Remote control ... 135
10.5. Operational commands ... 136
 10.5.1. Setting the direction of rotation ... 136
 10.5.2. Entering a reference value .. 137

11. Preventive and corrective maintenance .. 139

11.1. General information .. 139
 11.1.1. Required qualification .. 139
 11.1.2. Maintenance schedule .. 139
 11.1.3. Logbook .. 139
 11.1.4. Spare parts .. 139
11.2. Identifying electrical equipment .. 140
 11.2.1. Device identification ... 140
 11.2.2. Cables and wires ... 140
 11.2.3. Understanding wiring diagrams ... 140
11.3. Alarm / fault indications ... 140
 11.3.1. Messages ... 140
 11.3.2. Error message levels ... 141
 11.3.3. Fault handling ... 142
 11.3.4. Standard troubleshooting procedure ... 143
11.4. Removing the CDP control panel .. 144
11.5. LEDs and switches on circuit boards ... 145
 11.5.1. AMC circuit board ... 145
 11.5.2. IOEC I/O modules .. 146
11.6. Corrective maintenance ... 147
 11.6.1. Safety ... 147
 11.6.2. De-energizing the drive locally .. 148
 11.6.3. Grounding ... 148
 11.6.4. Grounding switch is not released ... 149
 11.6.5. Checking the release conditions for the grounding switch 150
 11.6.6. Visual checks on the drive ... 152
 11.6.7. Cleaning the drive ... 152
 11.6.8. Checking wire and cable connections .. 153
 11.6.9. Cleaning and replacing filter mats ... 153
 11.6.10. Inspecting and replacing batteries ... 155
 11.6.11. Replacing the non-redundant fan ... 157
 11.6.12. Replacing a redundant fan ... 160
Figures

Figure 1–1 Delivered items ... 20
Figure 2–1 Product warning label examples (label placement depends on the drive) 22
Figure 2–2 Drive system overview .. 27
Figure 2–3 MCB opening timing diagram ... 29
Figure 3–1 ACS1000 air-cooled .. 31
Figure 3–2 Block diagrams of an ACS1000A with a 12-pulse rectifier (A) and a drive with a 24-pulse rectifier (B) ... 32
Figure 3–3 Drive overview with power supplies ... 33
Figure 3–4 ACS1000 air-cooled topology ... 35
Figure 3–5 Control and terminal compartments ... 36
Figure 3–6 Rectifier compartment .. 37
Figure 3–7 Grounding switch .. 38
Figure 3–8 Three-level voltage source inverter principle .. 39
Figure 3–9 Voltage and current waveforms at drive output ... 39
Figure 3–10 ACS1000A with braking chopper (1) .. 40
Figure 3–11 Principle diagram ... 40
Figure 3–12 Braking chopper design .. 41
Figure 3–13 Operating times of the AC fan units during continuous drive operation (A) and Intermittent drive operation (B) .. 44
Figure 3–14 Operating principles of redundant EC fans ... 45
Figure 3–15 Air flow– non-redundant fan (1) configuration .. 46
Figure 3–16 Air flow– redundant fan configuration ... 46
Figure 3–17 Air pressure switches .. 47
Figure 3–18 Door locks .. 49
Figure 3–19 IAC label example .. 50
Figure 3–20 Space heaters ... 51
Figure 4–1 Block diagram of control system with customer interface (A), control system (B) and power electronics (C) ... 53
Figure 4–2 Control compartment .. 54
Figure 4–3 Control compartment – I/O devices .. 55
Figure 4–4 AMC circuit board ... 56
Figure 4–5 Direct torque control .. 57
Figure 4–6 PID control mode ... 59
Figure 4–7 IOEC interfaces overview ... 60
Figure 4–8 IOEC module ... 63
Figure 4–9 IOEC module identification ... 64
Figure 4–10 NTAC-02 pulse encoder interface .. 66
Figure 5–1 Transporting the cabinet by crane ... 69
Figure 6–1 Leveling the drive .. 74
Figure 6–2 Fixing the cabinet to the floor ... 75
Figure 6–3 Assembling and installing the air exhaust hood 75
Figure 6–4 Redundant fan unit – Removing lifting rails and cover 76
Figure 6–5 Redundant fan unit – Installation ... 76
Figure 7–1 EMC plate example ... 80
Figure 7–2 EMC cushion .. 80
Figure 7–3 Type 1 sealing modules (example) .. 81
Figure 7–4 Type 2 sealing modules example ... 81
Figure 7–5 Cable entry with cable glands .. 82
Figure 7–6 Preparing cables for EMC plates: (A) cables with an outer screen or shield, (B) cables without an outer screen or shield 85
Figure 7–7 Preparing power cables for sealing modules 86
Figure 7–8 Preparing power cables for cable glands ... 87
Figure 7–9 Power cable terminals in 12-pulse ACS1000A (top row) and 24-pulse ACS1000A (bottom row) ... 89
Figure 7–10 Grounding the drive system ... 90
Figure 7–11 Bolted busbar connections .. 91
Figure 7–12 Cable entry from top (A) and from bottom (B) 92
Figure 7–13 Preparing control cables for EMC plates ... 93
Figure 7–14 Frame with sealing modules ... 94
Figure 7–15 Preparing control cables for sealing modules 95
Figure 7–16 Preparing control cables for cable glands .. 96
Figure 7–17 Shield grounding point for encoder cable ... 97
Figure 7–18 Routing, connecting the cable of the redundant fan unit 98
Figure 9–1 Local operator panel ... 106
Figure 10–1 CDP control panel ... 117
Figure 10–2 Control panel - Actual signals mode .. 121
Figure 10–3 Control panel - Parameters mode ... 128
Figure 10–4 Control panel - Functions mode ... 132
Figure 11–1 Device identification ... 140
Figure 11–2 AMC circuit board ... 145
Figure 11–3 IOEC module ... 146
Figure 11–4 Location of I/O modules and fuses 149
Figure 11–5 Filter panel (1) and filter mat (2) on rectifier and inverter compartment ... 154
Figure 11–6 Control compartment – battery location 155
Figure 11–7 Control compartment - replacing the batteries 156
Figure 11–8 Fan location, dimensions and weight 157
Figure 11–9 Fan - tools and devices ... 157
Figure 11–10 Replacing the non-redundant fan 158
Figure 11–11 Installing the non-redundant fan 159
Figure 11–12 Redundant fans – location, dimensions and weight 160
Figure 11–13 Redundant fans - tools and devices 160
Figure 11–14 Redundant fan unit – removing the panels 161
Figure 11–15 Redundant fan unit – Unplugging the power supply cable 161
Figure 11–16 Redundant fan unit – removing the fixing bolts 162
Figure 11–17 Redundant fan unit – using a crane 163
Figure 11–18 Redundant fan unit – using a platform 163
Tables

Table 1–1 Terms and abbreviations...14
Table 1–2 Maintenance ..16
Table 1–3 Technical data ..16
Table 1–4 Schematics ...16
Table 1–5 Specifications and guidelines ..16
Table 1–6 Serial communication interfaces ..16
Table 1–7 Encoder ..16
Table 1–8 Standards ...19
Table 3–1 Braking ratings ...42
Table 3–2 ABB arc resistant classes ..50
Table 4–1 IOEC module configuration - analog inputs ...61
Table 4–2 IOEC module configuration - analog outputs ...61
Table 4–3 IOEC module configuration - digital inputs ..61
Table 4–5 24 V internal voltage supply ...62
Table 4–4 IOEC module configuration - digital inputs ..62
Table 4–6 IOEC module identification ...64
Table 7–1 Maximum number of cables per phase ...83
Table 7–2 Minimum creepage distance between cable and busbar ...90
Table 10–1 Parameter groups ...126
Table 11–1 Filter mat specifications ..153
1. About this manual

1.1. Equipment covered by this manual

This manual covers a standard drive and provides generic information on the drive. The manual does not claim to cover all variations and details of the drive, nor to consider all eventualities that may arise during installation, commissioning, operation and maintenance of the drive.

If the drive is adapted to specific customer needs or applications, and handling, installation and operation of the drive are affected by these modifications, information on these modifications is provided in the appropriate documentation (e.g., layout drawings, wiring diagrams, technical data, engineering notes).

If information is required beyond the instructions in this manual, refer the matter to ABB.

1.2. Structure of the user documentation

The documentation for a standard drive consists of this document and the following project-specific appendices.

NOTE – These appendices are NOT included in this document.

- Appendix A - Additional manuals provides manuals about additional equipment delivered with the drive (such as project-specific options such as pulse encoder or fieldbus interfaces), or information on modifications of the standard drive.

- Appendix B - Technical data contains the technical data sheets of the drive.

- Appendix C - Mechanical drawings provides the outline drawings of the drive. The drawings are generated according to the customer-specific project.

- Appendix D - Wiring diagrams contains the circuit diagrams with information on device identification, cross-reference and device identification conventions. The diagrams are generated according to the customer-specific project.

 “Setting of protective devices” is generated according to the customer-specific project.

- Appendix E - Parts list produced for each project and contains all information to identify a component.

- Appendix F - Test reports and certificates provides the test reports of the drive. Quality certificates, and codes and standards the drive complies with are added if necessary for the project.

- Appendix G - Signal and parameter table includes descriptions of actual signals, control and status words, and control parameters and their default settings.
1.3. Terms and abbreviations

The following table lists terms and abbreviations you should be familiar with when using this user manual. Some of the terms and abbreviations used in this user manual are unique to ABB and might differ from the normal usage.

Table 1–1 Terms and abbreviations

<table>
<thead>
<tr>
<th>Term/Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS1000A</td>
<td>ACS1000 air-cooled drive</td>
</tr>
</tbody>
</table>
| AMC circuit board | Application and Motor Controller
The digital signal processor is the heart of the control system of the drive. |
| Cluster | A cluster is a synonym for a group of hardware modules of the drive control system. |
| CDP | Control and display panel
Basic user interface for operating and monitoring the drive when local operating mode is selected. |
| DDCS | Distributed drive control system
DDCS is an acronym for a serial communication protocol designed for data transfer via optical fibers. |
| Drive | Short form for ACS1000A drive |
| Drive system | The drive system includes all equipment used to convert electrical into mechanical power to give motion to the machine. |
| DriveBus | Communication link dedicated for ABB drives |
| DriveDebug | DriveDebug is part of ABB’s DriveWare® software tools for drives using the DDCS communications protocol. DriveDebug runs on computers with Windows® operating systems. DriveDebug is a specialist’s tool used to diagnose, tune and troubleshoot ABB drives. |
| DriveWindow | DriveWindow is a DriveWare® product. DriveWindow is a 32 bit Windows® application for commissioning and maintaining ABB drives equipped with optical communication links. |
| Equipment | Frequency converter and related equipment |
| EMC | Electromagnetic compatibility
All measures to suppress electromagnetic disturbances caused by different electrical equipment in the same electromagnetic environment, and to strengthen the immunity of the equipment to such disturbances. |
<p>| Ground | Earth |
| To ground | The conducting path (eg, conductor) between the electric equipment (eg, frequency converter) and the earth. The electric equipment is connected to the earth, eg, by a grounding set or a grounding switch. |
| INU | Inverter unit of the drive. The INU converts the DC voltage to the required AC motor voltage and frequency. |
| IOEC module | The IOEC module is an active input and output device for digital and analog signals. |</p>
<table>
<thead>
<tr>
<th>Term/Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line voltage</td>
<td>RMS voltage of the main power supply of the drive</td>
</tr>
<tr>
<td>MCB</td>
<td>Main circuit breaker</td>
</tr>
<tr>
<td></td>
<td>The MCB is a major protection device of the drive and is the main connection and disconnection point between the main power supply and the drive.</td>
</tr>
<tr>
<td>Molykote</td>
<td>Brand name for lubricants</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed circuit board</td>
</tr>
<tr>
<td>PCC</td>
<td>Point of common coupling</td>
</tr>
<tr>
<td></td>
<td>The PCC is the point in the electrical power supply system where the responsibility of the utility changes to the industrial customer. The utility is responsible to provide clean voltage and current with respect to harmonic distortion up to the PCC. The industrial customer is responsible not to distort voltage and current by its electrical systems.</td>
</tr>
<tr>
<td>PID controller</td>
<td>Proportional-integral-derivative controller</td>
</tr>
<tr>
<td></td>
<td>Control loop feedback system for controlling process variables (e.g., pressure, flow)</td>
</tr>
<tr>
<td>PE</td>
<td>Protective earth</td>
</tr>
<tr>
<td>PPCS</td>
<td>Power plate communication system</td>
</tr>
<tr>
<td></td>
<td>PPCS is an acronym for a serial communication protocol designed for data transfer via optical fibers between AMC circuit board and INTerface circuit boards.</td>
</tr>
<tr>
<td>RTD</td>
<td>Resistance temperature detector or device</td>
</tr>
<tr>
<td></td>
<td>The RTD is a temperature sensor where the change in electrical resistance is used to measure the temperature.</td>
</tr>
<tr>
<td>Supervisory signal</td>
<td>Indicates the operating condition of a circuit or device.</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>TC</td>
<td>Short form for terminal compartment of the drive</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible power supply</td>
</tr>
<tr>
<td>Zero speed threshold</td>
<td>Used in the manual to indicate that the drive has reached the value “zero speed” that is set in a parameter. The value can be set in the range of 0 and maximum speed (the unit for the speed is rpm).</td>
</tr>
</tbody>
</table>

Table 1–1 Terms and abbreviations (continued)
1.4. Related documents

Table 1–2 Maintenance

<table>
<thead>
<tr>
<th>Title</th>
<th>Document number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS1000A preventive maintenance schedule</td>
<td>3BHS855276 E01</td>
</tr>
</tbody>
</table>

Table 1–3 Technical data

<table>
<thead>
<tr>
<th>Title</th>
<th>Document number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical data from DriveSmart(^1) (configuration software for medium voltage drives)</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) Configuration software for medium voltage drives

Table 1–4 Schematics

<table>
<thead>
<tr>
<th>Title</th>
<th>Document number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layout drawing</td>
<td>Project-specific</td>
</tr>
</tbody>
</table>

Table 1–5 Specifications and guidelines

<table>
<thead>
<tr>
<th>Title</th>
<th>Document number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrofit guideline</td>
<td>3BHS301179 E01</td>
</tr>
<tr>
<td>Input circuit breaker engineering guideline</td>
<td>3BHS104785 E01</td>
</tr>
<tr>
<td>Main transformer specification</td>
<td>3BHS356582 E01</td>
</tr>
<tr>
<td>Induction motor specification</td>
<td>3BHS260163 E01</td>
</tr>
<tr>
<td>Power cable specification</td>
<td>3BHS189994 E01</td>
</tr>
<tr>
<td>Power cables engineering guideline</td>
<td>3BHS542290 E01</td>
</tr>
<tr>
<td>Auxiliary power and control cables guideline</td>
<td>3BHS813742 E01</td>
</tr>
<tr>
<td>Permission for working and permit to work for test work at test stations</td>
<td>3BHS817511 E30</td>
</tr>
</tbody>
</table>

Table 1–6 Serial communication interfaces

<table>
<thead>
<tr>
<th>Title</th>
<th>Document number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet - NETA-21 remote monitoring tool user manual</td>
<td>3AUA0000096939</td>
</tr>
<tr>
<td>Modbus - NMBA-01 installation and start-up guide</td>
<td>3AFY58919772</td>
</tr>
<tr>
<td>Profibus - NPBA-12 installation and start-up guide</td>
<td>3BFE64341588</td>
</tr>
<tr>
<td>DeviceNet - NDNA-02 installation and start-up guide</td>
<td>3AFY58919829</td>
</tr>
</tbody>
</table>

Table 1–7 Encoder

<table>
<thead>
<tr>
<th>Title</th>
<th>Document number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation and start-up guide for the pulse encoder module NTAC-0x</td>
<td>3AFY58919730</td>
</tr>
</tbody>
</table>
1.5. Target groups and required qualification

The drive presented in this manual is part of an industrial environment where voltages are present that contain a potential hazard of electric shock and/or burn. For this reason, only personnel who have a thorough knowledge of the drive and the industrial environment and have obtained the required qualification should handle, install, operate, or maintain the drive.

The manual addresses personnel who are responsible for unpacking, transportation, installation, operation and maintenance of the drive. The personnel must carry out the below listed tasks in a manner that does not cause physical harm or danger, and ensures the safe and reliable functioning of the drive.

IMPORTANT! Commissioning of the drive must only be performed by qualified and certified ABB personnel.

1.5.1. Handling

The personnel must be skilled and experienced in unpacking and transporting heavy equipment.

1.5.2. Mechanical installation

The personnel must be qualified to prepare the installation site according to the site and equipment requirements and to perform the installation accordingly.

1.5.3. Electrical installation

The personnel must have a sound knowledge of the relevant electrical codes and specifications covering low and medium voltage equipment, be experienced with electrical wiring principles and know the electrical symbols typically used in wiring diagrams.

1.5.4. Operation

The personnel include all persons who operate the drive from the local operator panel of the drive. The personnel must know the functions of the operator panel, be adequately trained for the drive, and know the driven process. Special knowledge of frequency converter technology is not required.
1.5.5. **Maintenance**

The personnel include all persons who

- Are qualified to carry out preventive and corrective maintenance on drive as described in this manual
- Are thoroughly familiar with the drive
- Have a sound knowledge of the relevant electrical codes and specifications covering low and medium voltage equipment
- Are able to assess the hazards associated with the energy sources of the drive and act correspondingly
- Know the safe shutdown and grounding procedures for the drive system

1.6. **User’s responsibilities**

It is the responsibility of those in charge of the drive to ensure that each person involved in the installation, operation or maintenance of the drive has received the appropriate training and has thoroughly read and clearly understood the instructions in this manual and the relevant safety instructions.

1.7. **Intended use of equipment**

Those in charge of the drive must ensure that the drive is only used as specified in the contractual documents, operated under the conditions stipulated in the technical specifications and on the rating plate of the drive, and serviced in the intervals specified by ABB.

Use of the drive outside the scope of the specifications is not permitted.

Intended equipment use also implies that only spare parts recommended and approved by ABB must be used.

Unauthorized modifications and constructional changes of the drive are not permitted.
1.8. Quality certificates and applicable standards

The following certificates and conformity declarations are available with ABB:

– ISO 9001 and ISO 14001 certificates stating that ABB Switzerland Ltd has implemented and maintains a management system which fulfills the requirements of the normative standards

– EC declaration of conformity

– List of standards the drive complies with

Table 1–8 Standards

<table>
<thead>
<tr>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Z535.6</td>
<td>American national standard for product safety information in product manuals, instructions, and other collateral materials</td>
</tr>
<tr>
<td>ISO 3864-2</td>
<td>2004 (E) - Graphical symbols – Safety colors and safety signs – Part 2: Design principles for product safety labels</td>
</tr>
<tr>
<td>ISO 7010</td>
<td>2011 (E) - Graphical symbols - Safety colours and safety signs - Registered safety sign</td>
</tr>
<tr>
<td>EN 50110</td>
<td>European standard code for electrical work safety</td>
</tr>
<tr>
<td>ISO 13849-1</td>
<td>Safety of machinery - Safety-related parts of control systems - Part 1: General principles for design, section 6.2.6 Category 3</td>
</tr>
<tr>
<td>IEC 60204-1</td>
<td>Safety of machinery - Electrical equipment of machines - Part 1: General requirements</td>
</tr>
<tr>
<td>IEC 60721-3-1</td>
<td>Classification of environmental conditions: Classification of groups of environmental parameters and their severities; Storage</td>
</tr>
<tr>
<td>IEC 60721-3-2</td>
<td>Classification of environmental conditions - Part 3-2: Classification of groups of environmental parameters and their severities - Transportation and Handling</td>
</tr>
<tr>
<td>IEC 60721-3-3</td>
<td>Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities - Section 3: Stationary use at weather-protected location</td>
</tr>
<tr>
<td>IEC 62477-2</td>
<td>Safety requirements for power electronic converter systems and equipment – Part 2: Power electronic converters from 1 000 V AC or 1 500 V DC up to 36 kV AC or 54 kV DC</td>
</tr>
<tr>
<td>IEC 81346-1</td>
<td>Industrial systems, installations and equipment and industrial products - Structuring principles and reference designations - Part 1: Basic rules</td>
</tr>
</tbody>
</table>
1.9. Items covered by delivery

Delivery typically comprises the following items:

- Drive that is shipped in sea freight or airfreight packaging.
- Optional components and cabinets
- Set of door keys attached to lifting rail (1 in Fig. 1–1)
- Set of door keys inside the drive
- Rating label (2 in Fig. 1–1)
- Box with USB stick (3 in Fig. 1–1), which contains the user manual and related documents.
- Strain relief rails
- Air exhaust hood
- Redundant fan unit (option)
- Set of bolts, nuts and washers

![Delivered items](image)

Figure 1–1 Delivered items

1) Door keys
2) Rating label
3) Box with USB stick
4) Control compartment door
5) Inside control compartment door

For a complete list of the items in the delivery, see the shipping note.

1.10. Identifying the delivery

The drive and accessories are identified by the type code printed on the rating label.

The label provides information on the type of drive, the rated voltage, the frequency and the current of the main and the auxiliary power supply.
2. Important safety information

Read this material carefully before working on or around the equipment. Failure to do so can result in serious Injury or DEATH! Keep for future reference.

2.1. Safety standards

The following industry standards are observed:
- ANSI Z535.6
- ISO 3864-2
- ISO 7010
- EN 50110

2.2. Safety messages

The following safety messages are provided to help prevent personal injury and damage to the equipment. The indicated hazard level is based on the ANSI Z535.6 standard.

This is the safety alert symbol. It is used to alert you to potential physical injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER Indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING Indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE Is used to address practices not related to physical injury, but which can result in equipment damage.
2.3. Product safety labels

Safety labels are affixed to the drive components to alert personnel of potential hazards when working on the equipment. For more information, see the label placement document for the drive. The instructions on the safety labels must always be followed and the labels must be kept in a perfectly legible condition.

Additional safety labels, including the following, might also be provided:

- **Electricity warning**
 - This sign can also have additional text below it, e.g., “High voltage”.

- **Hot surface**

- **Crushing of hands**

- **No access for people with active implanted cardiac device**
 - The magnetic field of the drive can influence the functioning of pacemakers. The pacemaker sign should be installed at the entrance to the drive room or at a minimum distance of 6 m from the drive to stop personnel with pacemakers approaching the drive.

- **Firefighting sign**
 - Outlines the procedure when fighting fire in electrical equipment. The sign must be installed well visible near the drive.

- **High voltage sign**
 - Must be installed clearly visible at the main circuit breaker in the switchgear room. The sign alerts personnel to the high voltage which can be present on the secondary side of the input transformer until the main circuit breaker has been opened and secured and the drive has been de-energized and grounded.
2.4. General safety instructions

1) Minimize hazards

2) Before energizing the drive:
 - Remove all foreign objects from the drive
 - Fasten all internal and external covers securely
 - Close, lock, and/or bolt all doors
 - Move the release dial of the door safety switches into the locked position

3) Before working on the drive:
 - Turn off, lock out, and tag out the main and auxiliary power supplies to the drive
 - De-energize the drive
 - Ensure that the safety ground connections are in place
 - Ensure that the appropriate personal protective equipment (PPE) is available and used when required
 - Inform the involved personnel about the potential safety hazards
 - Wear hearing protection when a drive is running.

4) While working on the drive:
 - DO NOT step on the roof
 - DO NOT install foreign objects on the roof

4) Before working simultaneously on the drive and on other drive system equipment:
 - Observe the relevant safety codes and standards
 - Turn off all energy sources for the equipment
 - Ensure that all lockout and tagout devices are in place
 - Install barriers around and use appropriate covers on the equipment that is still energized
 - Inform the involved personnel about the potential safety hazards

5) In case of fire in the drive room:
 - Observe the established rules and regulations for fire safety
 - Only allow firefighters with the appropriate PPE to enter the drive room
2.5. The 7 steps that save lives

ABB’s 7 steps that save lives concept is a series of actions that must take place prior to commencing work on or near electrical installations.

1) **Prepare for the work:** do an on-site risk assessment or job hazard analysis that considers the limits of approach for shock and arc-flash.
 - Be in possession of a clear work order to execute the work.
 - When required, the access or work permit is to be obtained by a person who is authorized for the specific electrical system.
 - Engage the person responsible for electrical equipment or system to review single-line diagrams, schematics, switching plans, etc.
 - Ensure the competence of workers.
 - Check for proper tools for the job.
 - Determine and select the proper arc-rated Personal Protective Equipment (PPE).
 - Decide of the appropriate work methods and initiate the Permit To Work (PTW) process.
 For an example “Permit to Work”, see “Permission for working and permit to work for test work at test stations” , 3BHS817511 E30

2) **Clearly identify the work location and equipment.**
 - Use your senses (sight, hearing and smell) to identify problem areas.
 - Define the work area via barriers and barricading and label equipment.
 - Avoid distractions such as talking or texting on the phone.

3) **Disconnect all sources of supply and secure against reconnection by applying Lockout/Tagout.**
 - If ABB is responsible for switching and it cannot be done remotely, then the person performing the switching must be properly trained and wearing the proper PPE identified in step 1.
 - The Person in Charge of Work (PICW) must ensure that switching is performed in the proper manner by witnessing it from a safe distance if present on site or by engaging the person responsible for switching to identify all isolation points.
 - Apply Lockout/Tagout (LOTO) to the energy isolation device and if multiple energy isolation devices are involved, then Group LOTO must be implemented with the PICW serving as the Group LOTO Leader.
4) **Verify the absence of operating voltage: always test before you touch!**

Only use properly rated and inspected voltage detection devices and wear proper PPE identified in step 1:

- Test voltage detection device
- Test for voltage
- Test voltage detection device

It is highly important that the voltage detection device is tested on a known voltage source such as a Proving Unit or by performing an internal self-test, according to the manufacturer’s instructions, before and after testing for the absence of operating voltage.

5) **Carry out earthing and short-circuiting.**

- Close and lock the earthing switch if the electrical equipment is designed for this purpose or apply portable equipment for earthing and short-circuiting.

If this is carried out by the customer, then the PICW must ensure that this equipment is properly earthed as a part of the integration/verification and during step 7 when the PICW walks the PTW.

6) **Protect against adjacent live parts and take special precautions when close to bare conductors.**

- Determine minimum approach distances, apply screening or shrouding, and when applicable, padlock both cable and busbar shutters.
- If working within the restricted approach boundary or vicinity zone where inadvertent movement could cause contact with live parts, special precautions must be employed, such as the use of the properly rated insulated gloves and tools.

7) **Complete the permit to work and “Walk the Permit”**.

- Check isolation points
- Verify that all circuits are isolated and secured
- Ensure all parties are integrated with the Lockout/Tagout
- Check the earths are properly applied
- Answer specific questions from the working group
- Ensure the work can proceed without danger
- Complete and verify the “Permit to Work”
2.6. Possible residual risks

Residual risks must be considered by the drive system integrator and/or plant owner when assessing the hazards of the equipment to personnel. The following risks can pose a hazard to drive system personnel:

1) **Electric power equipment generates electro-magnetic fields which can cause a hazard to people with metal implants and / or a pacemaker.**

2) **Drive system components can move unintentionally when being commissioned, operated, or serviced due to:**
 - Operation of the equipment outside the scope of the specifications
 - Incorrectly assembled or installed equipment
 - Wrongly connected cables
 - External influence on, or damage of the equipment
 - Wrong parameter settings
 - Software errors
 - Faulty hardware

3) **Hazardous touch voltages can be present on drive system components, which can be caused by:**
 - Operation of the equipment outside the scope of the specifications
 - External influence on, or damage of the equipment
 - Induced voltages by external equipment
 - Condensation on equipment components, or pollution
 - Faulty hardware

4) **High temperatures, noise, particles, or gases can be emitted from drive system components caused by:**
 - Operation of the equipment outside the scope of the specifications
 - External influence on or damage of the equipment
 - Wrong parameter settings
 - Software errors
 - Faulty hardware

5) **Hazardous substances can be emitted from drive system components, eg, due to incorrect disposal of components**
2.7. Main circuit breaker protection device

The main circuit breaker (MCB) is a major protection device of the drive. If a serious fault occurs in the drive, the MCB must disconnect the main power supply to the drive immediately. The main power supply must be disconnected without delay on an open or trip command from the drive to prevent hazard to the personnel and further damage to the equipment. The MCB is located on the primary side of the converter transformer.

![Drive system overview diagram]

NOTE – MCBs and protection relays are not included in the drive supply.

Typical MCBs devices
- Vacuum circuit breakers
- SF6 circuit breakers
- Fused contactors or motor control centers

Dedicated protection relay
- Transformer or drive primary cable protection (DTL)
- Transformer protection (if applicable)
- Transformer secondary cable protection (if applicable)
- Backing up the drive protection
2.7.1. Safety and protection requirements

For safety and protection reasons, the MCB must meet the stipulated minimum requirements of the specifications of ABB MV Drives. It is the system integrator’s responsibility to ensure that the minimum requirements are met. The minimum requirements for the MCB are stated in this note and in the respective MCB specifications, which are available for each medium voltage drive from ABB.

The safety requirements for the drive are based on the following standards:

- ISO 13849-1
- IEC 60204-1

2.7.2. Minimum requirements for MCB and MCB control

The following safety requirements are also in the MCB specifications for the drive:

- The MCB open and/or trip command has to be wired directly from the drive to the MCB.
 - It is not permitted to wire the trip command through any PLC or DCS system if it is not certified to meet SIL three-level requirements and to fulfill the timing requirements outlined below.
 - Opening of the MCB by the drive must be possible at any time. It is not permitted to interrupt the open and/or trip command, eg, by a local-remote switch in the MCB.
- When the MCB is in service position, the drive must have exclusive control of closing the MCB. Local closing of the MCB is not permitted.
- The maximum opening time of the MCB must never exceed the product- or project-specific maximum time defined in the MCB specifications.

Typical maximum values for the drive are defined as follows:

- **Maximum protection trip time**: 120 ms
 The maximum protection trip time is the maximum allowed breaking time (open and arcing) of the breaking device after the open command has been initiated to prevent further damage to the drive, such as diode failures.

- **Maximum safety trip time**: 250 ms
 The maximum safety trip time is the maximum allowed time to ensure safe disconnection of the main power supply to prevent any hazard to personnel.
In order to meet the stipulated safety requirements, ABB recommends one of the following:

- MCB is equipped with 2 independent opening coils
- MCB is equipped with an opening coil and an undervoltage coil for monitoring of the control voltage
- Upstream protection coordination scheme is provided which uses the “breaker failure” (ANSI 50BF) signal to automatically trip the upstream breaker, in case the MCB does not open.

IMPORTANT! The upstream breaker must open within the maximum safety trip time after a failure has occurred.

2.8. Maintenance recommendation

The MCB trip circuits should be checked annually.
3. Power electronics and cabinet features

3.1. Overview

The air-cooled ACS1000A is a general-purpose frequency converter for the control of standard induction motors.

For information on the power and voltage range of the drive, see the Technical specifications and the rating plate of the drive.

The following sections provide an overview of:

– Drive topology and main features
– Available main and auxiliary power configurations
– Power electronic components of the drive
– Cooling system
– Cabinet features such as the grounding switch and the electro-mechanical door interlock

Figure 3–1 ACS1000 air-cooled
3.2. Drive topology

Figure 3–2 Block diagrams of an ACS1000A with a 12-pulse rectifier (A) and a drive with a 24-pulse rectifier (B)

1) Medium voltage switchgear, including main circuit breaker and transformer protection
2) Transformer
3) Rectifier
4) Protection IGCTs
5) DC link
6) Inverter
7) Filter
8) Motor

The drive system consists of the following main components:

- **Main circuit breaker (MCB):** see section 2.7, *Main circuit breaker protection device*, page 27.
- **Transformer:** see the Transformer specification.
- **Drive**
- **Asynchronous motor:** see the motor specification.
3.3. Power supply configurations

The drive requires 2 independent power supplies:

- Main power supply for the power electronic components
- Auxiliary power supply for the control and cooling system

Figure 3–3 Drive overview with power supplies

1) Auxiliary power supply 8) MCB
2) ACS1000A 9) Transformer
3) Control and cooling system 10) Power electronic components
4) Auxiliary power distribution 11) Rectifier
5) Cooling system 12) DC link
6) Control system 13) Inverter
7) Main power supply 14) Motor

3.3.1. Main power supply configurations

The drive is connected to the main power supply via a three-winding oil or dry-type transformer.
3.3.2. Auxiliary power supply configurations

The total auxiliary power demand of the drive includes:

– Auxiliary power for the cooling system
– Auxiliary power for the control hardware and the gate units which are used to trigger the power semiconductors

The total auxiliary power can be fed to the drive in the following ways:

– Through a common power supply
 • The total auxiliary power is supplied to the drive by a three-phase AC power supply.
 • If the power supply is interrupted, drive internal batteries provide a backup for the control system, thus enabling the drive to ride-through and/or to perform a controlled shutdown.

– Through separate power supplies
 • The auxiliary power is supplied to the drive by a three-phase AC power supply and by an UPS to a separate one-phase AC or DC input.
 • Feeding the control power separately by an UPS has the advantage that the main control hardware will remain energized, the full ride-through capabilities of the drive can be used, and the communication to a higher-level control system will not be lost in the event of an auxiliary power outage.

IMPORTANT! The power feed for the auxiliary supply must be protected with a suitable circuit protection rated for the inrush current.

For more information on the auxiliary power interface of the drive, see “Appendix D - Wiring diagrams”. For information on the rated voltage(s) and current(s), see the rating plate of the drive.
3.4. Drive topology

This section describes the main design features and introduces the major power electronics components of a typical drive.

3.4.1. Overview

Figure 3–4 ACS1000 air-cooled topology

1) Control compartment and terminal compartment

2) Rectifier and inverter compartment

3.4.2. Control compartment and terminal compartment

The left compartment of the drive comprises:

- **Control compartment at the front (1 in Fig. 3–5)**: contains the hardware of the control system of the drive.

 For more information on the control hardware, see chapter 4, **Control system**, page 53.

- **Terminal compartment at the back (1 in Fig. 3–5)** contains the busbars for the feeder and motor cables, the ground cable and the cable screens. A hinged bolted partition separates the terminal compartment from the control compartment.

 For more information on cable entry and cable connection, see chapter 7, **Electrical installation**, page 79.
Figure 3–5 Control and terminal compartments

1) Control compartment 2) Terminal compartment
3.4.3. Rectifier and inverter compartment

Figure 3–6 Rectifier compartment

1) Second 12-pulse rectifier
2) 12-pulse rectifier with protection IGCTs
3) Inverter phase U
4) Inverter phase V
5) Inverter phase W
6) Grounding switch
7) Common mode choke (option)
8) Filter choke
9) Filter capacitors
10) DC-link capacitors
3.4.4. Grounding switch

The grounding switch is a safety device that enables safe access to the medium voltage compartments of the drive.

When the switch is in position grounded, the DC link of the drive is connected to the PE ground busbar.

The grounding switch is electro-mechanically interlocked with a discharge monitoring circuit that prevents closing of the switch while the DC link capacitors are still charged.

Grounding the drive is only possible after the main power supply has been disconnected, and the DC link has discharged. When the voltage is below 50 V (DC), the lamp grounding switch unlocked (1 in Fig. 3–7) on the door of the control compartment lights up, and the grounding switch can be turned to position grounded (2 in Fig. 3–7).

![Grounding switch](image)

Figure 3–7 Grounding switch

| 1 | Grounding switch unlocked lamp is on |
| 2 | Grounding switch in grounded position |

When the grounding switch is in position grounded, the doors of the medium voltage compartments are released, and the doors can be opened.

3.4.5. Rectifier

The diode rectifier converts the AC voltage of the main power supply and connects its output to the minus, neutral point, and plus side of the DC link.

Depending on the harmonics requirements for the main power supply, the drive is equipped with a 12-pulse or a 24-pulse rectifier.

3.4.6. Protection IGCTs

The drive features a fuseless protection design. The IGCTs are placed between the rectifier and the DC link. If necessary, the IGCTs directly isolate the inverter from the main power supply.
3.4.7. Inverter

The compartment contains the inverter and the DC-link capacitors and filter capacitors.

The inverter converts the DC voltage to the required AC motor voltage and frequency.

Each phase of the three-phase inverter consists of a combination of four IGCTs and two NP diodes for three-level switching operation. The output is switched between positive DC voltage, neutral point (NP) and negative DC voltage. Hence, the drive can control the output voltage and the frequency continuously from zero to maximum using direct torque control.

For more information, see section 4.2.2.4, Direct torque control, page 57.

![Three-level voltage source inverter principle](image)

3.4.8. Filter

The filter at the drive output reduces the harmonic content of the motor voltage and generates a nearly sinusoidal motor-friendly voltage waveform. The filter also eliminates all high dv/dt effects. Therefore, standard motors can be used, and voltage reflections in the motor cables are eliminated.

![Voltage and current waveforms at drive output](image)

Output voltage: 4.16 kV
Output frequency: 60 Hz

3.4.9. Optional Braking Chopper

The optional braking chopper uses resistor braking to provide motor braking and shorter deceleration times, eg, for:

+ 0 -

U=
– Reduction of coasting down time, eg, for conveyor belts, fans, and pumps
– Emergency stops

The braking chopper cabinet connects to the right side of the drive as well as to the braking resistors, which are external to the ACS1000A and not part of the product scope.

Figure 3–10 ACS1000A with braking chopper (1)

The braking chopper is controlled and monitored by the ACS1000A.

Figure 3–11 Principle diagram

1) Rectifier
2) Braking chopping
3) Inverter
4) Braking resistor
3.4.9.1. Control principle

If the DC-link voltage rises above a preset limit, the control system of the ACS1000A automatically activates the braking chopper. A rise of the DC-link voltage can be caused by a machine, feeding into the DC link or by an increase of the voltage in the rectifier of the ACS1000A.

Figure 3–12 Braking chopper design

1) Semiconductor stack

3.4.9.2. Monitoring and protective functions

Current monitoring

Input currents of the braking chopper are monitored for overcurrent and imbalance in order to detect any defective component in the circuit. The current can become imbalanced if one of the IGCTs conducts a current permanently or if an IGCT fails to be switched on.

If a short-circuit or an imbalance is detected in the braking chopper, the drive is shut down.

Thermal protection

The braking chopper and the braking resistors are monitored for over-temperature by the ACS1000A.

In addition, an external thermal protection device can be connected to a digital input. As soon as the temperature of the braking resistors exceeds the response threshold of the external thermal protection device, the operation of the braking chopper is disabled and an alarm message is displayed on the control panel of the ACS1000A. Braking is then only possible when the temperature falls below the threshold.
3.4.9.3. External cooling for braking resistors

A digital output and a digital input can be used to control and monitor an external cooling fan or pump for the braking resistors.

3.4.9.4. Braking chopper ratings

The maximum braking power is limited to 60% of the nominal power of the ACS1000A and must not be greater than 2.5 MW (Table 3–1).

The relation between maximum braking energy \(E_{\text{brake max}} \) and maximum chopper braking power \(P_{\text{chopper max}} \) is as follows:

\[
E_{\text{brake max}}(\text{MWs}) = P_{\text{chopper max}}(\text{MW}) \times 30 \text{ sec}
\]

(1)

After a braking period of 30 s with maximum braking power (2.5 MW), a cooling time of one hour is required. If two braking sequences of 30 s are necessary within an hour, the maximum braking power has to be reduced to 50% of the maximum possible braking power.

Table 3–1 Braking ratings

<table>
<thead>
<tr>
<th>Type</th>
<th>Max. DC-link voltage (V)</th>
<th>Max. braking power (MW)</th>
<th>Max. braking power (MW)</th>
<th>Max. braking energy (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS1012-A1</td>
<td>4200</td>
<td>0.426</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1013-A1</td>
<td>6000</td>
<td>0.426</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1014-A1</td>
<td>7270</td>
<td>0.426</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1012-A2</td>
<td>4200</td>
<td>0.672</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1013-A2</td>
<td>6000</td>
<td>0.672</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1014-A2</td>
<td>7270</td>
<td>0.840</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1012-A3</td>
<td>4200</td>
<td>0.960</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1013-A3</td>
<td>6000</td>
<td>1.080</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1014-A3</td>
<td>7270</td>
<td>0.960</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1012-W1</td>
<td>4200</td>
<td>1.350</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1013-W1</td>
<td>6000</td>
<td>1.500</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1014-W1</td>
<td>7270</td>
<td>1.350</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1012-W2</td>
<td>4200</td>
<td>1.680</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1013-W2</td>
<td>6000</td>
<td>2.130</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1014-W2</td>
<td>7270</td>
<td>2.130</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1013-W3</td>
<td>6000</td>
<td>2.500</td>
<td>2500</td>
<td>75</td>
</tr>
<tr>
<td>ACS1014-W3</td>
<td>7270</td>
<td>2.500</td>
<td>2500</td>
<td>75</td>
</tr>
</tbody>
</table>
3.4.9.5. Cabinet dimensions and weight

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>644 mm</td>
</tr>
<tr>
<td>Depth</td>
<td>902 mm</td>
</tr>
<tr>
<td>Width</td>
<td>2002 (2070 including lifting eyes)</td>
</tr>
<tr>
<td>Height</td>
<td>460 kg</td>
</tr>
</tbody>
</table>

3.4.9.6. Braking resistor cables

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable type</td>
<td>Shielded</td>
</tr>
<tr>
<td>Minimum cross sectional area</td>
<td>70 mm²</td>
</tr>
<tr>
<td>Voltage rating</td>
<td>Half of maximum converter DC-link voltage</td>
</tr>
<tr>
<td></td>
<td>If a multi-core cable is used, the full DC-link voltage must be taken into consideration.</td>
</tr>
<tr>
<td>Maximum length</td>
<td>50 m</td>
</tr>
</tbody>
</table>

The configuration and dimensions of the braking resistors depend on the specific application. For information, see the “Dimensioning of braking resistors” application note.

3.5. Cooling system

3.5.1. Fan configurations

The cooling system of the drive is equipped with one of the following fan configurations:

- **Non-redundant**: The fan (1 in Fig. 3–15) is installed inside the cabinet.
- **Redundant**: Fan 1 and fan 2 (1 and 2 in Fig. 3–16) are installed on the roof. This configuration enables continuous operation of the drive if a fan fails.

3.5.2. Type of fan

The drive is equipped with one of the following types:

- **AC fans**: The AC fans are turned on and off with digital signals which switch contactors to connect or disconnect the 3-phase auxiliary power. The AC fan speed is not controlled.
- **EC fans**: The electronically commutated (EC) fans are controlled via an analog signal from the drive based on the inverter current. The EC fan speed is controlled depending on the required cooling.

3.5.3. Starting, stopping the cooling system

The drive switches on the cooling system when the main circuit breaker (MCB) closes. When the MCB opens, the cooling system switches off after a delay. The delay corresponds to the discharging time of the drive and takes up to 5 minutes.
3.5.4. AC redundant fans - operating principles

Default settings:
- Cycle time during which AC fan 1 and AC fan 2 run alternately: 10 h
- Operating time of AC fan 1: 6 h
- Operating time of AC fan 2: 4 h

![Figure 3–13 Operating times of the AC fan units during continuous drive operation (A) and intermittent drive operation (B)](image)

When the drive operates continuously, AC fan 1 switches off after six hours and fan 2 switches on for four hours.

When the drive operates intermittently, the AC fan that is due for operation is switched on and off in the same pattern as the drive until the programmed operating time has elapsed.

If one AC fan fails, the second AC fan switches on and runs continuously.
3.5.5. EC redundant fans – operating principles

When no EC fan failure exists, all EC fans are turned on and are running at a lower speed (typically the minimum speed). When one EC fan fails, the second EC fan will speed up to ensure the required cooling.

![Diagram showing the operating principles of redundant EC fans]

Both fans are running
- Fan 1 fails, fan 2 increases speed
- Fan 1 is stopped, Fan 2 is running at nominal speed
- Fan 1 resumes operation, fan 2 decreases speed

Figure 3–14 Operating principles of redundant EC fans

1) Fan 1
2) Fan 2
3) Drive load
4) Nominal fan speed
5) Reduced fan speed
6) Minimum fan speed
3.5.6. Air flow overview (AC and EC fans)

Figure 3–15 Air flow– non-redundant fan (1) configuration

Figure 3–16 Air flow– redundant fan configuration
3.5.7. Monitoring the air pressure

3.5.7.1. Air pressure in the drive (AC fans only)

This type of supervision is only required for AC fans. For EC fans, the supervision is integrated in the EC fan electronic board.

A pressure switch (1 in Fig. 3–17) in the control compartment monitors the air pressure in the drive.

Figure 3–17 Air pressure switches

1) Air pressure switch
2) Location of optional air pressure switch

When the pressure decreases and the response threshold of the pressure switch is reached, the following takes place:

- **Drives with non-redundant fan configuration:** The alarm FanDiffPres displays on the local control panel and the drive shuts down.

- **Drives with redundant fan configuration:** The alarm FanDiffPres displays on the local control panel and the drive switches on the stand-by fan. When the stand-by fan also fails, the drive shuts down.
3.5.7.2. Air pressure across filter mat (AC and EC fan types)

A separate optional air pressure switch (2 in Fig. 3-17) monitors the pressure drop across the filter mat in the air intake. When the filter mat is clogged and the pressure drop reaches the specified final pressure loss, the alarm AirFiltSupv displays on the local control panel. The reaction of the drive on the alarm is programmable.

3.5.8. Adjustable parameters

For information on the parameters for the cooling system and their settings, see “Appendix G - Signal and parameter table”.

3.6. Cabinet design

The riveted and folded cabinet construction of the drive ensures a strong, flexible and self-supporting framework. The construction avoids the need for additional skeletal support and provides effective protection against electromagnetic emissions.

EMC has been achieved by applying a cabinet design consisting of folded, galvanized sheet metal plates (approximately 2 mm thick) and minimizing the space between the rivets. The inside walls of the cabinet are not painted, because paint tends to reduce the effectiveness of metallic bonding which is important for successful EMC.

Accordingly, only the front of the cabinet is painted while all other walls are galvanized. However, the cabinet can be ordered optionally with the whole of the outside painted. EMC performance is further enhanced by the use of metal cable ducts.
3.7. Door locking system

To ensure safety and to prevent the doors being opened unintentionally, all doors are lockable. The doors of compartments where medium voltages are present during operation (2 in Fig. 3–18) are electro-mechanically secured.

Additionally, the doors of the medium voltage compartments have locks with different inserts than the control compartment door. The different lock inserts ensure that these doors can only be opened by personnel authorized to do so.

![Figure 3–18 Door locks](image)

| 1) | Door of control compartment: lockable Partition of terminal compartment behind control compartment: bolted |
| 2) | Doors of rectifier and inverter compartment: electro-mechanically locked Doors cannot be opened when the drive is energized. |

3.7.1. Optional cabinets

If medium voltages are present in an optional cabinet during operation (e.g., braking chopper and output disconnector), the door is secured by an electro-mechanical lock as well as a door monitoring switch. If the cabinet is UL certified, the door is further secured with extra screws. The lock and the switch release the door after the DC link of the drive has discharged and the drive has been grounded.
3.8. Arc resistant design (optional)

The optional “Arc Resistant Design” provides the drive with arc fault protection in accordance with IEC 62477-2.

The ABB arc resistant classes in Table 3–2 indicate the type of arc proofing that a drive uses. Depending on the drive configuration, classes I and II are available for an ACS1000A.

For information on the arc resistant design class of your drive, see the project-specific “Converter Data Sheet” (“Appendix B - Technical data” of the ACS1000A user manual).

Table 3–2 ABB arc resistant classes

<table>
<thead>
<tr>
<th>ABB class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class I</td>
<td>Protection based on arc prevention (NOT certified according to IEC 62477-2)</td>
</tr>
<tr>
<td>Class II</td>
<td>Protection based on arc resistant cabinet structure, IAC certified by 3rd body according to IEC 62477-2</td>
</tr>
<tr>
<td>Class III</td>
<td>Protection based on external arc fault limitation and elimination. HV fuses are applied externally to limit the arc fault current, IAC certified by 3rd body according to IEC 62477-2</td>
</tr>
<tr>
<td>Class IV</td>
<td>Fast arc detection and elimination, IAC certified by 3rd body according to IEC 62477-2</td>
</tr>
</tbody>
</table>

3.8.1. Internal arc classification (IAC)

The arc fault rating, which is based on arc fault tests, is on the label underneath the drive rating plate of the drive.

<table>
<thead>
<tr>
<th>Internal Arc Classification (IAC)</th>
<th>ABB Class II</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAC</td>
<td>F</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>IEC 62477-2</td>
<td>2b</td>
</tr>
<tr>
<td>Distance [m]</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Figure 3–19 IAC label example

3.8.2. Associated protection requirement

The arc resistant design requires associated protections that are not included in the scope of the delivery, ie, a main circuit breaker.

For more information on the MCB:

– MCB overview: section 2.7, **Main circuit breaker protection device**, page 27
– MCB requirements: “Input circuit breaker engineering guideline” , 3BHS260163 E01
3.9. Space heaters

The optional space heaters protect the cabinet from condensation. The drive switches on the space heaters when the cooling system is switched off.

Figure 3–20 Space heaters
4. Control system

4.1. Overview

The control compartment incorporates the hardware for the control, monitoring and protection functions of the drive, and the communication interfaces to the local control panel and to the remote control devices. Depending on the control concept of the drive system, the remote control devices include a higher-level control system and/or remote operator stations.

Figure 4–1 Block diagram of control system with customer interface (A), control system (B) and power electronics (C)

1) ABB Ability
2) Higher-level control system
3) Fieldbus
4) DDCS
5) RS485
6) CDP control panel
7) PC tools
8) AMC circuit board
9) Fiber-optics
10) INT circuit board
11) IOEC1
12) IOEC2
13) IOEC3 (optional)
14) IOEC4 (optional)
4.2. Main components

This section provides an overview of the main hardware components of the control system and their interconnection.

Figure 4–2 Control compartment

1) Control power supply
2) AMC circuit board and INT circuit board
3) Pulse encoder (option)
4) Fieldbus interface (option)
5) IOEC1 module
6) Motor starters and circuit breakers
7) Control power supply
8) Local control panel
For more information on the devices present in the control compartment, see “Appendix D - Wiring diagrams”.

4.2.1. Local control panel

The local control panel on the door of the control compartment serves as the basic user interface for monitoring, control, operation of the drive, and setting of parameters.

For more information, see chapter 9, **Operation**, page 105 and chapter 10, **CDP control panel**, page 117.
4.2.2. AMC circuit board

The AMC circuit board is the major component of the drive’s control system and performs general drive control, motor control, and closed loop functions. The main internal control devices and the peripheral input and output interfaces to the customer communicate with the AMC circuit board via optical fibers.

The circuit board is fitted with a Motorola DSP processor and features two PPCS and eight DDCS communication channels. These communication channels are used for high-speed data transfer via the INT circuit board to the inverter.

The circuit board is fitted with a Motorola DSP processor and features two PPCS and eight DDCS communication channels. These communication channels are used for high-speed data transfer via the INT circuit board to the inverter.

Figure 4–4 AMC circuit board

1) AMC circuit board
2) Interface circuit board (INT)

4.2.2.1. Control tasks

The AMC circuit board has specific control and closed-loop tasks assigned to it. It processes drive and status information, performs the speed and torque control tasks, and monitors the operation of the drive.

All relevant drive variables (e.g., speed, torque, current, voltage) are continuously monitored by the control system. Pre-programmed protection functions ensure that these variables remain within certain limits in order to maintain safe operation of the drive. These internal functions are not programmable by the user.

Optionally, the AMC circuit board can monitor signals from external equipment. These can be activated and adjusted with parameters.

Other general control, protection and monitoring tasks regarding the whole drive include control and monitoring of:

- **Main circuit breaker protection device**, page 27
- **Grounding switch**, page 38
- **Cooling system**, page 43
4.2.2.2. Parameters

The control system is configured, customized, and tuned with a set of application parameters. The application parameters are organized in functional groups and have factory-set default values. The default parameter values are adjusted during commissioning to the specific application of the drive in order to activate the specific control, monitoring and protection functions for the driven process, and to define the signals and data transferred between drive and external equipment.

For more information on the parameters for signal allocation, signal type selection, signal inversion, scaling, and filtering, see “Appendix G - Signal and parameter table”.

4.2.2.3. Main circuit breaker

The main circuit breaker (MCB) is an important switching and protection device of the drive system. Therefore it must only be controlled and monitored by the drive.

For more information, see the Main circuit breaker engineering guideline and section 2.7, Main circuit breaker protection device, page 27.

4.2.2.4. Direct torque control

The speed and torque of the motor is controlled by DTC (Direct Torque Control). DTC provides accurate speed and torque control, and high dynamic speed response.

![Diagram of Direct torque control](image)

Figure 4–5 Direct torque control

1) Torque reference
2) Speed reference
3) Actual reference
4) Speed controller
5) Torque reference controller
6) Torque-flux comparator
7) Motor model
8) Switching logic
9) Switch positions
10) Voltage
11) Current
12) Motor

Switching of the semiconductors in the inverter is directly controlled in accordance with the motor core variables flux and torque.
The measured motor currents and DC link voltages are inputs to an adaptive motor model. The model produces exact values of torque and flux every 25 microseconds. Motor torque and flux comparators compare the actual values to reference values which are produced by the torque and flux reference controllers.

Depending on the outputs from the hysteresis controllers, the switching logic directly determines the optimum switch positions every 50 microseconds and initiates switching whenever required.

4.2.2.5. Peripheral I/O devices

The peripheral input and output devices connected to the AMC circuit board include:

- Local CDP control panel
- IOEC I/O modules for parallel signal transfer to external devices (see section 4.3.1, IOEC I/O modules, page 60)
- Serial communication interface (fieldbus) for serial data transfer to a higher-level control system (see section 4.3.2, Serial communication interface (fieldbus), page 65)
- Pulse encoder interface NTAC (option) (see section 4.3.3, Pulse encoder interface NTAC (option), page 66)
- PC-based service tools comprising:
 - DriveWare® software tools, commissioning and maintenance tools, ie, DriveWindow and DriveDebug, and DriveOPC for data transfer between ABB drives and Windows®-based applications.
 - NETA-21 with ABB Ability monitoring contract (optional): monitoring and diagnostics tool that allows access to the drive from any location in the world via a secure Internet connection.

4.2.2.6. Control modes

The drive provides the following control modes:

- **Speed control mode**: Default control mode of the drive. The control mode can be used for applications where constant speed is required, such as pumps, fans and conveyors.
- **Torque control mode**: used for processes that require torque control (eg, mixers and slave drives). The torque reference comes from a process control system or a control panel.
- **PID control mode**: controls the process variable (eg, pressure, level or flow) by adjusting the speed of the motor accordingly.
Figure 4–6 PID control mode

| 1) Reference value | 2) Level transducer | 3) Actual value | 4) Pump |

Application examples

- Booster pumps of municipal water supply systems
- Automatic level control of water reservoirs
- Booster pumps of district heating systems
- Speed control of different types of material handling systems where the material flow has to be regulated.
- Sequential control mode: used in processes that require different constant speed settings and/or different acceleration and/or deceleration settings in addition to an adjustable speed reference value.

Up to seven constant speed settings and two acceleration and/or deceleration settings are possible. The selection of the different settings can be automated by a process control system or can be made manually by selector switches that are connected to the corresponding digital inputs of the drive.

The preset values of a control mode can be left unchanged or they can be set individually by the commissioning engineer as required for the application.

For more information on control mode settings, see “Appendix G - Signal and parameter table”.
4.2.2.7. Operating modes

The drive provides the following operating modes:

- **Master-follower operating mode**: used for applications with several drives where the motor shafts are coupled to each other (e.g., gearing, chain, belt). Owing to the master-follower operating mode, the load can be evenly distributed between the drives or at some adjustable other ratio which depends on the process.

- **Hand-auto operating mode**: suitable for applications where the speed has to be controlled automatically by a process automation system and manually by an external control panel. The active control station is selected via a digital input.

The operating mode is also recommended when two external control stations exist from where the reference value can be set and the drive can be started and stopped. The external control station is selected via a digital input.

4.3. I/O interfaces

4.3.1. IOEC I/O modules

Internal and external, analog and binary I/O signals are connected to the control system by IOEC modules.

The standard I/O includes one external module (IOEC 2, IOEC 3) and one module that is internal to the drive operation (IOEC 1). The standard I/O provides standard control and supervision functionalities sufficient for most applications.

The drive can include an optional expansion I/O that includes an external module (IOEC 4). These expansion modules provide extra inputs and outputs for control and supervision as may be required by the drive or the customer to support various control options.

![IOEC interfaces overview](image-url)

Figure 4–7 IOEC interfaces overview

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOEC 1</td>
<td>IOEC 2</td>
<td>IOEC 3</td>
<td>IOEC 4</td>
<td>AMC circuit board</td>
</tr>
<tr>
<td>Standard</td>
<td>6</td>
<td>Option</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
4.3.1.1. IOEC module configuration

Each IOEC module is configured with both analog and digital inputs and outputs as shown in the following tables.

Table 4–1 IOEC module configuration - analog inputs

No. of I/O	4
Resolution	10 bit
Signal interface	Floating, galvanically isolated
Signal level	0 - 20 mA, 4 - 20 mA, 0 - 10 V, 2 - 10 V Individually scalable by parameter
Input resistance	$R_{in} = 105 \, \Omega$ for current input $R_{in} = 250 \, k\Omega$ for voltage input
Common mode voltage	Maximum: 48 V
Isolation level	350 V (AC)

Table 4–2 IOEC module configuration - analog outputs

No. of I/O	2
Signal range	0 - 20 mA (load impedance: max. 250 Ω)
Resolution	12 bit
Isolation level	350 V (AC)

Table 4–3 IOEC module configuration - digital inputs

| No. of I/O | 14 |
| Signal level | 22 - 120 V (DC) * |
| *for the 80 to 120V range, an IOEC adapter board is required 22 - 250 V (AC) |
Logical threshold	$< 13 \, (AC \ or \ DC) \triangleq \text{“0”}$, $> 16 \, (AC \ or \ DC) \triangleq \text{“1”}$
Input current	13 mA steady state (14 mA max. inrush) at 24 V (DC) 11.5 mA steady state (80 mA max. inrush) at 120 V (DC) 10.5 mA steady state (92 mA max. inrush) at 230 V (AC)
Isolation level	1350 V (AC)
4.3.1.2. Internal voltage supply (24 V)

One isolated DC/DC converter supplies an overload protected voltage of 24 V (DC) to operate digital inputs from passive contacts. The output is protected by a PTC-resistor against short-circuit and external applied overvoltages.

Table 4–4 IOEC module configuration - digital inputs

No. of I/O	6
Signal level	Maximum: 120 V (DC) or 250 V (AC)
Isolation level	4000 V (AC)

<table>
<thead>
<tr>
<th>Switching capacity</th>
<th>Voltage</th>
<th>Switching current</th>
<th>Steady state current</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 V (DC)</td>
<td>8 A</td>
<td>6 A</td>
<td></td>
</tr>
<tr>
<td>24 V (AC)</td>
<td>8 A</td>
<td>6 A</td>
<td></td>
</tr>
<tr>
<td>48 V (DC)</td>
<td>1 A</td>
<td>6 A</td>
<td></td>
</tr>
<tr>
<td>48 V (AC)</td>
<td>8 A</td>
<td>6 A</td>
<td></td>
</tr>
<tr>
<td>120 V (DC)</td>
<td>0.4 A</td>
<td>6 A</td>
<td></td>
</tr>
<tr>
<td>120 V (AC)</td>
<td>8 A</td>
<td>6 A</td>
<td></td>
</tr>
<tr>
<td>230 V (AC)</td>
<td>8 A</td>
<td>6 A</td>
<td></td>
</tr>
</tbody>
</table>

Table 4–5 24 V internal voltage supply

<table>
<thead>
<tr>
<th>Output voltage</th>
<th>Available output voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unregulated 24V</td>
<td>180 mA</td>
</tr>
</tbody>
</table>
4.3.1.3. Module terminals

The IOEC module has terminal blocks for internal wiring and indicator LEDs for diagnostic and I/O status.

Figure 4–8 IOEC module

1) Digital outputs 6) DDCS fiber optics
2) Digital inputs 7) I/O Emergency OFF function
3) 24 V internal voltage 8) Power supply (factory-installed wiring)
4) Analog inputs 9) Voltage mode
5) Analog outputs 10) Current mode
4.3.1.4. I/O device identification

The I/O modules are identified on the part with an identification label (1 in Fig. 4–9), in the wiring diagram, and in the software by the wiring diagram identification number (2 in Fig. 4–9).

![Figure 4–9 IOEC module identification](image)

1) Identification label
2) Identification number

The way the identification number is built directly corresponds to the wiring diagram as can be seen in Fig. 4–9. The letter A represents the kind of part we have, an assembly, the next three digits are the page number the part is located on, page 191, and the last digit, 1, means that our part is the first assembly on the page. This identification label number is the key to track electrical devices throughout the drive and in the ABB documentation.

The designation for each IOEC module is shown in Table 4–6.

<table>
<thead>
<tr>
<th>I/O module type</th>
<th>Wiring diagram designation for module identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOEC1</td>
<td>A5191</td>
</tr>
<tr>
<td>IOEC2</td>
<td>A5201</td>
</tr>
<tr>
<td>IOEC3</td>
<td>A5211</td>
</tr>
<tr>
<td>IOEC4</td>
<td>A5221</td>
</tr>
</tbody>
</table>

Table 4–6 IOEC module identification
4.3.2. Serial communication interface (fieldbus)

To identify the serial communication interface in the drive, see “Appendix D - Wiring diagrams”. For more information on the device, consult the relevant manual:

- Modbus TCP - “Ethernet - NETA-21 remote monitoring tool user manual”, 3AU0000096939
- Modbus RTU - “Modbus - NMBA-01 installation and start-up guide”, 3AFY58919772
- Profibus - “Profibus - NPBA-12 installation and start-up guide”, 3BE64341588
- DeviceNet - “DeviceNet - NDNA-02 installation and start-up guide”, 3AFY58919829
4.3.3. Pulse encoder interface NTAC (option)

The NTAC interface is part of the control system of the drive if pulse encoder feedback is used to control the motor.

For more information on the device, see “Installation and start-up guide for the pulse encoder module NTAC-0x”, 3AFY58919730.

![NTAC-02 pulse encoder interface](image)

Figure 4–10 NTAC-02 pulse encoder interface

<table>
<thead>
<tr>
<th>Terminals X1</th>
<th>Terminals X2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 A+ Channel A</td>
<td>1 -V 0 V</td>
</tr>
<tr>
<td>2 A-</td>
<td>2 -V 24 V</td>
</tr>
<tr>
<td>3 B+ Channel B</td>
<td>3 +V</td>
</tr>
<tr>
<td>4 B-</td>
<td>4 24/25</td>
</tr>
<tr>
<td>5 Z+ Channel Z</td>
<td>5 15</td>
</tr>
<tr>
<td>6 Z-</td>
<td>6 24</td>
</tr>
<tr>
<td>7 SH Shield</td>
<td>7 0 V</td>
</tr>
<tr>
<td>8 SH</td>
<td>8 +24 V</td>
</tr>
</tbody>
</table>
5. Transportation, storage and disposal

5.1. Safety

⚠️ The drive must only be handled by personnel who are skilled and experienced in unpacking and transporting heavy equipment.

5.2. Transport conditions

The transport conditions for the drive are based on IEC 60721-3-2.

- **Transport conditions:** 2K12 / 2B1 / 2C2 / 2S5 / 2M4
- **Maximum transport time:** 2 months

5.3. Unpacking and inspection

1. Remove all packaging material carefully.
2. Check the drive and accompanying equipment for damages.
3. Compare the complete delivery with the purchase order and the packing list.
4. If parts are missing or damaged, immediately inform the shipping company and the ABB service organization (include photographs of the damaged parts).

5.4. Lifting and transportation

It is recommended to have the following information, which is in “Appendix C - Mechanical drawings”, at hand before transporting the cabinet:

- “Layout drawing” document
- “Fixing and Lifting details” document
5.4.1. General notes on transportation

NOTICE Risk of component damage!

- DO NOT lift and move the drive or a transport unit using a forklift.

 The frame of the cabinets could be damaged. If a crane is not available, contact ABB for instructions on other means of moving.

- Transport the cabinet in upright position.

- Keep the doors closed to ensure that dirt cannot enter.

 Metallic dust in particular can cause damage and failure when the drive is energized

- If the drive is delivered in several transport units, DO NOT lift and move the drive by crane after the transport units have been joined.

 Use appropriate transport means eg, heavy load hydraulic rollers or air cushions. If in doubt, contact ABB for instructions.

5.4.2. Using a crane

5.4.2.1. Cabinets with redundant fan unit

NOTICE Risk of component damage!

If the cabinet is lifted at the eye bolts, the fastening screws of the fan unit tear off, and fan unit and cabinet are damaged.

- DO NOT attach lifting equipment to the eye bolts of the redundant fan unit.
5.4.3. Cabinets without redundant fan unit

- Use lifting equipment (e.g., web slings, chain slings, round slings, safety hooks, shackles) that corresponds to the weight of the cabinet.
- Attach a sling to the outer fastening holes of the rails (arrows in Fig. 5–1).
- The rails can be removed after the cabinet has been installed at its final location.
- To attach a sling, use appropriate safety hooks or shackles.
- Maximum slope angle is 60° (1 in Fig. 5–1).

![Image: Transporting the cabinet by crane]

Figure 5–1 Transporting the cabinet by crane

- Lift the cabinet slowly and steadily to the required clearance height maintaining the cabinet in upright position.
- Check the horizontal position of the cabinet. Reposition the slings if necessary.
5.5. Storage

5.5.1. Storage conditions
The minimum requirements for storage are based on IEC 60721-3-1.
– **Conditions:** 1K22 / 1B1 / 1C2 / 1S11 / 1M11

5.5.1.1. Storage time
The drive can be stored for up to one year in the original packaging as long as it is not damaged or opened.

NOTE – For information on longer storage periods, contact the ABB service organization.

5.5.2. Storing the drive
If the drive is taken out of service for a longer time proceed as follows:

1. Remove the batteries (if applicable).
2. Cover all cable inlets and ventilation slots with an impermeable plastic or aluminum foil and a wooden panel.
3. Add a desiccant of the appropriate quality:
 - 1 unit desiccant (30 g) absorbs 6 g water vapor.
 The following quantity is required when using a polyethylene foil:
 - 10 units/m² foil
4. Close and lock the doors of the cabinet.
5. Use polyethylene or equivalent for packaging:
 - 0.3 g/m²/24h water vapor diffusion
6. Attach humidity indicators to the packaging.

The storage conditions and the packaging should be checked regularly. Any damages that occur during the storage period should be repaired immediately.
5.5.3. Storage and handling of spare parts

NOTICE Risk of component damage!

Electronic devices (eg, circuit boards, semiconductors) are sensitive to electrostatic discharge (ESD), which can damage these devices. Observe the following to maintain spare parts in good condition and to keep the warranty valid during the warranty period:

- Apply ESD handling precautions before handling these devices.

5.5.3.1. Warranty information

IMPORTANT! Check the spare parts immediately after receipt for damages and report any damage to the shipping company and the ABB service organization.

- Keep spare parts in their original packaging
- Store printed circuit boards in antistatic bags or boxes
- Storage temperature range: -5 °C to +55 °C
- Storage place requirements:
 - Free of vibration and shock
 - Protected against dust, sand, vermin and insects
 - Free of corrosive gases, salt or other impurities that could damage electronic equipment
 - Dry with NO condensation
 - Relative air humidity: 5 to 85%
 - If in doubt whether the maximum allowed humidity is exceeded, protect the spare parts with an external heater.
- DO NOT touch a component without wearing a wrist grounding strap.
- Put the component on a grounded working surface protected against electrostatic discharges
- Hold the component only at the edge

5.6. Disposal of packaging materials and components

Dispose of the packaging materials and the components at the end of the lifetime of the drive according to local regulations.
6. Mechanical installation

6.1. Safety

All installation work must be carried out by qualified personnel according to the site and equipment requirements and in compliance with local regulations.

6.2. Overview of installation work

The installation includes the following work:

- Preparing the floor, page 74
- Fixing the cabinet to the floor, page 74
- Assembling and installing the air exhaust hood, page 75
- Installing the redundant fan unit, page 76

6.3. General notes on installation

NOTICE Risk of component damage!

Foreign matter and particularly metallic dust can cause failure and damage when the drive is energized.

- Ensure that foreign matter cannot enter the cabinet:
 - Close the doors and cover openings completely when work is discontinued.
 - Retrieve any foreign matter which accidentally dropped into the cabinet.

6.3.1. Dimensions and clearances

See “Appendix C - Mechanical drawings” for information on:

- Cabinet dimensions
- Clearances to be observed
- Mounting hole sizes

6.3.2. Cabinet roof

The cabinet roof is not designed as a mounting base for, eg, foreign devices, cable ducts. Therefore, it is not permitted to install any foreign device on the roof.

6.3.3. Fire protection

To prevent fire spreading into the drive, apply suitable fire protection measures.
6.3.4. **Cable duct material**
- Use non-flammable material with non-abrasive surface.
- To prevent dust, humidity and animals entering the cabinet, protect the cable entries.

6.4. **Preparing the floor**

Condition of the floor:
- Must support the weight of the cabinet
- Overall incline across 5 m must not exceed 5 mm
- Even
- Non-flammable, smooth and non-abrasive
- Protected against humidity diffusion

6.5. **Fixing the cabinet to the floor**

IMPORTANT! If the doors of medium voltage compartments cannot be opened, contact the ABB service organization

1. Drill fixing holes into the floor as indicated on the layout drawing.
2. When the cabinet is in place, check if the doors are misaligned.

 NOTE – If the doors DO NOT open and close properly, place leveling plates at the appropriate points (arrows in Fig. 6–1).
3. Recommended size: 80 x 300 x 0.5 mm

![Figure 6–1 Leveling the drive](image)

4. Fix the cabinet to the floor.

 NOTE – Floor fixings are not supplied. ABB recommends anchor bolts (Fig. 6–2) or M16 screws and nuts.
5. Insert the screws from the ends of the cabinet base or via the holes inside the cabinet.

6.6. Assembling and installing the air exhaust hood

This section applies to drives with an internal fan.

- Assemble and install the air exhaust hood as illustrated.
- Use the supplied screws.
6.7. Installing the redundant fan unit

This section applies to drives with a redundant fan unit.

– Included in delivery: screws

IMPORTANT! Move the drive to its final location before you install the redundant fan unit.

1. Remove the lifting rails (1, 2 and 3 in Fig. 6–4).

2. Remove the cover (4 in Fig. 6–4).

![Figure 6–4 Redundant fan unit – Removing lifting rails and cover](image1)

3. Attach the lifting gear to the eye bolts of the redundant fan unit (1 in Fig. 6–5).

 CAUTION! The redundant fan weighs approximately 300 kg.

![Figure 6–5 Redundant fan unit – Installation](image2)

4. Orientate the redundant fan unit with the cable pointing to the left.

5. Lift the redundant fan unit above the cabinet.
6. Before you lower the redundant fan unit onto the cabinet roof, check that the gasket between cabinet roof and redundant fan unit is properly placed.

7. Fasten the redundant fan unit on both sides to the cabinet roof.

8. Attach the sound absorbing panels to the right side of the redundant fan unit.
 Recommended sequence: 1, 2, 3.

9. After the power supply cable of the redundant fan unit and the transformer and motor cables have been entered into the cabinet, attach the sound absorbing panels to the left side of the redundant fan unit.

10. Continue with the electrical installation of the power supply cable.
 See section 7.7, **Power supply cable for redundant fan unit**, page 98.
7. Electrical installation

7.1. Safety

⚠️ **DANGER** Hazardous voltage!

Improper work can result in DEATH or life-threatening injury.

- The electrical installation must be carried out by qualified personnel according to the site and equipment requirements, and the relevant electrical codes.
- When the electrical installation is completed, the main and auxiliary power supply to the drive must not be switched on without the consent of the ABB commissioning personnel.
- Take appropriate measures to prevent main and auxiliary power supply being switched on during installation.

7.2. Overview of installation work

The electrical installation includes the following wire and cable connections:

- **Power cables, ground cables and equipotential bonding conductor**, page 82
- **Auxiliary power, control and serial communication cables**, page 92
- **Power supply cable for redundant fan unit**, page 98

7.3. Cable requirements

For information on the requirements for power cables, ground cable and equipotential bonding conductor, see:

- “Power cable specification”, 3BHS189994 E01
- “Power cables engineering guideline”, 3BHS542290 E01

For information on the requirements for the auxiliary power cable and the control cables, see the “Auxiliary power and control cables guideline”, 3BHS813742 E01.
7.4. Cable entries

The cables can be entered through the roof or the floor of the cabinet.

The cabinet is equipped with one of the following cable entries:

- Cable entry with EMC plates
- Cable entry with sealing modules, type 1
- Cable entry with sealing modules, type 2
- Cable entry with cable glands

For information on location and dimensions, see “Appendix C - Mechanical drawings”.

7.4.1. Cable entry with EMC plates

- **Usage:**
 - Power cables, ground cables and bonding conductors
 - Auxiliary power cables and control cables

- **Included in delivery:** galvanized plate with net-like EMC sleeves (1 in Fig. 7–1) and sealing grommets (2)

![Figure 7–1 EMC plate example](image)

<table>
<thead>
<tr>
<th>1) EMC sleeves</th>
<th>2) Sealing grommets</th>
</tr>
</thead>
</table>

- EMC cushions (1 Fig. 7–2) on the underside of the EMC plate if the cable entry is used for control cables.

![Figure 7–2 EMC cushion](image)
7.4.2. Cable entry with type 1 sealing modules

- **Usage**: power cables, ground cables and bonding conductors
- **Included in delivery**: cable entry frame (1 in Fig. 7–3)
- **Not included in delivery**: sealing modules (2 in Fig. 7–3), accessories and tools

Figure 7–3 Type 1 sealing modules (example)

1) Cable entry frame 2) Sealing modules

7.4.3. Cable entry with type 2 sealing modules

- **Usage**: auxiliary power cables and control cables
- **Included in delivery**: frame (1 in Fig. 7–4)
- **Not included in delivery**: tools, accessories and EMC sealing modules (2 in Fig. 7–4)
- **Supplier**: Roxtec AB (www.roxtec.com)

Figure 7–4 Type 2 sealing modules example

1) Frame 2) EMC sealing modules
7.4.4. Cable entry with cable glands

- **Usage:**
 - Power cables, ground cables and bonding conductors
 - Auxiliary power cables and control cables
- **Included in delivery:** undrilled plate for cable glands
- **Not included in delivery:** cable glands, tools and accessories

![Figure 7–5 Cable entry with cable glands](image)

7.5. Power cables, ground cables and equipotential bonding conductor

See the layout drawings in “Appendix C - Mechanical drawings” for information on:

- Project-specific cable entry
- Distance between point of cable entry and terminals
- Busbar and fastening hole dimensions
- Busbar designations

See “Appendix D - Wiring diagrams” for information on conventions for cross-reference and device identification.
7.5.1. Preparing the cable entry and the cables

NOTICE Risk of damage or malfunction!
Waste inside the cabinet can cause damage or malfunction.
- If possible, DO NOT cut cables inside the terminal compartment
- Remove any waste that was accidentally dropped in the cabinet

7.5.1.1. Maximum number of cables per phase

The maximum number of cables that can be used per phase depends on the type of the drive and its nominal voltage.

Table 7–1 Maximum number of cables per phase

<table>
<thead>
<tr>
<th>ACS1000A type</th>
<th>2.3 kV nominal voltage</th>
<th>3.3 kV nominal voltage</th>
<th>4.0 kV nominal voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>1 cable per phase</td>
<td>1 cable per phase</td>
<td>1 cable per phase</td>
</tr>
<tr>
<td>A2</td>
<td>2 cables per phase</td>
<td>1 cable per phase</td>
<td>1 cable per phase</td>
</tr>
<tr>
<td>A3</td>
<td>2 cables per phase</td>
<td>2 cables per phase</td>
<td>1 cable per phase</td>
</tr>
</tbody>
</table>

7.5.1.2. Determining the cable length

1. Determine the required length of a cable between the point of entry and the connection point inside the cabinet.

2. Cut the cable to the required length before connection.
7.5.1.3. Splitting multi-core cables

This section applies to drives without an additional cabinet.

– Check the distance between point of cable entry and closest busbar.
– Check the cable diameter.
– If distance and cable diameter do not allow for the bending the cable inside the terminal compartment, separate the conductors outside of the terminal compartment.

Continue with:

– Preparing cables for EMC plates, page 84
– Preparing cables for cable entries with sealing modules, page 86
– Preparing cables for cable entries with cable glands, page 87

7.5.1.4. Preparing cables for EMC plates

As a standard, the cabinet is delivered for cable entry through the roof of the terminal compartment. If cables are entered through the floor, swap entry plate and cover plate.

The orientation of the EMC plates is the same for cable entry through the roof and through the floor, i.e., the sealing grommets face upwards.

1. Remove the grommets.

2. To ensure proper sealing, cut along the marking that corresponds to the cable diameter and slide the grommet onto the cable.

IMPORTANT! The grommet must fit tightly to prevent water entering the cabinet. The grommets can be discarded if cables are entered through the floor.
3. If necessary, remove the entry plate and push the cable through the entry holes.

4. Prepare the cables as illustrated.

 - **A** in Fig. 7–6 illustrates how cables with an outer cable screen or shield are prepared for EMC bonding with the metal enclosure of the cabinet.

 - **B** in Fig. 7–6 illustrates how cables without an outer screen or shield are prepared.

![Diagram](image_url)

Figure 7–6 Preparing cables for EMC plates: (A) cables with an outer screen or shield, (B) cables without an outer screen or shield

1) Grommet
2) EMC sleeve
3) Cable tie
4) Heat-shrinkable termination
5) Outer cable sheath
6) Entry plate
7) Conductor insulation removed to expose cable shield
8) Cable screen extension to connect to the PE busbar

5. Route the equipotential bonding conductor through an unused hole in the entry plate.

 NOTE – If all of the holes are used for conductors, route the equipotential bonding conductor together with a conductor.
7.5.1.5. Preparing cables for cable entries with sealing modules

As a standard, the cabinet is delivered for cable entry through the roof of the terminal compartment. If cables are entered through the floor, swap entry plate and cover plate.

- Prepare cables with an outer cable screen or shield for EMC bonding with the metal enclosure of the cabinet as illustrated in Fig. 7–7.

![Diagram of cable preparation](image)

Figure 7–7 Preparing power cables for sealing modules

1) Sealing module
2) Frame
3) Conductive foil of sealing module
4) Cable clamp
5) Shrinkable sheath seal
6) Heat-shrinkable termination
7) Outer cable sheath
8) Cable sheath removed to expose cable shield
9) Shield extension to be connected to PG busbar
10) Screen extension to be connected to the PG busbar
11) Cable lug as specified by the cable supplier and suitable for M12 bolt

- Install the sealing modules according to the instructions of the sealing module supplier.
7.5.1.6. Preparing cables for cable entries with cable glands

Prepare cables with an outer cable screen or shield for EMC bonding with the metal enclosure of the cabinet as illustrated in Fig. 7–8.

![Diagram of cable glands](image)

Figure 7–8 Preparing power cables for cable glands

<table>
<thead>
<tr>
<th>1</th>
<th>Outer cable sheath</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Cable gland</td>
</tr>
<tr>
<td>3</td>
<td>Conductor insulation removed to expose cable shield</td>
</tr>
<tr>
<td>4</td>
<td>Plate</td>
</tr>
<tr>
<td>5</td>
<td>Screen extension to be connected to PE ground busbar</td>
</tr>
<tr>
<td>6</td>
<td>Heat-shrinkable termination</td>
</tr>
</tbody>
</table>
7.5.2. Connecting the cables

7.5.2.1. Checking the cable insulation

– Check the insulation of each cable before connection and verify that the results are within the specification of the cable manufacturer.

– Leave the cable conductors unconnected at both ends until the commissioning engineer has given permission.

7.5.2.2. Connections

Risk of flashover!

High voltages will be present in the terminal compartment. High voltages can cause flashover between conductors with different electric potential, and between a conductor and earth.

▶ Maintain the following minimum clearances:

- 20 mm between conductors
- 40 mm between a conductor and earth

Power and grounding cables

– Connect the feeder cable conductors to busbars
 - 1U1, 1V1, 1W1, 2U1, 2V1, 2W1 (12-pulse and 24-pulse drive, Fig. 7–9)
 - 3U1, 3V1, 3W1, 4U1, 4V1, 4W1 (24-pulse drive, Fig. 7–9)

– Connect the motor cables to busbars U2, V2, W2 (Fig. 7–9).

– Connect the screens of all conductors and the shields of all cables to the PE ground busbar (1 in Fig. 7–9).

– Connect the equipotential bonding conductor to the PE ground busbar.

– Tie the cables to the strain relief rails (2 in Fig. 7–9).
Figure 7–9 Power cable terminals in 12-pulse ACS1000A (top row) and 24-pulse ACS1000A (bottom row)

1) PE ground busbar
2) Strain relief rails
7.5.3. Minimum creepage distance between cable and busbar

If spacers are used to connect a cable to a busbar, observe the minimum creepage distance. Depending on the comparative tracking index (CTI) of the insulation material of the cable, the following minimum creepage distances apply:

Table 7–2 Minimum creepage distance between cable and busbar

<table>
<thead>
<tr>
<th>CTI</th>
<th>Minimum creepage distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 600</td>
<td>63 mm</td>
</tr>
<tr>
<td>2 400 - 600</td>
<td>71 mm</td>
</tr>
<tr>
<td>3 175 - 400</td>
<td>80 mm</td>
</tr>
</tbody>
</table>
7.5.4. Bolted connections

7.5.4.1. Material requirements

Use stainless steel bolts and nuts with the appropriate steel grade and property class for the connection (recommended: A2-70; designation according to ISO 3506).

NOTE – Nuts with bonded coating can be used as an alternative to uncoated stainless steel nuts.

7.5.4.2. Connection type

The following connection type is recommended when a cable lug (4 in Fig. 7–11) is connected to a busbar:

– Spring washer (1 in Fig. 7–11) and flat washer (2 in Fig. 7–11) on each side of the busbar (3 in Fig. 7–11).

NOTE – Other washers can be used, provided they maintain the required contact pressure.

7.5.4.3. Lubrication

If stainless steel bolts and nuts are used, lubricate the thread and head contact surface of the bolt using recommended pastes, eg, Molykote D paste.

NOTE – If a coated nut (eg, with bonded molybdenum-disulfide [MoS₂] coating) is used, the connection does not need to be lubricated.

7.5.4.4. Tightening torque

Tighten bolted connections with bolts of sizes M10 and greater with the recommended nominal torque for the bolt size used.
7.6. Auxiliary power, control and serial communication cables

See the layout drawings in “Appendix C - Mechanical drawings” for information on:

− Project-specific cable entry
− Dimensions between point of cable entry and terminals

See “Appendix D - Wiring diagrams” for information on:

− Conventions for cross-references and device identification
− Terminal designations

7.6.1. Preparing the cable entry and the cables

7.6.1.1. Determining the cable length

1. Determine the required length of a cable between the point of entry and the connection point (1 in Fig. 7–12) inside the cabinet.

2. Cut the cable to the required length before connection.

![Figure 7–12 Cable entry from top (A) and from bottom (B)](image)
7.6.1.2. Preparing cables for EMC plates

1. Remove the grommets.

2. To ensure proper sealing, cut along the marking that corresponds to the cable diameter and slide the grommet onto the cable.

 IMPORTANT! The grommet must fit tightly to prevent water entering the cabinet. The grommets can be discarded if cables are entered through the floor.

3. If necessary, remove the entry plate and pull the cable through the entry holes.

4. Loosen the screws of the EMC cushion brackets and push the cushions apart (arrows).

5. If the outer cable screen is non-conductive, cut open the cable screen in the middle of the stripped area (1), pull the screen ends over the cable insulation (2) and then connect the screen ends with a continuous conducting foil (3).

Figure 7–13 Preparing control cables for EMC plates
6. Pull the cables through the EMC cushions.

7. Push the cushions together so they fit tightly around the bare screen and tighten the screws.

7.6.1.3. Preparing cables for cable entries with sealing modules

1. Unscrew the frame and remove the sealing modules.

For information on removing and installing the sealing modules and using the compression wedge (1), see “Appendix A - Additional manuals”.

Figure 7–14 Frame with sealing modules

1) Sealing modules 2) Compression wedge
2. Prepare the cables with an outer cable screen for EMC bonding with the metal enclosure of the cabinet as illustrated in Fig. 7–15.

![Diagram of cable preparation](image)

Figure 7–15 Preparing control cables for sealing modules

1) Sealing module
2) Conductive foil
3) Cable sheath removed to expose cable shield
4) Conductor screen extension to be connected to PE terminal
7.6.1.4. Preparing cables for cable entries with cable glands

- Prepare the cables with an outer cable screen for EMC bonding with the metal enclosure of the cabinet as illustrated in Fig. 7–16.

![Diagram of cable preparation](image_url)

Figure 7–16 Preparing control cables for cable glands

1) Outer cable sheath
2) Cable gland
3) Conductor insulation removed to expose cable shield
4) Plate
5) Conductor screen extension to be connected to PE terminal
7.6.2. Connecting the cables

7.6.2.1. IOEC modules

– Connect the cables for digital and analog input and output signals to the distribution terminals.

7.6.2.2. Conductors

– If a twisted pair cable is used, leave the unshielded cable ends twisted until they reach the terminals.

– Leave unshielded conductor ends as short as possible (not longer than 50 mm).

7.6.2.3. Cable shields

– Connect the shield of serial communications cables to the fieldbus adapter.

– Connect the overall shield and the individual shields of the encoder cable to the separate shield grounding bracket (2 in Fig. 7–17).

 IMPORTANT! DO NOT connect the shields directly to the encoder adapter (1 in Fig. 7–17).

To accommodate encoder cables of different diameters, ground clamps (3 in Fig. 7–17) of different sizes are supplied.

Figure 7–17 Shield grounding point for encoder cable

1) Encoder adapter
2) Shield ground bracket
3) Grounding clamp
7.7. Power supply cable for redundant fan unit

This section applies to drives that are equipped with the optional redundant fan. For information on the cable connection, see “Appendix D - Wiring diagrams”.

1. Enter the pre-fabricated multi-core cable into the cabinet as close as possible to the redundant fan unit and according to the type of control cable entry used. For more information on cable entry, see:
 - Preparing cables for EMC plates, page 93
 - Preparing cables for cable entries with sealing modules, page 94
 - Preparing cables for cable entries with cable glands, page 96

 The braided metal cable sleeve (1 in Fig. 7–18) does not have to be grounded at the point of entry. If necessary, seal the gaps according to the type of cable entry used.

2. Route the wires to the terminals (2 and 3 in Fig. 7–18) as illustrated.

 NOTE – Connection 3 in Fig. 7–18 depends on the type of fan, eg, AC or EC.

 ![Figure 7–18 Routing, connecting the cable of the redundant fan unit](image)

3. Connect the wires according to the terminal number on the marker sleeves.
7.8. Final checks

- Check that the entry plates are properly fastened.
- If EMC entry plates with grommets are used, check that the grommets fit tightly (arrows) to prevent water from entering the cabinet.
- If necessary, seal gaps with silicone.
8. Commissioning

8.1. Overview

The following sections provide an overview of the commissioning process for your drive.

8.1.1. Required qualification

Commissioning, parameter adjustments and functional tests must be carried out only by qualified commissioning personnel that have been certified by ABB.

8.1.2. Commissioning procedure

Information on the commissioning procedure and the start conditions for commissioning can be obtained from ABB.

8.1.3. Commissioning checklist

In order to ensure uncomplicated and speedy commissioning, it is important that drive and associated equipment are ready for commissioning. Reviewing and completing the items in the commissioning checklist before the commissioning personnel arrive on site will help to achieve this.

8.1.4. Customer assistance

During the commissioning period, the customer is requested to provide qualified personnel for assistance, who are:

- Experienced with medium and low voltage equipment and with the local safety regulations,
- Familiar with the driven process
- Authorized to operate associated medium and low voltage equipment (e.g., input circuit breaker, other low and medium voltage switchgear)
- Authorized to operate the driven process for functional tests

8.1.5. Customer acceptance

When commissioning has been completed, the commissioning report is signed by the responsible commissioning personnel and by the customer as a sign of acceptance. A copy of the report and a copy of the actual parameter settings are handed out to the customer.
8.2. Commissioning checklists

The checklists are designed to help you prepare the drive and associated equipment for commissioning.

8.2.1. Mechanical installation checklist

1. Drive installed according to the instructions in this user manual (3BHS213401 E01).
2. Drive securely fastened to the floor (if applicable).
3. Redundant fan unit installed (if applicable).
4. Visual inspection:
 - No badly affixed or damaged components
 - No foreign objects left in the cabinet
 - No dirt, dust or moisture in the cabinet

8.2.2. Electrical installation checklist

1. Types and cross sections of control cables suitable for the signal type and signal level.
2. Types and cross sections of power cables selected according to the instructions in this user manual (3BHS213401 E01).
3. Pulse encoder cable shields are connected to the shield earthing point and not connected directly to the pulse encoder interface (applies only to drives with pulse encoder interface).
4. Cable entries prepared according to the instructions in the user manual (3BHS213401 E01).
5. Control cable screens and conductors are connected as instructed in the user manual, labeled appropriately, and the customer side connections are completed.
6. Equipotential bonding conductor of drive securely connected at both ends.
7. Converter transformer and motor cables not connected at both ends (cables and drive must be insulation resistance tested (Megger test) before connection)
8.2.3. Main circuit breaker (MCB) checklist

1) Type of MCB selected as per the MCB specification from ABB

2) High-voltage power connections completed

3) MCB ready to be tested with drive

4) MCB protection relay settings tested

5) Safety devices (eg, door locks) are tested and in operation.

8.2.4. Input transformer checklist

1) Grounding is completed

2) Transformer auxiliaries (eg, dehydrating breathers, cooling, protection devices) are ready.

3) Safety devices (eg, door locks) are tested and in operation.

8.2.5. Motor checklist

1) Motor is installed, aligned and alignment protocol available.

2) Motor is not coupled to driven load.

3) Grounding is completed

4) Motor auxiliaries (eg, bearing lubrication) are ready

5) Control and monitoring signals are connected.

8.2.6. Insulation tests checklist

1) All power cables to converter transformer, between converter transformer and drive, and from drive to motor insulation resistance tested (Megger test), and measured values within the required limits.

2) Test report of the Megger insulation resistance test available

IMPORTANT! If the test is carried out by the commissioning engineer of the drive, an additional day per drive motor combination needs to be reserved. After the test, the feeder cables can be connected, except at the drive end. The test must comply with the specification.
8.2.7. Power supply checklist

1) Medium voltage available for start-up of drive.

2) Low voltage is available for start-up of drive.

8.2.8. Miscellaneous checklist

1) Sufficient number and correct type of spare parts available

2) Air conditioning of drive room ready for load run of drive

3) Optional equipment ready
9. Operation

9.1. Safety

![Warning]
The drive must only be operated by qualified and authorized personnel, ie, personnel who are familiar with the operation of the drive and the hazards involved.

9.2. Overview

The chapter outlines the local operation of the drive.

Control of the drive via a PLC or higher-level control systems is not described in this chapter. If the drive is controlled from remote, see the appropriate manuals for information.

The panel messages and parameter settings used in this chapter are typical examples to illustrate the related instructions and display functions and can therefore differ from the actual messages and parameter settings in the drive.

9.3. Operating conditions

The operating conditions for the drive are according to IEC 60721-3-3.

- **Conditions:** 3K22 / 3B1 / 3S6 / 3M11

If the operating conditions are not within the specifications, contact ABB.

9.4. Sound pressure level

- **Single fan:** < 75 dB (A)
- **Redundant fan:** < 85 dB (A)
9.5. Local operator panel

Under normal operating conditions, the local operator panel allows you to operate the drive without restrictions. For example, you can use the panel to perform the following actions:

- Connect and disconnect the main power supply
- Set the reference value
- Start and stop the drive
- Display actual values, status messages, alarms and fault messages
- View and setting parameters
- Reset alarm and fault messages
- Activate the emergency off circuit

For more information, see chapter 10, **CDP control panel**, page 117.

![Image of local operator panel](image_url)

1) **Control and data panel (CDP)**
 - Starts and stops the motor
 - Displays status messages
 - Displays alarm and fault messages of the drive and monitored foreign equipment
 - Resets alarm and fault messages

2) **OFF** illuminated push button
 - Opens the main circuit breaker

3) **ON** illuminated push button
 - Charges the DC link and closes the main circuit breaker

4) **GND SWITCH UNLOCKED** push button
 - Lights up to indicate that the grounding switch of the drive can be turned to the grounded or ungrounded position

5) **EMERGENCY OFF** push button
 - Prevents starting when pressed at standstill of the drive
 - Main circuit breaker opens immediately and DC link discharges when pressed during operation of the drive
9.6. Status messages

This section lists the messages of the main operating states the drive passes through, when it is put into operation, when it is stopped, or when a fault condition has occurred. The messages are sent to the higher-level control system and are displayed on the CDP control panel of the drive.

For information on other status messages, such as fault status messages in particular, see the status words in the “Appendix G - Signal and parameter table” of the drive.

RdyForMCBOn
The status message signals that the drive is healthy and ready for the ON command. The ON command initiates the charging of the DC-link capacitors and the closing of the main circuit breaker of the drive. Depending on the control place, the command can either be sent from the higher-level control system to the drive or be initiated by pressing the Main circuit online push button on the control compartment door.

Charging
The status message RdyForMCBOn changes to Charging when the DC-link capacitors of the drive are being charged.

Rdy to Strt
The status message Rdy to Strt tells the operator that the drive is energized and ready for operation. As soon as the start command is initiated, the motor is magnetized and the drive starts to modulate.

Magnetizing
The status message Rdy to Strt changes to Magnetizing when the firing pulses of the inverter are released.

Running
When the drive is in Running state, it is running and operating according to the set speed or torque reference value. When in remote control mode, the reference value is set by the higher-level control system. When in local control mode, the value is entered into the CDP control panel.

Stopping
Indicates that the drive has received a stop command and that a ramp or coast stop has been initiated. The stopping mode depends on the parameter setting. The status message changes to Rdy to Strt when the zero speed threshold is reached.

When a start command is given while the drive is stopping, the drive resumes operation and the status message changes to Running again.

Discharging
The status message Rdy to Strt changes to Discharging when the MCB has opened and the DC-link capacitors are discharging.

Tripped
The status message indicates that a fault condition has occurred that requires a shutdown of the drive. The status message always alternates with the specific fault message. The type of shutdown depends on the fault class the fault condition is assigned to in the drive software.
9.6.1. Start sequence of the drive

1. NotReadyOn
 ReadyOn conditions:
 - Doors closed and locked
 - Drive not grounded
 - No emergency off
 - No fault

2. ReadyForMCBOn

3. On command

4. Charging
 - DC link charges
 - Fan switches on
 - MCB closes

5. Rdy To Strt

6. Start command
 - Inverter starts to modulate

7. Magnetizing

8. Running

9. Operation
9.6.2. Stop sequence of the drive

1 Operation

2 Running

3 Stop command

4 Stopping
 • Speed ramps down
 • Inverter stops modulating

5 Ready To Start

6 Off command

7 Discharging
 • MCB opens
 • DC link discharges
 • Fan switches off after a delay

8 RdyForMCBOn
 • Drive is grounded
 • Doors are released for opening
 • Auxiliary supply is switched off

9 NotReadyOn
9.6.3. Emergency off sequence of the drive

1. Operation
2. Running
3. Emergency off command
 - MCB opens
 - Inverter stops modulating
 - Speed coasts down
4. Not ready on

9.7. Starting the drive

DANGER Hazardous voltages!

Unintentional contact with energized components can cause serious injuries or DEATH.

- All covers must be screwed in place

9.7.1. Checks before starting the drive

Consult the following reference material for the initial local start of the drive after commissioning:

- “Appendix D - Wiring diagrams” to identify the circuit breakers to be switched on
- chapter 10, *CDP control panel*, page 117 for information on functions and features of the CDP control panel

When the drive is put into service after it has been commissioned, or after it has been taken out of service for a longer period, check the drive according to the following list:

- Tools and foreign objects are inside the cabinet.
- All auxiliary power supplies from external sources are switched on.
- All internal circuit breakers of the drive are closed.
- All covers are mounted and the doors are closed, locked or bolted.
- Grounding switch is in the ungrounded position.
- MCB is in operating position.
- No run interlocks are active.
9.7.2. Starting the drive remotely

When the drive is operated from remote through a higher-level control system or an operator control desk, follow the instructions in the appropriate manuals.

9.7.3. Starting the drive locally

1. Enable the local control mode of the drive.

2. Check that no alarm or fault messages are displayed on the CDP control panel.
 - If a fault message is displayed on the CDP control panel, reset the fault.
 - If a fault cannot be reset, it must be rectified by the responsible personnel.

 When no alarms and faults are present and the drive is ready, the CDP control panel displays **RdyForMCBOn**:

 | 1 L -> | 0.0 rpm |
 | Status | RdyForMCBOn |
 | Motor Speed | 0.00 rpm |
 | Power | 0.0 % |

3. Press the **MAIN SUPPLY ON** push button on the control compartment door to close the MCB and charge the DC link.

 The push button lights up and the status line of the CDP control panel changes to **Charging**.

 | 1 L -> | 0.0 rpm |
 | Status | Charging |
 | Motor Speed | 0.00 rpm |
 | Power | 0.0 % |
After charging has been finished, the protection IGCTs are closed, the status line of the CDP control panel changes to **Rdy to Strt** and the motor can be started.

4. Enter the reference value.

5. Start the motor.

After the motor has been magnetized, the motor speed ramps up to the reference value.

While the motor is accelerating, the run status indication on the display blinks. When the motor speed has reached the reference value, the run status indication lights up permanently.

The display shows **Running** to indicate that the drive is operating.
9.8. Stopping the drive

1. Press the STOP key on the CDP control panel.

The motor stops according to the preset stop function and the drive stops modulating. While the motor stops, the status line of the display shows **Stopping**. The run status message blinks during the stop sequence.

```
1 L ->  600.0 rpm  I
Status  Stopping
MotorSpeed 300.0 rpm
Power  20.0 %
```

NOTE – As long as the stop sequence is in progress, the drive can always be restarted by pressing the START key on the CDP control panel.

```
1 L ->  600.0 rpm  0
Status  Rdy to Strt
MotorSpeed 0.0 rpm
Power  0.0 %
```

NOTE – As long as the MCB has not been opened, the motor can be started again.
9.9. Emergency-off

The drive is equipped with a hard-wired emergency off circuit. When an emergency situation occurs during operation, this safety feature ensures that the drive can be disconnected without delay from the main power supply. If the EMERGENCY-OFF push button has been pressed while the drive is at standstill, the main power supply cannot be connected to the drive, hence the drive cannot be started up.

The EMERGENCY-OFF push button of the drive is part of the operator control panel (Fig. 9-1) and features a latching switch action.

IMPORTANT! Pressing the EMERGENCY-OFF push button does not disconnect the auxiliary power supply from the drive.

9.9.1. Initiating an emergency-off

To initiate an emergency off, press the EMERGENCY-OFF push button on the control compartment door, or an external EMERGENCY-OFF push button (if present) linked to the emergency-off circuit.

When an emergency-off is initiated during drive operation, the following takes place:

- MCB opens
- Drive coasts down
- Status line of the CDP control panel displays the message Emerg Off

1 L -> 600.0 rpm
ACS 1000
*** FAULT ***
Emerg Off

- The DC link of the drive discharges.
9.9.2. Starting the drive after an emergency-off

1. To start the drive after an emergency-off, unlatch the EMERGENCY-OFF push button.

 The EMERGENCY-OFF push button returns to its initial position when turned into the direction indicated by the arrows on the push button.

2. To reset the emergency-off safety relay of the drive, press the RESET button on the control keypad.

 After resetting, the status message of the drive changes to RdyForMCBOn.

<table>
<thead>
<tr>
<th>1 L -></th>
<th>0.0 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>RdyforMCBOn</td>
</tr>
<tr>
<td>MotorSpeed</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td>Power</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

 The main power supply can be connected to the drive and the drive can be started again.
10. CDP control panel

10.1. Overview

The panel messages and parameter settings used in this chapter are typical examples to illustrate the related instructions and display functions and can therefore differ from the actual messages and parameter settings in the drive.

Figure 10–1 CDP control panel

1) Display
2) Status line
3) Actual signal names and values
4) Keypad
5) Mode selection keys
6) Fast navigation key for selecting the actual signals display or the fault memory display
7) Local / remote selection key
8) Reset key
9) Forward key
10) Backward key
11) Slow navigation key for selecting signals or fault messages
12) Enter key, terminates a procedure
13) Reference key
14) Start key
15) Stop key
10.2. CDP control panel functions

The CDP control panel serves as the basic user interface for operating and monitoring the drive when the local operating mode has been selected.

The CDP control panel can be attached to or detached from the drive without having to switch off the auxiliary power supply first.

You can perform the following tasks with the CDP control panel:

– Enter start-up data
– Control the drive with a reference value, and start, stop and direction commands
– Display actual values (three values can be read simultaneously)
– Display and adjust parameters
– Display information on the most recent forty fault events
– Upload and download complete parameter sets from one drive to another

10.3. CDP control panel modes

The CDP control panel provides the following modes:

– Identification mode, page 118
– Actual signals mode, page 119
– Parameters mode, page 126
– Functions mode, page 132

10.3.1. Identification mode

The identification mode informs the user about the CDP control panel version and the ID number of the drive. The information appears on the display when the:

– Power supply is switched on
– CDP control panel is connected to the drive and the auxiliary voltage has already been switched on.

When the CDP control panel is initialized as described before, the display changes as follows:

```
CDP312 PANEL V5.30
........
```
After 2-3 seconds, information on the drive (1, 2) and the drive identification (3) is displayed.

After another few seconds:

After another few seconds, the display changes to the actual signals mode.

10.3.2. Actual signals mode

10.3.2.1. Overview

Two displays can be selected in the actual signals mode:
- Actual signals display
- Fault memory display

The actual signals display appears first when entering the actual signals mode. However, when the drive is in a fault condition, the fault memory display appears instead.

The actual signals display is used to monitor the drive without interfering with its operation. It continuously displays three selectable actual values.

The CDP control panel automatically returns to the actual signals display from other modes if no key is actuated within one minute (an exception from this is the fault memory display).
10.3.2.2. Actual values

The actual values are organized in groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 01</td>
<td>Measured or calculated motor values</td>
</tr>
<tr>
<td>Group 02</td>
<td>Measured or calculated drive values</td>
</tr>
<tr>
<td>Group 03</td>
<td>Speed and torque reference values</td>
</tr>
<tr>
<td>Group 04</td>
<td>I/O values</td>
</tr>
<tr>
<td>Group 05</td>
<td>Data values</td>
</tr>
<tr>
<td>Group 06</td>
<td>Information: software version, drive and motor nominal values</td>
</tr>
<tr>
<td>Group 07</td>
<td>Control words</td>
</tr>
<tr>
<td>Group 08</td>
<td>Status words</td>
</tr>
<tr>
<td>Group 09</td>
<td>Fault and alarm words</td>
</tr>
</tbody>
</table>

For the complete list of selectable actual signals, see “Appendix G - Signal and parameter table”.

10.3.2.3. Fault memory

The fault memory display provides information on the 64 most recent fault events that occurred in the drive. It displays the name of the fault and the time it occurred. For instructions on how to display and reset the fault memory, see section 10.3.2.5, Displaying and resetting the fault history, page 124.

When the drive generates a fault or alarm, the corresponding message displays immediately.

Changing from the fault memory mode to other modes is possible without resetting the fault first. When no key is actuated, the fault or warning text is displayed as long as the fault is active.
Control panel overview

Figure 10–2 Control panel - Actual signals mode

1) Status line
2) Actual signal names and values
3) Selection key for actual signals mode
4) Fast navigation key for selecting the actual signals display or the fault memory display
5) Slow navigation key for selecting signals or fault messages
6) Enter key for confirming the selection

10.3.2.4. Opening the actual signals display

To open the actual signals display, press the ACT key.

```
1 L ->  600.0 rpm  0
Status  RdyForMCBon
MotorSpeed  0.00 rpm
Power  0.0 %
```
Toggle between actual signals display and fault history

- To toggle between actual signals display and fault history display, press a fast navigation key.

![Image of CDP Control Panel]

```
1 L ->  600.0 rpm    0
1 LAST FAULT
+ Panel Lost
0707730 12:30:02 3256
```

Displaying three actual signals

1. To display the full name of three actual signals, press and hold the **ACT** key.

![Image of CDP Control Panel]

```
1 L ->  600.0 rpm    0
DriveStatusWord
MotorSpeed
Power
```

2. To return to the actual signals display, release the **ACT** key.

Selecting actual signals

1. To select the actual signals display, press the **ACT** key.

![Image of CDP Control Panel]

```
1 L ->  600.0 rpm    I
Status  Running
Motor Speed  600.0 rpm
Power  75.0 %
```
To select a line where the actual signal is to be displayed, press the corresponding slow navigation key. A blinking cursor indicates the selected line.

2. To enter the actual signal selection function, press the ENTER key.

3. To select a parameter group, press a fast navigation key.

4. To select an actual signal, press a slow navigation key.
5. To confirm the selection and to return to the actual signals mode, press the **ENTER** key.

![CDP Control Panel](image1)

1 L -> 600.0 rpm 0
Status Rdy to Strt
MotorSpeed 0.00 rpm
DCVoltage Udc1 1000.0 V

6. To cancel the selection and keep the original selection, press any of the mode selection keys.

The selected CDP control panel mode is entered.

![CDP Control Panel](image2)

1 L -> 600.0 rpm 0
Status Rdy to Strt
MotorSpeed 0.0 rpm
Power 0.0 %

10.3.2.5. Displaying and resetting the fault history

1. To enter the actual signals mode, press the **ACT** key.

![CDP Control Panel](image3)

1 L -> 600.0 rpm 0
Status Rdy to Strt
MotorSpeed 0.0 rpm
Power 0.0 %
2. To change to the fault memory display, press a fast navigation key.

3. To display a specific fault, press the slow navigation keys.
 The UP key selects the previous, the down key the next fault.

4. To clear the fault memory, press the **RESET** key.

5. To return to the actual signals display, press a fast navigation key.
Displaying and resetting an active fault

1. To display an active fault, press the ACT key.

2. To reset the fault, press the RESET key.

10.3.3. Parameters mode

NOTICE Risk of component damage.

Running the drive system with incorrect data can result in improper operation, reduction of control accuracy and damage to equipment.

- Parameters must only be set by qualified personnel.
- DO NOT change a parameter if the effects of the change are unclear.

10.3.3.1. Overview

If the parameter lock is disabled or unlocked (see section 10.3.3.3, **Enabling / unlocking a parameter lock**, page 131), the parameters mode allows entering the parameter settings for the required drive configuration depending on the application.

The parameters are organized in functional groups, so called parameter groups.

Table 10–1 Parameter groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 07</td>
<td>Control words</td>
</tr>
<tr>
<td>Group 08</td>
<td>Status words</td>
</tr>
<tr>
<td>Group 09</td>
<td>Fault and alarm words</td>
</tr>
</tbody>
</table>
For details about the parameters, their settings and functions, see “Appendix G - Signal and parameter table”.

When entering the parameter mode for the first time after the auxiliary voltage of the drive has been switched on, the CDP control panel displays the first parameter of parameter group 99. The next time the parameters mode is entered, the previously selected parameter displays.

Some parameter values cannot be changed while the drive is running. If tried, the following warning displays.

<table>
<thead>
<tr>
<th>Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 11</td>
<td>Start, stop, direction, MCB and control</td>
</tr>
<tr>
<td>Group 12</td>
<td>Reference selection</td>
</tr>
<tr>
<td>Group 13</td>
<td>Basic analog inputs</td>
</tr>
<tr>
<td>Group 14</td>
<td>Basic digital outputs</td>
</tr>
<tr>
<td>Group 15</td>
<td>Basic analog outputs</td>
</tr>
<tr>
<td>Group 16</td>
<td>System control inputs</td>
</tr>
<tr>
<td>Group 17</td>
<td>Utilities</td>
</tr>
<tr>
<td>Group 18</td>
<td>Process speed</td>
</tr>
<tr>
<td>Group 19</td>
<td>Data storage</td>
</tr>
<tr>
<td>Group 20</td>
<td>Limits</td>
</tr>
<tr>
<td>Group 21</td>
<td>Start, stop and process stop</td>
</tr>
<tr>
<td>Group 22</td>
<td>Ramp functions</td>
</tr>
<tr>
<td>Group 23</td>
<td>Speed reference</td>
</tr>
</tbody>
</table>

** Warning
Write Access Denied
Parameter Setting
Not Possible
Control panel overview

Figure 10–3 Control panel - Parameters mode

1) Status line
2) Group number and name
3) Parameter number and name
4) Parameter value
5) Selection key for parameters mode
6) Fast navigation key for selecting a parameter group (and a parameter value)
7) Slow navigation key for selecting a parameter (and a parameter value)
8) Enter key for confirming the selection

10.3.3.2. Selecting and changing parameters

1. To enter the parameters mode, press the PAR key.

![Control panel parameters mode diagram]
2. To select a different group, press the corresponding fast navigation key.

3. To select a parameter, press the corresponding slow navigation key.

4. To enter the parameter setting function, press the ENTER key.

5. To change the parameter value, press the:
 - Slow navigation key for numbers and text
 - Corresponding fast navigation key for numbers only
6. To confirm the selection and to return to the actual signals display, press the **ENTER** key.

```
1 L ->  600.0 rpm  0
75 OPTION MODULES
02 IOEC4 OptionBoard
[YES]
```

7. To cancel the setting and keep the original selection, press any of the mode selection keys.

The selected keypad mode is entered.

```
1 L ->  600.0 rpm  0
75 OPTION MODULES
02 IOEC4 OptionBoard
[NO]
```
10.3.3.3. Enabling / unlocking a parameter lock

Unwanted parameter entry can be prevented by activating the parameter lock function.

The corresponding parameters are 16.02 PARAMETER LOCK and 16.03 PASSCODE and belong to parameter group 16 SYSTEM CTRL INPUTS.

Enabling the parameter lock

1. Select parameter 16.02.
2. Set parameter 16.02 to 1 (LOCKED).
3. Confirm the setting and exit the parameters mode.

Unlocking the parameter lock

1. Select parameter 16.03.
2. Set the correct pass code.
3. Confirm the setting and exit the parameters mode.

For more information, see “Appendix G - Signal and parameter table”.

10.3.3.4. User lock

NOTICE Risk of component damage.

ABB is not be liable for damages or losses caused by the failure to activate the user lock with a new pass code.

Setting the master pass code

ABB recommends that you set a master pass code to lock the control panel to protect the parameter values.

1. To activate the user lock for the first time, enter the default pass code, ie, 358, in 16.03 Passcode.

 You can now edit parameters 16.06…16.07.

2. Enter the old pass code in 16.06 OldUserPasscode.
3. Enter the new pass code in 16.07 NewUserPasscode.
4. In 16.02 Parameter Lock, enable the user lock functionality.

 NOTE – To reopen the lock, ie, to edit parameters 16.06 and 16.07, enter the new pass code in 16.03 Passcode.
10.3.4. Functions mode

The functions mode is used to set the display contrast.

Figure 10–4 Control panel - Functions mode

1) Status line
2) Selectable functions
3) Selection key for functions mode
4) Slow navigation key for selecting a line (and adjusting the contrast)
5) Enter key for confirming the selection

10.3.4.1. Adjusting the display contrast

1. To enter the functions mode, press the **FUNC** key:
2. To select the contrast adjustment function, press the slow navigation keys until the blinking cursor reaches the CONTRAST line.

3. Press the ENTER key.

4. To change the contrast value, press a slow navigation key.

5. To confirm the selection and to return to the actual signals display, press the ENTER key.
6. To cancel the setting and keep the original setting, press any of the mode selection keys.

The selected keypad mode is entered.

10.4. Local and remote control

The local-remote feature of the CDP control panel allows selecting the control location of the drive. Possible are:

- Local control
- Remote control

In this context, remote control is not necessarily equivalent to higher-level control. For more information, see section 10.4.2, Remote control, page 135.

10.4.1. Local control

In local control mode, full operational control of the drive is enabled from the local operator panel. Commands from remote have no effect.

Entering local control mode

- To enter the local control mode, press the LOC-REM key.

Local control is indicated by the letter **L**.
10.4.2. Remote control

In remote control mode, operational commands or reference values come from a higher-level control system via fieldbus or remote I/O.

However, with the following parameter settings it is possible to start and stop the drive, to set the motor’s direction of rotation, and to enter reference values from the CDP control panel.

- 11.01 EXT1 START/STOP/DIR = 10 (KEYPAD) or
 12.03 EXT REF1 SELECT = 1 (KEYPAD) and
 12.02 EXT1/EXT2 SELECT = 1 (EXT1)
- 11.02 EXT2 START/STOP/DIR 10 (KEYPAD) or
 12.06 EXT REF2 SELECT = 1 (KEYPAD) and
 12.02 EXT1/EXT2 SELECT = 2 (EXT2)

Entering remote control mode

- To enter remote control, press the LOC-REM key.
 - Full remote control from a higher-level control system is indicated by a blank space.
 - Partial remote control (some commands enabled locally) is indicated by the letter R.
10.5. Operational commands

For instructions on how to start and stop the drive system from the CDP control panel, see section 9.7, Starting the drive, page 110 and section 9.8, Stopping the drive, page 113.

10.5.1. Setting the direction of rotation

Setting the direction of rotation from the CDP control panel is possible in:

– Local control mode L
– Remote control mode R

The arrow on the display indicates the direction of rotation:

– When the motor is running, the arrow indicates the actual direction.
– When the motor is not running, the arrow indicates the preselected direction.

Procedure

– To set the direction of rotation, press the forward or backward key.

 If you change the direction while the motor is running, the motor automatically ramps down to zero speed and re-accelerates in the opposite direction to the preset speed. The arrow changes at zero speed.

 • Forward key

 ![Forward key example]

 1 L → 600.0 rpm
 Status Running
 MotorSpeed 600.00 rpm
 Power 75.0 %

 • Backward key

 ![Backward key example]

 1 L ← 600.0 rpm
 Status Running
 MotorSpeed 600.00 rpm
 Power 75.0 %
10.5.2. Entering a reference value

Entering a reference value from the CDP control panel is possible in:
- Local control mode L
- Remote control mode R

Procedure

1. Press a mode selection key.

2. To enter the reference value input mode, press the REF key.

3. To enter / change the reference value, press the corresponding fast or slow navigation key.
4. To exit the reference value input mode, press any of the mode selection keys.

```
1 L ->  550.0 rpm
Status  Running
MotorSpeed  550.00 rpm
Power  75.0 %
```
11. Preventive and corrective maintenance

11.1. General information

During the warranty period of the drive, all maintenance must be performed exclusively by ABB service personnel. After the warranty period, maintenance must only be performed by certified personnel.

11.1.1. Required qualification

To maintain safe and reliable operation of the drive, ABB recommends taking out a service contract with the ABB service organization.

11.1.2. Maintenance schedule

Perform all maintenance tasks according to the maintenance schedule and the applicable service instructions, on time and at the intervals stated in the “ACS1000A preventive maintenance schedule”, 3BHS855276 E01.

11.1.3. Logbook

ABB recommends that you keep track of all troubleshooting and maintenance work in a logbook including:

- Date and time
- Detailed description

11.1.4. Spare parts

To ensure safe and reliable operation, use only spare parts recommended and approved by ABB. For information on types and identification codes, see “Appendix E - Parts list”.
11.2. Identifying electrical equipment

This section describes how to identify electrical devices, cables, and wires.

11.2.1. Device identification

To facilitate the identification in wiring diagrams and parts lists, all devices are labeled in accordance with IEC 81346-1.

![Device identification diagram]

Figure 11–1 Device identification

11.2.2. Cables and wires

Cables and wires in the drive are equipped with marker sleeves which carry the same identification number as in the wiring diagrams.

11.2.3. Understanding wiring diagrams

For information on item designation and cross-reference conventions, see “Appendix D - Wiring diagrams”.

11.3. Alarm / fault indications

11.3.1. Messages

When a failure occurs in the drive or in the equipment monitored by the drive (e.g., main circuit breaker, transformer, cooling system), the CDP control panel displays a corresponding alarm or fault message.

![Message example]

The message can be saved and viewed in the fault history of the drive when a PC with the DriveWindow or DriveDebug is connected to the drive. The fault logger can also be called up on the CDP control panel.
11.3.2. Error message levels

Two error message levels are used in the drive:

- **Alarm:** Does not shut down the drive. If the condition causing the alarm is not corrected, a persisting alarm can lead to a fault. An alarm cannot be reset manually. The alarm message is deleted from the display as soon as the alarm condition has been corrected.

 NOTE – An exception is when an alarm of the cooling system (e.g., FanDiffPres, AirFiltSupv) is not reset automatically. To reset the alarm, set parameter 41.04 FanAlarmReset to **RESET**.

- **Fault:** Shuts down the drive. The type of shutdown depends on the origin of the fault. Depending on the type of fault, the drive opens the main circuit breaker (MCB) or keeps it closed. A fault condition must be corrected and the fault be manually reset before the drive can be started again.

11.3.2.1. Alarm / fault messages

If an alarm or a fault occurs, a specific message is saved in the fault buffer of the drive. Information on the 64 most recent fault and alarm events are saved.
11.3.3. Fault handling

The faults are entered into the fault logger as they occur and are numbered:

– The last fault entered always has number 1 assigned to it.
– The first fault always has the highest number in the fault buffer.

Date and time stamps facilitate fault tracing, especially when a fault leads to several subsequent faults.

Example:

1) -Fault RESET FAULT	2011-04-26 14:57:56.5370
2) +Fault Undervoltage	2011-04-26 14:47:41.1110
4) +Fault MCB Disturb	2011-04-26 14:47:38.0230

In the above example:

4) +Fault MCB Disturb is the reason for the failure of the drive, as it occurred first.
3) +Warn Undervoltage occurred approximately 3 seconds after the first fault.
2) +Fault Undervoltage immediately followed the warning.
1) -Fault RESET FAULT informs that the fault has been reset.

For more information on alarms and faults, see “Appendix G - Signal and parameter table”.
11.3.4. Standard troubleshooting procedure

If a fault shuts down the drive, proceed as follows:

1) **DO NOT** switch off the auxiliary supply voltage or try to reset a fault message before all information at the time of the occurrence of the fault condition has been saved.

2) Select the fault history display on the CDP control panel, but **DO NOT clear the buffer**!

 For more information, see chapter 10, **CDP control panel**, page 117.

3) Identify the fault and make a logbook entry.

4) Save the content of the data logger when a PC is available that has the DriveWindow or DriveDebug tool installed.

 The data logger provides information (e.g., waveforms of voltage, current, torque) for efficient troubleshooting.

5) **Contact ABB service if a fault cannot be rectified.**

 When calling ABB service, it is recommended to have the following data available at the time when the fault occurred:
 - Operating, ambient and load conditions
 - Unusual events

6) **After the fault has been rectified, start the drive as described in chapter 9, Operation, page 105.**
11.4. Removing the CDP control panel

IMPORTANT! If the CDP control panel is removed during operation, the drive can only be stopped by pressing the **EMERGENCY OFF** button.

1. If the panel is removed while the drive is in operation, check the setting of parameter **31.06 PANEL LOSS SUPERVISION** first.

 If the parameter is set to **NOT USED**, the panel can be removed without interrupting drive operation. For information on setting parameters, see “Appendix G - Signal and parameter table”.

2. Proceed as illustrated.

 The green LED (4) signals that the control voltage has been switched on.
11.5. LEDs and switches on circuit boards

The following section provides an overview on the meaning of LEDs and switches of the main circuit boards and I/O devices. The LEDs presented in the following section can be checked easily with the auxiliary voltage switched on and without having to remove covers first. The LEDs provide information on the status of the devices and can be used for diagnostic purposes.

11.5.1. AMC circuit board

![AMC Circuit Board Diagram]

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Description</th>
<th>Status when software has loaded</th>
<th>Status when software has not loaded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Booting</td>
<td>ON</td>
</tr>
<tr>
<td>F</td>
<td>Red</td>
<td>Fault</td>
<td>ON</td>
<td>OFF</td>
</tr>
<tr>
<td>R</td>
<td>Green</td>
<td>Run</td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>M</td>
<td>Green</td>
<td>Supply OK</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>P</td>
<td>Green</td>
<td>Supply OK</td>
<td>ON</td>
<td>ON</td>
</tr>
<tr>
<td>T1</td>
<td>Yellow</td>
<td>Receiving data on DDCS channel 0</td>
<td>Flashing</td>
<td>ON / OFF</td>
</tr>
<tr>
<td>T2</td>
<td>Yellow</td>
<td>Receiving data on DDCS channel 3</td>
<td>Flashing</td>
<td>ON / OFF</td>
</tr>
<tr>
<td>S3</td>
<td>Yellow</td>
<td></td>
<td>OFF</td>
<td>OFF</td>
</tr>
<tr>
<td>S1</td>
<td>Yellow</td>
<td></td>
<td>Flashing</td>
<td>OFF</td>
</tr>
<tr>
<td>S2</td>
<td>Yellow</td>
<td></td>
<td>Flashing</td>
<td>OFF</td>
</tr>
<tr>
<td>S0</td>
<td>Yellow</td>
<td></td>
<td>Flashing</td>
<td>OFF</td>
</tr>
</tbody>
</table>
11.5.2. IOEC I/O modules

11.5.2.1. LEDs

Figure 11–3 IOEC module

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Status LEDs of digital outputs</td>
</tr>
<tr>
<td></td>
<td>On when output is energized</td>
</tr>
<tr>
<td>2</td>
<td>Link error light</td>
</tr>
<tr>
<td></td>
<td>Only on when there is a problem with the optical fibers.</td>
</tr>
<tr>
<td>3</td>
<td>Rotary switch</td>
</tr>
<tr>
<td></td>
<td>Sets the address</td>
</tr>
<tr>
<td>4</td>
<td>Status LEDs of digital inputs</td>
</tr>
<tr>
<td></td>
<td>On when input is energized</td>
</tr>
<tr>
<td>5</td>
<td>Status LED of the 24 V internal voltage supply</td>
</tr>
<tr>
<td></td>
<td>On when energized</td>
</tr>
</tbody>
</table>

11.5.2.2. Cluster address

Each IOEC module has a unique cluster address that identifies the module in the software and links it to a parameter.

The address is set with the rotary switch on the module (3 in Fig. 11–3). The factory-set value must not be changed.

For information on IOEC switch settings, see “Appendix C - Mechanical drawings”.

Figure 11–3 IOEC module
11.6. Corrective maintenance

Overview on maintenance tasks:
- Visual checks on the drive, page 152
- Cleaning the drive, page 152
- Checking wire and cable connections, page 153
- Cleaning and replacing filter mats, page 153
- Inspecting and replacing batteries, page 155
- Replacing the non-redundant fan, page 157
- Replacing a redundant fan, page 160

11.6.1. Safety

⚠️ DANGER Hazardous voltages!

Before starting to work on the drive, make sure that:
- Main and auxiliary power supply to the drive is switched off, locked out, and tagged out
- Drive is de-energized
- Safety ground connections are in place
- Personal protective equipment is provided and used when required
- Everyone involved is informed

Before energizing the drive again, make sure that:
- All foreign objects are removed from the drive
- All internal and external covers are securely fastened and all doors are closed, locked and / or bolted

⚠️ NOTICE Risk of component damage.

Foreign matter and particularly metallic dust can cause failure and damage when the drive is energized.

Ensure that foreign matter cannot enter the cabinet:
- Close the doors and cover openings completely when work is discontinued.
- Retrieve any foreign matter which accidentally dropped into the cabinet.
11.6.2. De-energizing the drive locally

The following section describes how to de-energize the drive using the local operator panel of the drive. If the drive is controlled from remote, follow the established shutdown procedures.

1.
 • chapter 10, CDP control panel, page 117MCB opens
 • DC link discharges for approximately five minutes

2.

11.6.3. Grounding

1. If the yellow lamp is on, turn the grounding switch to the grounded position.

 When the grounding switch is in the grounded position, the status line of the CDP control panel displays ErthIsoClos.

 (Earth isolator closed = grounding switch is in grounded position).

 ![Status display]

2. To de-energize the drive completely, switch off and lockout all auxiliary voltages from external sources.

 NOTE – To open the doors of medium voltage compartments and additional cabinets of the drive that are equipped with an electromechanical lock, the auxiliary voltage must be switched on.

3. If necessary, connect a grounding set.
11.6.4. Grounding switch is not released

⚠️ CAUTION Hazardous voltage!

Forcing the grounding switch can damage the switch and short-circuit the DC-link capacitors!

- DO NOT force the grounding switch when the GROUNDING SWITCH UNLOCKED lamp is off.

- If you cannot operate the grounding switch, see section 11.6.5, Checking the release conditions for the grounding switch, page 150.

NOTE – To identify the components referred to in the checklist, see the wiring diagrams and Fig. 11–4.

![Figure 11–4 Location of I/O modules and fuses](image)

1) Fuses
2) IOEC1 / -A5191 (standard)
3) IOEC4 / -A5211 (option)
4) IOEC2 / -A5201 (standard)
5) IOEC3 / -A5221 (option)
11.6.5. Checking the release conditions for the grounding switch

1) Check that the auxiliary voltage is switched on.

2) Main power supply is disconnected from the drive.
 - Check that the MCB is open.
 When the MCB is open, secure it against closing.
 - Check that the feedback signal “MCB is open” arrives at the drive, ie, if the following indicators are lit:
 - LED of digital input DI08 of I/O module -A5201 (-A2)
 - (LED is not lit) Check the control-signal wiring between switchgear and drive as per applicable wiring diagram.
 - MAIN SUPPLY ON push button -S5152 (-S2)
 When the LED and the push button are lit, the feedback signal MCB is open has arrived at the drive.
 - (Push button is not lit) Check if the 24 V blade-type fuse (X27_P2:14) is blown.
 The fuse protects the control circuit of the pushbutton.

3) Discharge level of the DC link.
 - Check if the value of parameter 2.06 DC VOLTAGE is below 50 V.
 When the value is below 50 V, the DC link is regarded as discharged. For information on reading actual values on the CDP control panel, see section 10.3.2, Actual signals mode, page 119.

4) GROUNDING SWITCH UNLOCKED lamp and the wiring of the lamp.
 - Check if the CDP control panel displays a fault.
 A fault prevents the lamp GROUNDING SWITCH UNLOCKED from lighting.
 - If a fault is present, follow the instructions in section 11.3.4, Standard troubleshooting procedure, page 143, before you reset a fault.
 - If a fault cannot be rectified and reset, contact the ABB service organization.
IMPORTANT!

When the checklist has been completed, carefully try to turn the grounding switch to the grounded position. If you cannot turn the grounding switch but doors of medium voltage compartments have to be opened, call the ABB service organization.

Options

- **If the CDP control panel does not display a fault, check that digital output **DOO4** of I/O module **-A5191 (-A1)** is energized.
 - DOO4 releases the grounding switch and lights the lamp **GROUNDING SWITCH UNLOCKED (–H5152)**.
 - When the LED of DOO4 is lit and the control voltage is present at terminals X24:2 and X24:3 of DOO4, DOO4 is energized.

- **If digital output **DOO4** of the I/O module is not energized, check the I/O module **-A5191 (-A1)**.

 To do this, check if the auxiliary voltage is present at the supply terminals of the I/O module.
 - X6:1.....24 V (DC)
 - X6:2.....0 V

- **Check that LED V726 and LED V740 of the I/O module -A5191 are lit.**

 The LEDs monitor the control voltages of the I/O module (Fig. 11–3).

 When the LEDs are lit, the I/O module functions properly.
 - LED V726.....24 V (DC)
 - LED V740.....5 V (DC)

- **If digital output **DOO4 I/O module -A5191 is energized, check that the control voltage is present at the terminals of the lamp GROUNDING SWITCH UNLOCKED.**
 - If the control voltage is present but the lamp is not lit, the lamp is burnt out and must be replaced.
 - If the control voltage is not present, check the wiring of the lamp. Correct the wiring if necessary.

5) **Check that hazardous voltages from the motor cannot be fed into the drive.**
11.6.6. Visual checks on the drive

Check the drive and its immediate vicinity visually at the intervals stated in the maintenance schedule and pay attention to the following items:

– Humidity inside the drive
– Permitted range of ambient air temperature and humidity of the drive
– Dust built-up inside the drive
– Appropriate fastening of cables and wires and connections of cable screens
– Integrity of cable insulation
– Signs for overheated components, wires, cables or busbars
– Corrosion on circuit boards, connectors or busbars
– Correct type of signal and power cables

For more information, see the applicable cable specifications.

11.6.7. Cleaning the drive

⚠️ **NOTICE** Risk of component damage!

The drive contains components which are sensitive to electrostatic discharge.

▶ Apply ESD handling precautions before handling these devices.

Dust on electrical components and wiring can cause failure and damage the components. Dust and moisture can build up in loose connections and cause loss of low-level signals.

▶ Check the cabinet regularly for signs of dust and humidity and clean if necessary - alcohol and solvents can damage the components.

▶ Use appropriate and recommended cleansing agents.

When cleaning the drive, mind the following:

– To prevent dirt falling into equipment, cover the equipment.
– Clean circuit boards with special care. To prevent the components being damaged, use antistatic brushes and a vacuum cleaner with a soft nozzle.
– Remove dust on assemblies and busbars inside the cabinet with a vacuum cleaner and lint-free cleaning cloths.
– Remove water, oily or greasy deposits on assemblies, components and busbars with water- and oil-absorbing microfibers such as 3M Scotch Brite.
– Use a nylon brush or a vacuum cleaner for removing dust or deposits from recesses.
– Clean the outside of the cabinet with a vacuum cleaner and cleaning cloths.
11.6.8. Checking wire and cable connections

NOTICE Risk of component damage.
Capacitor bushings are damaged when excessive force is applied.
- DO NOT exceed the maximum tightening torque.
 - The tightening torque value is printed on a label which is attached to the capacitor. If not specified, the maximum torque must not exceed 20 Nm.

Vibration can loosen electrical connections and cause occasional malfunction or equipment failure.
- Inspect all power and control cable connections and tighten them if necessary.
- Inspect that all plugs and connectors are tight.

11.6.9. Cleaning and replacing filter mats

The filter mats are in the control as the inverter compartments.

For information on inspection and replacement intervals, see the “ACS1000A preventive maintenance schedule”, 3BHS855276 E01.

Table 11–1 Filter mat specifications

<table>
<thead>
<tr>
<th>Drive compartment</th>
<th>ABB ID</th>
<th>Dimensions (L × W)</th>
<th>Filter class (EN779)</th>
<th>Filter type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3BHL001134P0001</td>
<td>132 × 320 mm</td>
<td>G4</td>
<td>T15/350</td>
</tr>
<tr>
<td>Inverter</td>
<td>3BHL001141P0001</td>
<td>818 × 1228 mm</td>
<td>G3</td>
<td>T15/150</td>
</tr>
</tbody>
</table>

NOTICE Risk of component damage!
Dust can damage components and cause failure when the drive is energized.
- Always clean the filter mat at a safe distance from the open cabinet door.

1. Open the door of the control compartment.
 - NOTE – You can open the door when the drive is running.
2. Pull the filter out of the sleeve at the bottom.
3. Depending on its condition, clean or replace the filter mat:
 - Clean the filter mat with compressed air or a vacuum cleaner and slide the filter mat back into the sleeve.
 - Slide a new filter mat (see Table 11–1) into the sleeve.
11.6.9.2. Rectifier and inverter compartment filter mat

⚠️ **WARNING** Hazardous voltage!
Removing the filter mat while the drive is running can cause serious injury or DEATH. Foreign objects can be sucked into the exposed air intake and cause FATAL short-circuits.

- Keep long, thin objects, such as wires and screwdrivers, away from the exposed air intake.
- DO NOT stop work for long periods while the air intake is exposed.

notice Risk of component damage!
Dust can damage components and cause failure when the drive is energized.

- Always clean the filter mat at a safe distance from the open cabinet door.

Referring to Fig. 11–5:

1. Remove the 6 screws (circles) from the louvered panel (1).

 NOTE – Depending on your drive, you might need a slot or Torx screwdriver.

2. Remove the louvered panel.

3. Starting at the top, roll the filter mat (2) down to remove it.

4. Depending on its condition, clean or replace the filter mat.
 - Clean the filter mat with compressed air or a vacuum cleaner.
 - Replace the filter mat with a new one (see Table 11–1).

5. Reinstall the louvered panel (1) with the 6 screws (circles).
11.6.10. Inspecting and replacing batteries

![Figure 11–6 Control compartment – battery location](image)

1) Power supply unit for battery pack 1
2) Alarm LED
3) Battery pack 1

11.6.10.1. Checking and replacement indications

The end of the battery life is indicated as follows:

- CDP control panel displays an alarm message.
- Alarm LED on the power supply unit for the battery lights up (2 in Fig. 11–6).

When the end of the battery life is indicated, the drive continues to operate until the time set with parameter 145.26 Batt-Alm.Tim-out has elapsed.

ABB recommends replacing all of the batteries when one battery is at end-of-life.
11.6.10.2. Replacing a battery

⚠️ CAUTION Heavy object.

A battery weighs approximately 10 kg!

Figure 11–7 Control compartment - replacing the batteries

1. When the drive is in operation, disable the battery monitoring function first. To do this, set parameter 31.05 DISABLE BATTERY TEST to **ON**.

 Parameter 31.05 is automatically set to **OFF** after 1 hour.

2. Disconnect the wires (1 in Fig. 11–7).

3. Unbolt the battery from the plate at the front (2 in Fig. 11–7) and at the back.

4. Install the new battery in reverse order of removal.

5. Record the date of battery replacement in the logbook.
11.6.11. Replacing the non-redundant fan

CAUTION Heavy object.
The fan weighs approximately **100 kg**.

Figure 11–8 Fan location, dimensions and weight

![Fan location, dimensions and weight](image)

Figure 11–9 Fan - tools and devices

1) ¼"
2) ~70 mm
3) 10 mm and 13 mm
4) Trolley
5) Lift truck

1.

2. section 11.6.2, **De-energizing the drive locally**, page 148..

3. Unplug the power supply cable (1 in Fig. 11–10) of the fan.

4. Remove the bolts (2 in Fig. 11–10).

 IMPORTANT! DO NOT drop washers and bolts into the cabinet.

5. Move the fan onto the lift truck by one of the following methods:

6. Place the lift truck or height-adjustable trolley in front of the fan and pull the fan onto the platform.
7. Unplug the optical fibers (V3001:A1, V3002:A1) from the protection IGCTs (3) and stow the optical fibers in a position where they cannot be damaged when the fan is replaced.

Figure 11–10 Replacing the non-redundant fan

1) Power supply cable
2) Bolts
3) Optical fiber cables
4) ¼”
5) ~70 mm
6) 13 mm

8. Push the lift truck under the fan, ensure that the lift truck does not catch cables and components and lift the fan a little and remove it from the cabinet while avoiding sudden movements.
11.6.11.1. Installing the non-redundant fan

1. Check the mounting supports (1 in Fig. 11–11).
2. If they are damaged, replace them.
3. If they can be re-used, attach them to the new fan.
4. On both sides of the fan, orientate the groove of the mounting supports (2 in Fig. 11–11) towards the back of the cabinet.

5. Check that all screws are properly fastened.
6. Install the new fan in reverse order of removal.
11.6.12. Replacing a redundant fan

For information on inspection and replacement intervals, see “ACS1000A preventive maintenance schedule”, 3BHS855276 E01.

The estimated working time to replace a redundant fan is approximately 1 hour.

CAUTION Heavy object.

The fan weighs approximately **100 kg**.

![Image of redundant fans with dimensions and weight](image)

Figure 11–12 Redundant fans – location, dimensions and weight

1) $\frac{1}{4}”$
2) ~70 mm
3) 13 mm and 17 mm
4) 13 mm
5) T 30
6) Cordless drill
7) $3 \times M10 \times 20$
8) Height-adjustable platform
9) Lift truck

Figure 11–13 Redundant fans - tools and devices

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{4}”$</td>
<td>~70 mm</td>
<td>13 mm and 17 mm</td>
<td>13 mm</td>
<td>T 30</td>
<td>Cordless drill</td>
<td>$3 \times M10 \times 20$</td>
<td>Height-adjustable platform</td>
<td>Lift truck</td>
</tr>
</tbody>
</table>
Procedure

1.

2. For more information, see section 11.6.2, **De-energizing the drive locally**, page 148

3. Remove the panels.

4. If the fan is removed towards the front of the cabinet, the top panel can stay on the cabinet.

5. If the rear panel is not accessible, remove the sound absorbing panels on the side where the fan is replaced.

![Figure 11–14 Redundant fan unit – removing the panels](image1)

5. Unplug the power supply cable.

![Figure 11–15 Redundant fan unit – Unplugging the power supply cable](image2)
6. Remove the fixing bolts.

NOTE – If the bolt at the back (1 in Fig. 11–16) is not accessible from the back of the cabinet, remove the cover (2 in Fig. 11–16), reach through the opening and unscrew the mounting support (3 in Fig. 11–16) from below.

![Figure 11–16 Redundant fan unit – removing the fixing bolts](image)

1) Bolt
2) Cover
3) Mounting support
4) ¼"
5) 13 mm
6) 13 mm
7) Cordless drill
8) T 30
7. Remove the fan by one of the following methods:
 - **Crane:** Replace 3 of the fixing bolts with eye bolts, attach the lifting gear to the eye bolts and then lift the fan off the cabinet.

 ![Figure 11–17 Redundant fan unit – using a crane](image)

 1) ¼”
 2) 17 mm
 3) 3 × M10 × 20

 ![Figure 11–18 Redundant fan unit – using a platform](image)

 - **Height-adjustable platform:** place the platform as close as possible to the fan and then pull the fan onto the platform.

8. Remove the mounting supports from the fan housing to be replaced and attach the mounting supports to the new fan housing.

9. If the new fan housing does not have screw holes for the mounting supports, drill holes into the underside of the fan housing.
10. Check that all screws are properly fastened.

11. Install the new fan in reverse order of removal.