ACS880 primary control program
사용자 펌웨어 매뉴얼
관련 매뉴얼 목록

제품 매뉴얼 하이퍼링크 목록

<table>
<thead>
<tr>
<th>매뉴얼 번호</th>
<th>매뉴얼 옵션</th>
<th>문서 번호</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880-01</td>
<td>drives</td>
<td>9AKK105408A7004</td>
</tr>
<tr>
<td>ACS880-04</td>
<td>drive modules (200 to 710 kW, 300 to 700 hp)</td>
<td>9AKK105713A4819</td>
</tr>
<tr>
<td>ACS880-07</td>
<td>drives (45 to 710 kW, 50 to 700 hp)</td>
<td>9AKK105408A8149</td>
</tr>
<tr>
<td>ACS880-07</td>
<td>drives (560 to 2800 kW)</td>
<td>9AKK105713A6663</td>
</tr>
<tr>
<td>ACS880-17</td>
<td>drives (132 to 355 kW)</td>
<td>9AKK106930A3466</td>
</tr>
<tr>
<td>ACS880-17</td>
<td>drives (160 to 3200 kW)</td>
<td>9AKK106354A1499</td>
</tr>
<tr>
<td>ACS880-37</td>
<td>drives (132 to 355 kW)</td>
<td>9AKK106930A3467</td>
</tr>
<tr>
<td>ACS880-37</td>
<td>drives (160 to 3200 kW)</td>
<td>9AKK106354A1500</td>
</tr>
</tbody>
</table>

드라이브 하드웨어 매뉴얼

<table>
<thead>
<tr>
<th>매뉴얼 번호</th>
<th>매뉴얼 옵션</th>
<th>문서 번호</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880-04XT</td>
<td>drive module packages (500 to 1200 kW) hardware manual</td>
<td>3AXD50000025169</td>
</tr>
<tr>
<td>ACS880-04</td>
<td>single drive module packages hardware manual</td>
<td>3UA0000138495</td>
</tr>
<tr>
<td>ACS880-14 and -34 single drive packages hardware manual</td>
<td>3AXD50000022021</td>
<td></td>
</tr>
<tr>
<td>ACS880-104</td>
<td>inverter modules hardware manual</td>
<td>3UA0000104271</td>
</tr>
<tr>
<td>ACS880-107</td>
<td>inverter units hardware manual</td>
<td>3UA0000102519</td>
</tr>
</tbody>
</table>

드라이브 패웨어 매뉴얼 및 해당 가이드북

<table>
<thead>
<tr>
<th>매뉴얼 번호</th>
<th>매뉴얼 옵션</th>
<th>문서 번호</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS880 primary control program firmware manual</td>
<td>3UA0000085967</td>
<td></td>
</tr>
<tr>
<td>ACS880 drives with primary control program, quick start-up guide</td>
<td>3UA0000098062</td>
<td></td>
</tr>
<tr>
<td>Adaptive programming application guide</td>
<td>3AXD50000028574</td>
<td></td>
</tr>
<tr>
<td>Drive application programming manual (IEC 61131-3)</td>
<td>3UA0000127808</td>
<td></td>
</tr>
</tbody>
</table>

옵션 매뉴얼 및 해당 가이드북

<table>
<thead>
<tr>
<th>매뉴얼 번호</th>
<th>매뉴얼 옵션</th>
<th>문서 번호</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACX-AP-x assistant control panels user’s manual</td>
<td>3UA0000085685</td>
<td></td>
</tr>
<tr>
<td>Drive composer Start-up and maintenance PC tool User’s manual</td>
<td>3UA0000094606</td>
<td></td>
</tr>
</tbody>
</table>

Manuals and quick guides for I/O extension modules, fieldbus adapters, encoder interfaces, etc.

드라이브 관련 매뉴얼은 해당 웹사이트에서 PDF 파일로 다운로드할 수 있습니다. 이것의 웹사이트 주소는 마지막 페이지의 *Document library on the Internet*을 확인하십시오. 만약 해당 웹사이트에서 다운로드가 불가능한 경우에는 가까운 ABB에서 문의하시기 바랍니다.
사용자 펌웨어 매뉴얼

ACS880 primary control program

목차
목 차

관련 매뉴얼 목록 .. 2

1. 매뉴얼 소개 Introduction to the manual

이장의 내용 .. 11
적용 범위 ... 11
안전 지침 ... 11
관련 독자 ... 11
매뉴얼 내용 요약 .. 12
관련 문서 ... 12
용어 및 약어 ... 13
사이버 보안 경고 ... 15

2. 제어 패널 사용 Using the control panel

3. 제어 위치 및 운전 모드 Control locations and operating modes

이장의 내용 .. 19
로컬 제어 vs. 외부 제어 ... 20
로컬 제어 ... 20
외부 제어 ... 21
드라이브 운전 모드 ... 22
속도 제어 모드 ... 23
토크 제어 모드 ... 23
주파수 제어 모드 ... 23
스페셜 제어 모드 ... 23

4. 프로그램 특징 Program features

이 장의 내용 .. 25
드라이브 구성 및 프로그래밍 .. 26
파라미터에 의한 프로그래밍 ... 26
아답티브 프로그래밍 ... 27
응용 프로그래밍 ... 27
제어 인터페이스 .. 28
프로그램 가능한 아날로그 입력 ... 28
프로그램 가능한 아날로그 출력 ... 28
프로그램 가능한 디지털 입/출력 .. 28
프로그램 가능한 릴레이 출력 ... 29
프로그램 가능한 확장 I/O .. 29
필드버스 제어 ... 30
마스터/슬로우 기능 ... 31
외부 컨트롤러 인터페이스 .. 38
서플라이 유닛 제어 (LSU) .. 40
모터 제어 ... 42
직접토큰제어 (DTC) .. 42
기준 소스 램프 설정 .. 42
Table of contents

일정 속도/주파수 설정 .. 43
위험 속도/주파수 설정 .. 43
속도 제어기 오토 튜닝 ... 44
진동 감쇠 ... 47
공전 주파수 제거 ... 48
러시 제어 ... 48
엔코더 지원 ... 49
조정 .. 55
스칼라 제어 모드 ... 58
오토 페이징 .. 59
자속 제동 ... 62
DC 자화 ... 63
육각형 모터 자속 패턴 ... 65
응용 제어 ... 66
응용 프로그램 ... 66
프로세스 PID 제어 ... 66
모터 포텐시티 .. 69
기계 브레이크 제어 ... 70
DC 전압 제어 ... 75
과전압 제어 ... 75
부족전압 제어 .. 75
전압 제어 및 트립 한계 ... 76
제동초퍼 ... 77
안전 및 보호 기능 ... 79
비상 정지 ... 79
모터 열 보호 .. 80
모터 케이블 열 보호 .. 83
사용자 부하 곡선 .. 83
자동 폴트 리셋 .. 84
기타 프로그래밍 가능한 보호 기능 85
진단 기능 ... 87
폴트 및 경고 메시지 .. 87
신호 감시 ... 87
유지 보수 타이머 및 카운티 87
에너지 절약 계산기 .. 88
부하 분석기 .. 88
그밖에 유용한 기능 ... 90
사용자 파라미터 세트 ... 90
파라미터 체크섬 계산 ... 90
사용자 참조 ... 91
데이터 저장 파라미터 ... 91
축소 운전 기능 .. 92
du/dt 필터 지원 ... 93
사인 필터 지원 .. 93

5. 응용 매크로 Application macros

이장의 내용 .. 95
일반적인 내용 .. 95
공장 매크로 .. 96
공장 매크로의 기본 파라미터 설정 96
6. 파라미터 Parameters

<table>
<thead>
<tr>
<th>제목</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>이 장의 내용</td>
<td>111</td>
</tr>
<tr>
<td>용어 및 약어</td>
<td>112</td>
</tr>
<tr>
<td>파라미터 그룹 요약</td>
<td>113</td>
</tr>
<tr>
<td>파라미터 목록</td>
<td>115</td>
</tr>
<tr>
<td>01 Actual values</td>
<td>115</td>
</tr>
<tr>
<td>03 Input references</td>
<td>119</td>
</tr>
<tr>
<td>04 Warnings and faults</td>
<td>120</td>
</tr>
<tr>
<td>05 Diagnostics</td>
<td>127</td>
</tr>
<tr>
<td>06 Control and status words</td>
<td>128</td>
</tr>
<tr>
<td>07 System info</td>
<td>143</td>
</tr>
<tr>
<td>10 Standard DI, RO</td>
<td>145</td>
</tr>
<tr>
<td>11 Standard DIO, FI, FO</td>
<td>152</td>
</tr>
<tr>
<td>12 Standard AI</td>
<td>157</td>
</tr>
<tr>
<td>13 Standard AO</td>
<td>161</td>
</tr>
<tr>
<td>14 I/O extension module 1</td>
<td>165</td>
</tr>
<tr>
<td>15 I/O extension module 2</td>
<td>184</td>
</tr>
<tr>
<td>16 I/O extension module 3</td>
<td>188</td>
</tr>
<tr>
<td>19 Operation mode</td>
<td>192</td>
</tr>
<tr>
<td>20 Start/stop/direction</td>
<td>194</td>
</tr>
<tr>
<td>21 Start/stop mode</td>
<td>203</td>
</tr>
<tr>
<td>22 Speed reference selection</td>
<td>210</td>
</tr>
<tr>
<td>23 Speed reference ramp</td>
<td>218</td>
</tr>
<tr>
<td>24 Speed reference conditioning</td>
<td>224</td>
</tr>
<tr>
<td>25 Speed control</td>
<td>229</td>
</tr>
<tr>
<td>26 Torque reference chain</td>
<td>240</td>
</tr>
<tr>
<td>28 Frequency reference chain</td>
<td>246</td>
</tr>
<tr>
<td>30 Limits</td>
<td>255</td>
</tr>
<tr>
<td>31 Fault functions</td>
<td>263</td>
</tr>
<tr>
<td>32 Supervision</td>
<td>273</td>
</tr>
<tr>
<td>33 Generic timer & counter</td>
<td>276</td>
</tr>
<tr>
<td>35 Motor thermal protection</td>
<td>284</td>
</tr>
</tbody>
</table>
7. 추가 파라미터 데이터 Additional parameter data

이 장의 내용 .. 431
용어 및 약어 ... 431
필드버스 주소 .. 432
파라미터 그룹 1…9 ... 433
파라미터 그룹 10…99 ... 439

8. 고장 추적 Fault tracing

이 장의 내용 .. 487
안전 사항 ... 487
지시 사항 ... 487
 경고 및 폴트 ... 487
 순수 이벤트 .. 488
 편집 가능 메시지 ... 488
경고/폴트 이력 및 분석 .. 488
 이벤트 로그 .. 488
9. **Embedded Fieldbus System Fieldbus control through the embedded fieldbus interface (EFB)**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>이 장의 내용</td>
<td>527</td>
</tr>
<tr>
<td>시스템 개요</td>
<td>527</td>
</tr>
<tr>
<td>드라이브에 필드버스 접속</td>
<td>528</td>
</tr>
<tr>
<td>이베디드 필드버스 인터페이스 설정</td>
<td>529</td>
</tr>
<tr>
<td>드라이브 제어 파라미터 설정</td>
<td>530</td>
</tr>
<tr>
<td>이베디드 필드버스 통신의 기본 동작</td>
<td>533</td>
</tr>
<tr>
<td>제어 정의 및 상태 정의</td>
<td>534</td>
</tr>
<tr>
<td>기준값</td>
<td>534</td>
</tr>
<tr>
<td>실제값</td>
<td>534</td>
</tr>
<tr>
<td>데이터 입력/출력</td>
<td>534</td>
</tr>
<tr>
<td>레지스터 주소</td>
<td>535</td>
</tr>
<tr>
<td>제어 프로파일</td>
<td>536</td>
</tr>
<tr>
<td>ABB 드라이브 프로파일</td>
<td>537</td>
</tr>
<tr>
<td>제어 정의</td>
<td>537</td>
</tr>
<tr>
<td>상태 정의</td>
<td>539</td>
</tr>
<tr>
<td>통신 상태 블록 도</td>
<td>540</td>
</tr>
<tr>
<td>기준값</td>
<td>541</td>
</tr>
<tr>
<td>실제값</td>
<td>542</td>
</tr>
<tr>
<td>모드버스 Holding Registers 주소</td>
<td>543</td>
</tr>
<tr>
<td>투과형 프로파일</td>
<td>544</td>
</tr>
<tr>
<td>모드버스 기능 코드</td>
<td>545</td>
</tr>
<tr>
<td>예외 코드</td>
<td>546</td>
</tr>
<tr>
<td>Coils (0xxxx 번지)</td>
<td>547</td>
</tr>
<tr>
<td>Discrete inputs (1xxxx 번지)</td>
<td>548</td>
</tr>
<tr>
<td>오류 코드 레지스터</td>
<td>550</td>
</tr>
</tbody>
</table>

10. **Fieldbus Adapter System Fieldbus control through a fieldbus adapter**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>이장의 내용</td>
<td>551</td>
</tr>
<tr>
<td>시스템 개요</td>
<td>551</td>
</tr>
<tr>
<td>필드버스 통신의 기본 동작</td>
<td>553</td>
</tr>
<tr>
<td>제어 정의 및 상태 정의</td>
<td>554</td>
</tr>
<tr>
<td>기준값</td>
<td>554</td>
</tr>
<tr>
<td>실제값</td>
<td>555</td>
</tr>
<tr>
<td>필드버스 제어 정의 (ABB 드라이브 프로파일인 경우)</td>
<td>557</td>
</tr>
<tr>
<td>필드버스 상태 정의 (ABB 드라이브 프로파일인 경우)</td>
<td>558</td>
</tr>
<tr>
<td>필드버스 상태 블록 도 (ABB 드라이브 프로파일인 경우)</td>
<td>559</td>
</tr>
<tr>
<td>필드버스 통신 파라미터 설정</td>
<td>560</td>
</tr>
<tr>
<td>파라미터 설정 예: FPBA (PROFIBUS DP)</td>
<td>561</td>
</tr>
</tbody>
</table>

11. **Control Chain Diagrams**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>이 장의 내용</td>
<td>563</td>
</tr>
</tbody>
</table>
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>기준 속도 소스 선택 I</td>
<td>564</td>
</tr>
<tr>
<td>기준 속도 소스 선택 II</td>
<td>565</td>
</tr>
<tr>
<td>기준 속도 가감속 설정 및 S자 곡선</td>
<td>566</td>
</tr>
<tr>
<td>모터 피드백 구성</td>
<td>567</td>
</tr>
<tr>
<td>부하 피드백 및 위치 카운터 구성</td>
<td>568</td>
</tr>
<tr>
<td>속도 오차 계산</td>
<td>569</td>
</tr>
<tr>
<td>속도 제어기</td>
<td>570</td>
</tr>
<tr>
<td>기준 토크 소스 선택</td>
<td>571</td>
</tr>
<tr>
<td>운전 모드 선택</td>
<td>572</td>
</tr>
<tr>
<td>토크 제어를 위한 기준 소스 선택</td>
<td>573</td>
</tr>
<tr>
<td>토크 제한기</td>
<td>574</td>
</tr>
<tr>
<td>토크 제어기</td>
<td>575</td>
</tr>
<tr>
<td>기준 주파수 선택</td>
<td>576</td>
</tr>
<tr>
<td>기준 주파수 수정</td>
<td>577</td>
</tr>
<tr>
<td>프로세스 PID 셋포인트 및 피드백 소스 선택</td>
<td>578</td>
</tr>
<tr>
<td>프로세스 PID 제어기</td>
<td>579</td>
</tr>
<tr>
<td>마스터/팔로워 통신 I (마스터 드라이브 전용)</td>
<td>580</td>
</tr>
<tr>
<td>마스터/팔로워 통신 II (팔로워 드라이브 전용)</td>
<td>581</td>
</tr>
</tbody>
</table>

추가 정보 Further information

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>제품 및 서비스 문의</td>
<td>583</td>
</tr>
<tr>
<td>제품 교육</td>
<td>583</td>
</tr>
<tr>
<td>제품 매뉴얼</td>
<td>583</td>
</tr>
</tbody>
</table>
매뉴얼 소개 Introduction to the manual

이 장의 내용

이 장에서는 사용자 매뉴얼의 전반적인 내용을 설명합니다. 또한 호환성 및 안전 유의 사항, 그리고 사용자 가이드를 포함합니다.

적용 범위

본 매뉴얼은 기본적으로 ACS880 primary control program 버전 2.6x에 적용됩니다. 제어 프로그램의 펌웨어 버전은 파라미터 07.05 Firmware version 또는 제어 패널 (Control panel) 의 Main menu-System info에서 확인할 수 있습니다.

안전 지침

드라이브와 함께 제공된 안전 지침에 따라 사용하십시오.

• 설치 및 시운전 또는 드라이브를 사용하기 전에 반드시 안전 지침 (Complete safety instructions)을 확인하십시오. 이것은 하드웨어 매뉴얼에 일부 포함되어 있거나 ACS880 멀티 드라이브의 경우에는 별도의 문서로 드라이브와 함께 제공됩니다.
• 사용자 파라미터를 변경하기 전에 펌웨어 기능, 경고 및 주의 사항에 유의하십시오. 이에 대한 경고 및 주의 사항은 파라미터 장에서 설명합니다.

관련 독자

본 매뉴얼은 설계 엔지니어, 시운전 담당자, 또는 운영 관리자를 위한 지침서입니다.
매뉴얼 내용 요약

본 매뉴얼의 각 장은 다음과 같이 구성되어 있습니다.

• 제어 패널 사용 (Using the control panel)에서는 제어 패널의 사용 방법을 설명합니다.
• 제어 위치 및 운전 모드 (Control locations and operating modes)에서는 드라이브의 제어 위치 및 다양한 운전 모드를 설명합니다.
• 프로그램 특징 (Program features)에서는 ACS880 primary control program의 주요 특징에 대해서 설명합니다.
• 응용 매크로 (Application macros)에서는 하드웨어 결선에 따른 매크로 기능을 요약 설명합니다. 매크로는 미리 정해진 응용에서 드라이브를 구성하는 경우에 파라미터 설정 시간을 절약할 수 있습니다.
• 파라미터 (Parameters)에서는 드라이브의 사용자 파라미터를 설명합니다.
• 추가 파라미터 데이터 (Additional parameter data)에서는 파라미터의 설정 범위 및 통신 데이터의 표시 범위를 제공합니다.
• 고장 추적 (Fault tracing)에서는 경고 및 고장에 대한 발생 원인 및 해결 방법을 제공합니다.
• 임베디드 필드버스 통신 (Fieldbus control through the embedded fieldbus interface)에서는 드라이브에 기본 내장된 임베디드 필드버스 인터페이스를 이용한 필드버스 통신을 설명합니다.
• 필드버스 어댑터 통신 (Fieldbus control through a fieldbus adapter)에서는 필드버스 옵션 모듈을 이용한 필드버스 통신을 설명합니다.
• 제어 체인 블록도 (Control chain diagrams)에서는 사용자 펌웨어의 제어 블록도를 나타냅니다.

관련 문서

Note: ACS880 primary control program에서의 속도 제어 응용을 위한 Quick start-up guide (3AUA0000098062)를 제공합니다. 이것은 드라이브와 함께 기본 제공됩니다.

관련 문서의 목록은 면 앞 표지 안에 포함되어 있습니다.
용어 및 약어

<table>
<thead>
<tr>
<th>용어 및 약어</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC 800M</td>
<td>ABB 프로그래머블 컨트롤러.</td>
</tr>
<tr>
<td>ACS800</td>
<td>ABB 드라이브의 제품군.</td>
</tr>
<tr>
<td>ACS-AP-I</td>
<td>ACS800 드라이브에 사용된 제어 패널의 종류.</td>
</tr>
<tr>
<td>ACS-AP-W</td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>Analog Input; 아날로그 입력 신호를 위한 인터페이스.</td>
</tr>
<tr>
<td>AO</td>
<td>Analog Output; 아날로그 출력 신호를 위한 인터페이스.</td>
</tr>
<tr>
<td>BCU</td>
<td>병렬 운전 인버터 또는 서플라이 모듈에 사용되는 제어 유닛의 종류.</td>
</tr>
<tr>
<td>D2D</td>
<td>Drive-to-Drive; 응용 프로그래밍에 사용되는 드라이브간 통신 링크. Drive application programming manual (IEC 61131-3) (3AUA0000127808).</td>
</tr>
<tr>
<td>DC link</td>
<td>정류기 및 인버터 사이의 DC 회로.</td>
</tr>
<tr>
<td>DDCS</td>
<td>Distributed Drives Communication System; ABB 드라이브간 통신 프로토콜.</td>
</tr>
<tr>
<td>DI</td>
<td>Digital Input; 디지털 입력 신호를 위한 인터페이스.</td>
</tr>
<tr>
<td>DIO</td>
<td>Digital Input/Output; 디지털 입력 또는 출력으로 사용되는 인터페이스.</td>
</tr>
<tr>
<td>DO</td>
<td>Digital Output; 디지털 출력 신호를 위한 인터페이스.</td>
</tr>
<tr>
<td>Drive</td>
<td>AC 모터를 제어하기 위한 주파수 컨버터. 드라이브는 대략 500 kW까지 단일 모듈에 정류기와 인버터를 모두 포함하며, 대용량 드라이브의 경우에는 통상 정류기와 인버터가 별도로 구성됩니다.</td>
</tr>
<tr>
<td>DriveBus</td>
<td>ABB 컨트롤러에 사용되는 통신 링크. ACS880 드라이브는 컨트롤러의 DriveBus에 접속될 수 있습니다. [38] 페이지를 확인하십시오.</td>
</tr>
<tr>
<td>DTC</td>
<td>Direct Torque Control. 페이지 [42]를 확인하십시오.</td>
</tr>
<tr>
<td>EFB</td>
<td>Embedded FieldBus. 페이지 [527]을 확인하십시오.</td>
</tr>
<tr>
<td>FAIO-01</td>
<td>아날로그 I/O 확장 옵션 모듈.</td>
</tr>
<tr>
<td>FBA</td>
<td>FieldBus Adapter.</td>
</tr>
<tr>
<td>FCAN-01</td>
<td>CANopen 옵션 어댑터.</td>
</tr>
<tr>
<td>FCNA-01</td>
<td>ControlNet 옵션 어댑터.</td>
</tr>
<tr>
<td>FDCO-0x</td>
<td>DDCS 통신 옵션 모듈.</td>
</tr>
<tr>
<td>FDIO-01</td>
<td>디지털 I/O 확장 옵션 모듈.</td>
</tr>
<tr>
<td>FDNA-01</td>
<td>DeviceNet™ 옵션 어댑터.</td>
</tr>
<tr>
<td>FEA-03</td>
<td>I/O 확장 옵션 어댑터.</td>
</tr>
<tr>
<td>FECA-01</td>
<td>EtherCAT® 옵션 어댑터.</td>
</tr>
<tr>
<td>FEN-01</td>
<td>TTL 타입 엔코더 인터페이스 옵션 모듈.</td>
</tr>
<tr>
<td>FEN-11</td>
<td>앱솔루트 타입 엔코더 인터페이스 옵션 모듈.</td>
</tr>
<tr>
<td>용어 및 약어</td>
<td>정의</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>FEN-21</td>
<td>레졸버 인터페이스 옵션 모듈.</td>
</tr>
<tr>
<td>FEN-31</td>
<td>HTL 타입 앱코더 인터페이스 옵션 모듈.</td>
</tr>
<tr>
<td>FENA-11</td>
<td>Ethernet/IP, Modbus/TCP, PROFINET IO 옵션 어댑터.</td>
</tr>
<tr>
<td>FENA-21</td>
<td>2-포트 Ethernet/IP, Modbus/TCP, PROFINET IO 옵션 어댑터.</td>
</tr>
<tr>
<td>FEPL-02</td>
<td>POWERLINK 옵션 어댑터.</td>
</tr>
<tr>
<td>FIO-01</td>
<td>디지털 I/O 확장 옵션 모듈.</td>
</tr>
<tr>
<td>FIO-11</td>
<td>아날로그 I/O 확장 옵션 모듈.</td>
</tr>
<tr>
<td>FPBA-01</td>
<td>PROFIBUS DP 옵션 어댑터.</td>
</tr>
<tr>
<td>FPTC-01</td>
<td>서미터 보호 옵션 모듈.</td>
</tr>
<tr>
<td>FPTC-02</td>
<td>ATEX 방폭 인증서미터 보호 옵션 모듈.</td>
</tr>
<tr>
<td>FSCA-01</td>
<td>Modbus/RTU 옵션 어댑터.</td>
</tr>
<tr>
<td>FSO-xx</td>
<td>안전 기능 옵션 모듈.</td>
</tr>
<tr>
<td>HTL</td>
<td>High-Threshold Logic.</td>
</tr>
<tr>
<td>ID run</td>
<td>모터 오토 튜닝. 드라이브는 오토 튜닝하는 동안에 최적제어를 위한 모터의 제정수를 추정합니다.</td>
</tr>
<tr>
<td>IGBT</td>
<td>Insulated Gate Bipolar Transistor; 고속 스위칭이 가능하고 제어가 용이하기 때문에 인버터 및 IGBT 서플라이 유닛 등에 널리 사용되고 있는 전압제어형 반도체 스위칭 소자입니다.</td>
</tr>
<tr>
<td>INU-LSU</td>
<td>2개의 컨버터 사이의 DDCS 통신 링크. 예를 들어, 드라이브 시스템에서의 서플라이 유닛과 인버터 유닛을 접속할 수 있습니다.</td>
</tr>
<tr>
<td>Inverter unit</td>
<td>모터 구동을 위한 DC-AC 변환기.</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output.</td>
</tr>
<tr>
<td>ISU</td>
<td>IGBT Supply Unit; IGBT 소자를 사용한 서플라이 유닛으로 회생형 드라이브 및 저하모닉 드라이브에 사용됩니다.</td>
</tr>
<tr>
<td>Line-side converter</td>
<td>서플라이 유닛 메뉴얼을 확인하십시오.</td>
</tr>
<tr>
<td>LSU</td>
<td>Line Supply Unit.</td>
</tr>
<tr>
<td>ModuleBus</td>
<td>ABB 컨트롤러에 사용되는 통신 링크. ACS880 드라이브는 컨트롤러의 ModuleBus에 접속될 수 있습니다.</td>
</tr>
<tr>
<td>Motor-side converter</td>
<td>인버터 유닛 메뉴얼을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>• FDNA-01 DeviceNet adapter module User’s manual (3AFE68573360).</td>
</tr>
<tr>
<td></td>
<td>• FENA-01/-11 Ethernet adapter module User’s manual (3AUA0000093568).</td>
</tr>
<tr>
<td>용어 및 약어</td>
<td>정의</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>Parameter</td>
<td>설정 가능한 운전 명령, 드라이브에 의해 측정되거나 계산된 신호.</td>
</tr>
<tr>
<td>PID controller</td>
<td>비례-적분-미분 제어기. 드라이브 속도제어는 PID 알고리즘 기반입니다.</td>
</tr>
<tr>
<td>PLC</td>
<td>프로그래머블 로직 컨트롤러 (Programmable Logic Controller).</td>
</tr>
<tr>
<td>Power unit</td>
<td>드라이브의 전원 장치 및 전원 연결부 (또는 인버터 모듈). 드라이브 제어 유닛은 파워 유닛에 연결됩니다.</td>
</tr>
<tr>
<td>PTC</td>
<td>Positive Temperature Coefficient.</td>
</tr>
<tr>
<td>PU</td>
<td>Power Unit.</td>
</tr>
<tr>
<td>RDCO-0x</td>
<td>DDCS 통신 옵션 모듈.</td>
</tr>
<tr>
<td>RFG</td>
<td>Ramp Function Generator.</td>
</tr>
<tr>
<td>RO</td>
<td>Relay Output; 릴레이로 구성된 디지털 출력 신호를 위한 인터페이스.</td>
</tr>
<tr>
<td>SSI</td>
<td>Synchronous Serial Interface.</td>
</tr>
<tr>
<td>STO</td>
<td>Safe Torque Off.</td>
</tr>
<tr>
<td>Supply unit</td>
<td>전원 공급을 위한 AC-DC 변환기. IGBT 서플라이 유닛의 경우에는 모터에서 발전된 에너지를 네트워크로 회생할 수 있습니다.</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor-Transistor Logic.</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptible Power Supply.</td>
</tr>
<tr>
<td>ZCU</td>
<td>ACS880 드라이브에 사용된 제어 유닛의 종류. 하드웨어 타입에 따라 제어 유닛은 드라이브 모듈에 통합되거나 별도로 설치될 수 있습니다.</td>
</tr>
</tbody>
</table>

사이버 보안 경고

본 제품은 네트워크 인터페이스를 통해 관련 정보 및 데이터를 교환하고 통신할 수 있도록 설계되었습니다. 이것은 제품과 사용자 네트워크 또는 기타 네트워크 간의 보안 연결을 제공하고 지속적으로 보장하는 것은 전적으로 사용자의 책임입니다. 이에 따라 사용자는 제품, 네트워크 및 시스템을 보호하기 위한 적절한 조치 (예: 방화벽, 인증 수단 적용, 데이터 암호화, 바이러스 백신 설치 등)를 수립하고 유지해야 합니다. 저희 ABB와 그 계열사는 보안 침해, 허가받지 않은 접근, 간섭, 침입, 누출 및 / 또는 데이터나 정보와 관련된 손해 및 / 또는 손실에 대해 어떠한 책임도 지지 않습니다.

사용자 암호 설정 및 보안 사항은 사용자 잠금 기능 (91 페이지) 절을 확인하십시오.
제어 패널 사용 Using the control panel

자세한 사항은 ACX-AP-x assistant control panels user's manual (3AUA0000085685)을 확인하십시오.
Using the control panel
제어 위치 및 운영 모드

이 장의 내용

이 장에서는 제어 프로그램이 지원하는 제어 위치 및 운영 모드에 대해 설명합니다.
로컬 제어 vs. 외부 제어

ACS880의 제어 위치는 크게 로컬 (Local) 및 외부 (External)로 구분됩니다. 여기서 제어 위치는 제어 패널 또는 PC 툴에서 Loc/Rem 버튼으로 선택할 수 있습니다.

1) I/O는 제어 유닛의 슬롯에 I/O 확장 옵션 모듈 (FIO-xx)을 설치하는 것에 의해 추가됩니다.
2) 속도측정 엔코더 또는 레졸버 인터페이스 모듈 (FEN-xx)은 제어 유닛의 슬롯에 설치됩니다.

로컬 제어 (Local control)

제어 명령은 드라이브가 로컬 제어로 선택될 때, 제어 패널 또는 PC 툴로부터 얻을 수 있습니다. 로컬 제어에서는 속도 또는 토크 제어 모드를 사용할 수 있고 주파수 제어 모드는 제어 모드를 스칼라 제어 (Scalar control)로 선택한 경우에 사용할 수 있습니다. (파라미터 19.16 Local control mode를 참고하십시오.)

로컬 제어는 시운전 및 유지 보수하는 동안에 사용될 수 있습니다. 로컬 제어로 선택될 때 외부 제어 신호보다 제어 패널 신호가 우선 적용됩니다. 제어 위치가 변경되는 것을 원하지 않을 경우에는 파라미터 19.17 Local control disable로 설정하십시오.

사용자는 로컬 제어에서 드라이브와 제어 패널 (또는 PC 툴)과의 통신 연결이 중단된 경우에 드라이브가 어떻게 반응할 것인지 파라미터 49.05 Communication loss action에 설정할 수 있습니다. (단, 외부 제어에서는 동작하지 않습니다.)
외부 제어 (External control)

드라이브가 외부 제어로 선택될 때, 제어 명령은 다음으로부터 얻을 수 있습니다.
- I/O 단자 (디지털 및 아날로그 입력), 또는 I/O 확장 옵션 모듈.
- 임베디드 필드버스 인터페이스 또는 필드버스 옵션 어댑터.
- DDCS 제어 인터페이스.
- 마스터/팔로워 링크 (Master/follower link).
- 제어 패널.

외부 제어 위치는 EXT1 및 EXT2로 구분됩니다. 사용자는 파라미터 20.01...20.10에서 EXT1 및 EXT2에 대한 각각의 시작 및 정지 명령을 설정할 수 있습니다. 또한 각각의 운전 모드는 파라미터 그룹 19 Operation mode에서 제어 위치에 따라 독립적으로 선택할 수 있습니다. 예를 들어, 이 그룹에서는 속도 및 토크 제어 모드를 신속하게 전환할 수 있습니다. EXT1과 EXT2는 파라미터 19.11 Ext1/Ext2 selection에서 디지털 입력 또는 필드버스 제어 워드 (Fieldbus control word)의 2진수 소스 (Binary source)에 의해 선택될 수 있습니다. 또한 기준 소스 (Reference source)는 각각의 운전 모드에 대해 개별적으로 설정할 수 있습니다.

외부 제어 위치의 선택은 2 ms마다 수행됩니다.

제어 패널을 외부 제어 소스로 사용하는 경우

제어 패널은 로컬 제어 이외에도 외부 제어 모드에서 시작/정지 명령 및 기준 소스로 사용될 수 있습니다.

제어 패널을 기준값으로 사용하는 경우 2가지 항목 (프로세스 PID의 셋포인트는 제외)으로 선택할 수 있습니다. 여기서 2가지 선택 항목은 외부 제어 모드에서 기준 소스가 제어 패널로 선택된 이후에 사용되는 초기 기준값에 차이가 있습니다.

제어 패널에 입력한 기준값은 다른 기준 소스로 선택될 때마다 저장됩니다. 기준 소스 선택 파라미터가 Control panel (ref saved)로 설정된 경우, 제어 패널에 저장된 기준값은 제어 패널로 다시 전환될 때 초기 기준값으로 사용됩니다. 각각의 운전 모드 (속도 또는 토크)에서 저장된 기준값을 동일하게 사용하도록 설정한 경우에 드라이브는 7083 Panel reference conflict 트립 (Trip)을 발생합니다. 또한 제어 패널의 기준값은 파라미터 그룹 49 Panel port communication에서 제한할 수 있습니다.

기준 소스 선택 파라미터를 Control panel (ref copied)로 설정한 경우에는 제어 패널의 초기 기준값은 운전 모드에 따라 다릅니다.

기준 소스가 제어 패널로 전환된 상태에서 아직 운전 모드 (속도 또는 토크)가 변경되지 않았다면 제어 패널에 저장된 기준값이 그대로 사용될 것입니다. 하지만, 운전 모드가 변경된다면 현재 드라이브의 실제값이 해당 운전 모드의 초기 기준값으로 사용됩니다.

파라미터 그룹 40 Process PID set 1 및 41 Process PID set 2에서 프로세스 PID 제어기의 셋포인트는 한가지 모드로만 설정합니다. 여기서 PID 제어기의 셋포인트를 제어 패널에서 입력하는 경우에 이전에 설정된 기준값을 그대로 사용합니다.
드라이브의 운전 모드 (Operating modes)

드라이브는 다양한 종류의 운전 모드로 동작할 수 있습니다. 이것은 파라미터 그룹 19 Operation mode에서 각각의 제어 위치 (로컬, EXT1, EXT2)에 따라 선택됩니다. 아래 그림은 일반적인 기준 소스 타입과 제어 체인을 나타냅니다. 자세한 제어 블록도는 해당 페이지 번호의 제어 체인 블록도에서 확인할 수 있습니다.
■ 속도 제어 모드 (Speed control mode)

입력된 기준 속도 (Speed reference)에 따라 모터의 속도를 제어할 수 있습니다. 이 모드는 추정 속도, 또는 엔코더나 레졸버와 같은 속도 센서에 의해 피드백 제어 (Feedback control)됩니다. 이 모드는 로컬 및 외부 제어에서 모두 사용될 수 있고, DTC (Direct Torque Control)와 스칼라 제어 모드에서 유효합니다.

■ 토크 제어 모드 (Torque control mode)

입력된 기준 토크 (Torque reference)에 따라 모터를 토크 제어할 수 있습니다. 이것은 별도의 피드백 장치없이 수행될 수 있으며, 엔코더나 레졸버와 같은 피드백 장치가 있을 경우에 동특성 (Dynamic characteristic) 및 정밀도 (Accuracy)가 향상됩니다. 피드백 장치는 크레인 (Crane), 원치 (Winch), 리프트 (Lift)와 같은 동특성을 요구하는 부하에서 사용할 것을 권장합니다. 이 모드는 로컬 및 외부 제어에서 모두 사용될 수 있고, 오직 DTC 모드에서만 유효합니다.

■ 주파수 제어 모드 (Frequency control mode)

입력된 기준 주파수 (Frequency reference)에 따라 모터를 주파수 제어할 수 있습니다. 주파수 제어 모드는 오직 스칼라 제어 모드에서만 유효합니다.

■ 스페셜 제어 모드 (Special control modes)

위에서 언급한 제어 모드 이외에도 다음과 같이 스페셜 제어 모드를 사용할 수 있습니다.

- 프로세스 PID 제어. 자세한 사항은 프로세서 PID 제어 (페이지 66) 절을 참고하십시오.
- 비상 정지 모드 (Emergency stop mode) Off1 및 Off3: 드라이브는 설정된 감속 시간에 따라 정지하고 모듈레이션 (Modulation)을 중단합니다.
- 조깅 모드 (Jogging mode): 조깅 신호가 활성될 때, 드라이브는 설정된 기준 속도로 기동한 후에 가속합니다. 자세한 사항은 조깅 (페이지 55) 절을 참고하십시오.
24 Control locations and operating modes
프로그램 특징 Program features

이 장의 내용

제어 프로그램은 드라이브의 제어 신호와 파라미터 정보를 포함합니다. 이 장에서는 드라이브의 사용 및 운전 방법, 그리고 제어 프로그램의 주요 기능들을 설명합니다.

경고! 드라이브와 결합된 기계 시스템이 안전 규정을 만족하는지 확인하십시오. 유럽 기계 지침 (European Machinery Directive)과 관련된 표준에서는 주파수 변환기 (Frequency converter)를 안전 장치로 규정하지 않습니다. 기계 장치에 대한 개인의 안전은 주파수 변환기의 특정 기능이 아닌 국제 규정을 준수해야 합니다.
드라이브 구성 및 프로그래밍

드라이브 제어 프로그램은 2가지 부분으로 구분됩니다.

- 펌웨어 프로그램 (Firmware program).
- 응용 프로그램 (Application program).

드라이브 제어 프로그램

드라이브 프로그램은 속도 및 토크 제어, 드라이브 로직 (시작/정지), I/O, 피드백, 통신, 보호 기능을 포함하는 중요한 제어 기능들을 수행합니다. 펌웨어 기능은 파라미터로 구성되고 프로그램되며, 응용 프로그램에 의해 확장될 수 있습니다.

■ 파라미터에 의한 프로그래밍

파라미터는 드라이브의 운전을 구성하고 다음으로부터 설정할 수 있습니다.

- 제어 패널
- Drive composer PC 툴
- 필드버스 인터페이스

모든 파라미터 설정은 드라이브의 영구적인 메모리 (Permanent memory)에 자동으로 저장됩니다. 그러나 +24 V 전원을 외부에서 제어 유닛에 공급하는 경우에는 파라미터를 변경한 후에 파라미터 96.07 Parameter save manually를 사용하여 변경된 파라미터를 수동으로 저장할 것을 권장합니다.

만약 파라미터를 초기 설정으로 복원하고 싶다면 파라미터 96.06 Parameter restore를 이용하십시오.
아답티브 프로그램 (Adaptive program)

일반적으로 사용자는 정해진 파라미터에 의해 드라이브를 제어합니다. 그러나 표준 파라미터는 설정 또는 범위가 고정되어 있어서 추가적인 사용자 프로그램을 구성하기 위해서는 아답티브 프로그램의 기능 블록 (Function block)을 이용해야 합니다.

아답티브 프로그램은 Drive composer pro PC 툴 (버전 1.10 이상)에서 그래픽 형태의 인터페이스를 통해 누구나 쉽게 사용자 프로그램을 작성할 수 있습니다. 기능 블록은 최대 20개까지 사용할 수 있으며, 일반적인 산술 연산과 논리 연산뿐만 아니라, 비교기 및 타이며 블록 등을 제공합니다. 이 프로그램은 10 ms 주기로 수행됩니다.

프로그램의 입력은 물리적 입력값 (Physical input), 실제값 (Actual value), 드라이브 상태 정보 파라미터 등을 선택해서 연결시킬 수 있습니다. 그리고 각종 파라미터뿐만 아니라, 상수값을 입력으로 정의할 수 있습니다. 프로그램의 출력은 시작 명령, 외부 이벤트, 또는 제어 기준값 등으로 사용할 수 있습니다. 선택한 파라미터에 아답티브 프로그램의 출력을 연결하면 해당 파라미터는 쓰기가 금지됩니다.

이 프로그램의 동작 상태는 파라미터 07.30 Adaptive program status에서 확인할 수 있으며, 96.70 Disable adaptive program에서 사용을 금지시킬 수 있습니다.

자세한 사항은 Adaptive programming application guide (3AXD50000028574)를 참고하십시오.

응용 프로그램 (Application programming)

펌웨어 프로그램의 기능은 응용 프로그래밍 (옵션 +N8010)으로 확장될 수 있습니다. 그리고 응용 프로그램은 별도의 PC 툴을 사용하여 IEC 61131-3 표준 언어로 작성할 수 있으며, 자세한 사항은 Drive application programming (IEC 61131-3)을 참고하십시오.
제어 인터페이스 (Control interfaces)

■ 프로그래밍 가능한 아날로그 입력

제어 유닛은 2개의 프로그래밍 가능한 아날로그 입력을 가지고 있습니다. 각각의 입력은 제어 유닛의 점퍼 (Jumper) 또는 스위치 설정에 의해 전압형 (0/2…10 V 또는 -10…10 V) 또는 전류형 (0/4…20 mA)으로 선택할 수 있습니다. 이 입력값은 파라미터에 의해 필터링, 반전, 스케일링될 수 있으며, 제어 유닛에서는 이 값을 0.5 ms 주기로 읽어 들입니다.

아날로그 입력 개수는 FIO-11 또는 FAIO-01 확장 옵션 모듈을 설치하는 것으로 증가될 수 있습니다. 확장 옵션 모듈의 아날로그 입력은 2ms 주기로 업데이트 (Update)됩니다.

드라이브는 사전에 정의된 입력 범위를 벗어날 경우에 후속 동작으로 경고 또는 폴트 등을 선택할 수 있습니다.

파라미터 설정

파라미터 그룹 12 Standard AI (페이지 157).

■ 프로그래밍 가능한 아날로그 출력

제어 유닛은 2개의 전류형 (0…20 mA) 아날로그 출력을 가지고 있습니다. 이 출력값은 파라미터에 의해 필터링, 반전, 스케일링될 수 있으며, 제어 유닛에서는 이 값을 0.5 ms 주기로 출력합니다.

아날로그 출력 개수는 FIO-11 또는 FAIO-01 확장 모듈을 설치하는 것으로 증가될 수 있습니다. 확장 옵션 모듈의 아날로그 출력은 2 ms 주기로 업데이트됩니다.

파라미터 설정

파라미터 그룹 13 Standard AO (페이지 161).

■ 프로그래밍 가능한 디지털 입/출력

제어 유닛은 6개의 디지털 입력, 1개의 디지털 기동 인터록 입력, 그리고 2개의 디지털 입/출력을 가지고 있습니다. 제어 유닛에서는 이 값을 0.5ms 주기로 읽어 들입니다.

디지털 입력 DI6은 특별하게 PTC 서미스터 입력으로 사용할 수 있습니다. 자세한 사항은 모터 열 보호 (페이지 80) 절을 참고하십시오.
디지털 입/출력 DIO1은 주파수 입력으로 사용될 수 있고, DIO2는 주파수 출력으로 사용될 수 있습니다.

디지털 입/출력 개수는 FIO-01, FIO-11, 또는 FDIO-01 확장 모듈을 설치하는 것으로 증가될 수 있습니다. 확장 옵션 모듈의 디지털 입/출력은 2 ms 주기로 업데이트됩니다.

파라미터설정

파라미터 그룹 10 Standard DI, RO (페이지 145), 11 Standard DIO, FI, FO (페이지 152).

■ 프로그래밍 가능한 릴레이 출력

제어 유닛은 3개의 릴레이 출력을 가지고 있습니다. 이것의 출력 신호는 파라미터에 의해 설정될 수 있습니다. 제어 유닛에서는 이 값을 0.5 ms 주기로 출력합니다.

릴레이 출력은 FIO-01 또는 FDIO-01 확장 옵션 모듈을 설치하는 것으로 증가될 수 있습니다. 확장 옵션 모듈의 릴레이 출력은 2 ms 주기로 업데이트됩니다.

파라미터설정

파라미터 그룹 10 Standard DI, RO (페이지 145).

■ 프로그래밍 가능한 확장 I/O

입력과 출력은 I/O 확장 옵션 모듈에 의해 추가될 수 있습니다. 1개에서 3개의 모듈은 제어 유닛의 슬롯 (Slot)에 설치됩니다. 슬롯은 FEA-03 I/O 확장 옵션 어댑터를 설치하는 것으로 추가될 수 있습니다.

아래의 표는 제어 유닛과 I/O 확장 옵션 모듈의 I/O 개수를 나타냅니다.

<table>
<thead>
<tr>
<th>위치</th>
<th>디지털 입력 (DI)</th>
<th>디지털 입/출력 (DIO)</th>
<th>아날로그 입력 (AI)</th>
<th>아날로그 출력 (AO)</th>
<th>릴레이 출력 (RO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>제어 유닛</td>
<td>6 + DIIL</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>FIO-01</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>FIO-11</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>FAIO-01</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>FDIO-01</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

3개의 I/O 확장 옵션 모듈은 파라미터 그룹 14…16을 사용하여 구성할 수 있습니다.
Note: 각각의 구성 파라미터 그룹은 특정 확장 모듈의 입력값을 표시하는 파라미터를 가지고 있습니다. 이 파라미터들은 I/O 확장 모듈의 입력값을 활용할 수 있는 유일한 방법입니다. 이 입력에 연결하기 위해서는 소스 선택 파라미터에서 Other를 선택하고 파라미터 그룹 14, 15 또는 16에서 적절한 파라미터 값을 지정하십시오.

파라미터 설정

- 파라미터 그룹 14 I/O extension module 1 (페이지 165), 15 I/O extension module 2 (페이지 184), 16 I/O extension module 3 (페이지 188).

- 파라미터 60.41 (페이지 361).

● 필드버스 제어

드라이브는 필드버스 인터페이스를 통하여 상위 자동화 시스템에 접속될 수 있습니다. 자세한 사항은 임베디드 필드버스 통신 (페이지 527)과 필드버스 어댑터 통신 (페이지 551) 장을 참고하십시오.

파라미터 설정

파라미터 그룹 50 Fieldbus adapter (FBA) (페이지 333), 51 FBA A settings (페이지 341), 52 FBA A data in (페이지 342), 53 FBA A data out (페이지 343), 54 FBA B settings (페이지 343), 55 FBA B data in (페이지 344), 56 FBA B data out (페이지 345), 58 Embedded fieldbus (페이지 345)
마스터/팔로워 기능 (Master/follower functionality)

일반 사항

마스터/팔로워 기능은 여러 드라이브가 연동될 때 부하가 분담될 수 있도록 제어하기 위한 목적으로 사용됩니다. 이것은 기어링 (Gearing), 체인 (Chain), 벨트 (Belt) 등을 통해서 모터가 서로 연결되어 있는 응용 시스템에 적합합니다.

외부 제어 신호는 통상 1개의 마스터 드라이브에만 연결됩니다. 마스터 드라이브는 전선 (Electical cable) 또는 광통신선 (Fiber-optic cable)을 통하여 명령을 전송하여 최대 10개까지 팔로워 드라이브를 제어합니다. 마스터 드라이브는 선택된 3개의 팔로워 드라이브로부터 피드백을 읽어 들일 수 있습니다.
일반적으로 마스터 드라이브는 속도 제어를 수행하고 다른 드라이브들은 이것의 토크 또는 기준 속도에 따라 제어됩니다.

일반적으로 팔로워는
- 마스터와 모터 회전축 (Shaft)이 기어링, 체인 등으로 결합하게 연결되어 있을 때, 토크 제어됨으로써 드라이브 사이의 속도 차이가 발생하지 않습니다.
- 마스터와 모터 회전축이 유연하게 연결되어 있을 때, 속도 제어됨으로써 일반적으로 드롭 제어 (Droop control)를 사용합니다. 부하 분담 (Load sharing)은 아래의 속도 제어 팔로워 드라이브의 부하 분담에 설명한 것처럼 조정할 수 있습니다.

Note: 속도 제어 팔로워 드라이브를 부하 분담없이 사용하는 경우에는 이 드라이브의 가감속 시간 설정에 주의하십시오. 만약 램프 시간 (Ramp time)이 마스터에 비해 길게 설정되었는데 팔로워는 마스터의 가감속 시간을 무시하고 자체적인 시간에 따라 운전될 것입니다. 그러므로 마스터와 팔로워는 동일한 램프 시간을 갖도록 설정하며, 이때 기준 속도에 대한 S자 곡선 (파라미터 23.16 ... 23.19 참고)은 마스터에만 적용시키면 됩니다.

 일부 응용에서 팔로워 드라이브는 속도 제어 및 토크 제어가 모두 필요할 수 있습니다. 이러한 경우에는 파라미터 19.12 Ext1 control mode 또는 19.14 Ext2 control mode에 의해 운전 모드를 전환할 수 있습니다. 하나의 외부 제어 위치를 속도 제어로 설정하고 다른 하나는 토크 제어로 설정하는 것입니다. 이때 팔로워 드라이브의 디지털 입력은 제어 위치를 전환하는데 사용됩니다. 자세한 사항은 제어 위치 및 운전 모드 (페이지 19) 장에서 확인하십시오.

 토크 제어 모드에서 팔로워 파라미터 26.15 Load share는 토크 제어 팔로워 응용에서 마스터와 팔로워 사이의 최적의 부하 분담을 위해 입력되는 기준 토크를 스케일링하는데 사용됩니다. 여기서 토크가 매우 낮거나 저속 운전이 요구되는 분야에서는 정밀 제어를 위해 엔코더와 같은 피드백 장치가 필요합니다.

 만약 마스터와 팔로워 사이에서 빠른 전환이 필요할 때, 1개의 사용자 파라미터 (User parameter set)는 마스터의 설정을 저장하고 다른 1개는 팔로워의 설정을 저장합니다. 그런 다음 적절한 설정을 디지털 입력으로 선택할 수 있습니다.

속도 제어 팔로워 드라이브의 부하 분담 기능

 마스터와 속도 제어되는 팔로워 드라이브 사이의 부하 분담은 다양한 응용 분야에서 사용될 수 있습니다. 부하 분담 기능은 기준 토크를 바탕으로 추가적인 트림 신호에 의해 팔로워의 기준 속도를 정밀 튜닝하는 것에 의해 구현됩니다.

 부하 분담 기능은 팔로워의 기준 토크를 기반으로 한 트림 신호 (Trim signal)를 기준 속도에 추가적으로 미세 조정 (Fine-tuning)함으로써 구현됩니다. 기준 토크는 파라미터 23.42 Follower speed corr torq source로 선택 (기본값으로 reference 2는 마스터로부터 수신)됩니다.
각 드라이브의 부하 분담은 파라미터 23.40 Follower speed correction enable로 기능을 허용하고 26.15 Load share를 사용하여 조정할 수 있습니다. 그리고 파라미터 23.41 Follower speed correction gain은 속도 보상을 위한 이득으로 사용되며, 이렇게 속도 보상된 신호는 23.39 Follower speed correction out에서 확인할 수 있습니다. 이에 대한 자세한 사항은 페이지 569의 블록도를 확인하십시오.

Notes:
- 이 기능은 원격 제어 모드에서 팔로워 드라이브가 속도 제어인 경우에 허용됩니다.
- 드롭 제어 (25.08 Drooping rate)는 부하 분담 기능이 활성된 경우에 사용되지 않습니다.
- 마스터와 팔로워는 동일한 속도 제어기 이득으로 설정되어야 합니다.
- 속도 보정항은 속도 오차 윈도우 파라미터 24.44 Speed error window low와 24.43 Speed error window high에 의해 제한되며, 실제 제한 상태는 06.19 Speed control status word에서 확인할 수 있습니다.

통신 설정

광통신선 (드라이브 타입에 따라 모듈 추가) 또는 제어 유닛의 XD2D 단자에 전선을 직접 접속하여 마스터/팔로워 링크를 구성하고, 파라미터 60.01 M/F communication port에 현재 접속 방법을 설정합니다. 그리고 파라미터 60.03 M/F mode에 드라이브가 마스터인지 팔로워인지 설정합니다.

마스터/팔로워 드라이브는 41번 데이터 세트 (Data set)를 사용한 DDCS 프로토콜 기반의 통신을 수행하며, 1개의 데이터 세트는 3개의 16비트 워드 (16-bit word)로 구성됩니다. 여기서 데이터 세트의 목록은 파라미터 61.01…61.03에서 자유롭게 구성할 수 있습니다.

파라미터 61.01 M/F data 1 selection의 기본값은 Follower CW입니다. 마스터에서 이 설정은 06.01 Main control word의 비트 0…11와 파라미터 06.45…06.48에서 선택된 4개의 비트를 포함하여 팔로워에 전송됩니다. 그러니 팔로워 제어 워드의 비트 3은 마스터가 모듈레이션하는 동안에 1인 상태를 유지하며, 0으로 전환되는 시점에 모터는 관성 정지 (Coast stop)합니다. 이것은 마스터와 팔로워의 정지 시간을 동기화시킵니다.

Note: 팔로워 드라이브는 마스터가 정지할 때 기준값에 따라 감속하지만, 모듈레이션을 중단하고 팔로워 제어 워드의 비트 3을 0으로 클리어할 때까지 정지되지 않습니다. 이로 인해 팔로워 드라이브의 속도 하한값 및 상한값은 같은 부호를 가질 수 없습니다. 그렇지 않으면 팔로워는 마스터가 완전히 정지할 때까지 제한 속도로 계속 힘을 가할 것입니다.

3개의 추가 데이터 워드는 각각의 팔로워에서 추가적인 정보를 수신합니다. 마스터의 데이터를 수신할 팔로워는 60.14 M/F follower selection에 선택하고 61.01…61.03에서 각각의 팔로워에 전송할 데이터를 설정합니다. 이 데이터들은 통신 링크를 통해 정수형 (Integer format)으로 보내지며, 마스터 드라이브의 파라미터 62.28…62.36에서 확인할 수 있습니다. 그리고 62.04…62.12를 사용하여 다른 파라미터로 보내질 수 있습니다.
각각의 팔로워 드라이브에서 발생한 폴트를 마스터에 전송하기 위해 위에서 언급한 데이터 워드 중 1개를 상태 워드로 전송해야 하며, 마스터에는 해당 파라미터를 *Follower SW*로 설정해야 합니다. 팔로워에서 폴트가 발생한 경우에 드라이브가 어떻게 반응할 것인지 파라미터 60.17 *Follower fault action*에 설정할 수 있습니다. 그리고 외부 이벤트 (파라미터 그룹 31 *Fault functions*)는 상태 워드의 기타 비트에 상태를 표시하기 위해 사용될 수 있습니다.

마스터/팔로워 통신의 블록도는 페이지 580과 581을 확인하십시오.

마스터/팔로워 링크 구성

마스터/팔로워 링크는 다음과 같은 방법 중에서 하나를 선택하여 구성할 수 있습니다.

- 차폐 트위스트 케이블 (*Shielded twisted-pair cable*)을 사용하여 제어 유닛의 XD2D 단자 사이에 연결하십시오.
- 광통신선을 DDCS 통신 옵션 모듈에 연결하십시오. 여기서 *ZCU* 타입의 제어 유닛은 추가적으로 FDCO 옵션 어댑터가 필요하고, *BCU* 타입의 제어 유닛은 RDCO 옵션 어댑터가 필요합니다.

여러가지 접속 방법에 대한 예는 아래 그림에서 볼 수 있으며, 광통신선으로 네트워크를 성형 (*Star*)으로 구성할 경우에는 NDBU-95C DDCS 분기 유닛이 필요합니다.

전선으로 마스터/팔로워 결선하는 경우

결선 및 단자 정보는 해당 드라이브의 하드웨어 매뉴얼을 참고하십시오.
광통신선으로 고리형 (Ring) 네트워크를 구성한 경우

광통신선으로 성형 (Star) 네트워크를 구성한 경우 1
광통신선으로 성형 (Star) 네트워크를 구성한 경우 2

파라미터 설정 예

아래는 마스터/팔로워를 구성할 때 필요한 파라미터의 체크리스트 (Checklist)입니다. 여기서 마스터는 팔로워 제어 워드, 기준 속도, 기준 토크를 팔로워에 전송하고 팔로워는 상태 워드와 2개의 실제 신호를 마스터로 반환합니다.

마스터 설정:

• 마스터/팔로워 링크 활성
 • 60.01 M/F communication port (광통신 채널 또는 XD2D 선택)
 • (60.02 M/F node address = 1)
 • 60.03 M/F mode = DDCS master (광통신선 및 전선 접속)
 • 60.05 M/F HW connection (광통신선; 고리형 또는 성형 결선, 전선; 성형 결선)

• 팔로워로 전송할 데이터
 • 61.01 M/F data 1 selection = Follower CW (팔로워 제어 워드)
 • 61.02 M/F data 2 selection = Used speed reference
 • 61.03 M/F data 3 selection = Torque reference act 5

• 팔로워로부터 수신할 데이터 (옵션)
 • 60.14 M/F follower selection (데이터를 수신할 팔로워를 선택)
 • 62.04 Follower node 2 data 1 sel … 62.12 Follower node 4 data 3 sel
 (팔로워로부터 수신할 데이터의 매핑)
파로워 설정:

- 마스터/팔로워 링크 활성
 - 60.01 M/F communication port (광통신 채널 또는 XD2D 선택)
 - 60.02 M/F node address = 2…60
 - 60.03 M/F mode = DDCS follower (광통신선 및 전선 접속)
 - 60.05 M/F HW connection (광통신선; 고리형 또는 성형 결선, 전선; 성형 결선)

- 마스터로부터 수신된 데이터 매팅
 - 62.01 M/F data 1 selection = CW 16bit
 - 62.02 M/F data 2 selection = Ref1 16bit
 - 62.03 M/F data 3 selection = Ref2 16bit

- 운전 모드 및 제어 위치 선택
 - 19.12 Ext1 control mode = Speed 또는 Torque
 - 20.01 Ext1 commands = M/F link
 - 20.02 Ext1 start trigger type = Level

- 기준 소스 선택
 - 22.11 Speed ref1 source = M/F reference 1
 - 26.11 Torque ref1 source = M/F reference 2

- 마스터로 전송할 데이터 선택 (옵션)
 - 61.01 M/F data 1 selection = SW 16bit
 - 61.02 M/F data 2 selection = Act1 16bit
 - 61.03 M/F data 3 selection = Act2 16bit

마스터/팔로워 링크를 위한 광통신선의 사양

- 광통신선의 최대 길이:
 - FDCO-01/02 또는 RDCO-04 (POF; Plastic Optic Fiber): 30 m
 - FDCO-01/02 또는 RDCO-04 (HSF; Hard-clad Silica Fiber): 200 m

- 2개의 NOCR-01 리피터 (GOF; Glass Optic Fiber, 62.5μm, Multi-Mode): 1000 m
- 차폐 트위스트 케이블 최대 길이: 50 m
- 전송 속도: 4 Mbit/s
- 링크 통합 성능: < 5 ms, 마스터 및 팔로워 사이의 기준 소스 전송
- 프로토콜: DDCS (Distributed Drives Communication System)

파라미터 설정 및 진단

파라미터 그룹 60 DDCS communication (페이지 353), 61 D2D and DDCS transmit data (페이지 366) 및 62 D2D and DDCS receive data (페이지 370)
외부 컨트롤러 인터페이스 (External controller interface)

일반 사항

드라이브는 광통신 또는 튜브스트 케이블을 사용하여 외부 컨트롤러 (ABB AC 800M)와 접속될 수 있으며, 모듈버스 (ModuleBus) 또는 드라이브 버스 (DriveBus)와의 호환이 가능합니다. 단, 드라이브 버스의 일부 기능 (예: BusManager)은 지원되지 않습니다.

토폴로지

광통신선을 사용한 ZCU 또는 BCU 기반의 드라이브 접속 예는 다음과 같습니다. ZCU 제어 유닛이 있는 드라이브는 FDCO 통신 모듈이 필요하고 BCU 제어 유닛이 있는 드라이브는 RDCO 또는 FDCO 통신 모듈이 필요합니다. BCU는 RDCO 옵션 모듈을 위한 전용의 송수록을 가지고 있으며, 3개의 옵션 송수록 중에서 1개를 선택해서 FDCO 옵션 모듈을 사용할 수도 있습니다. 고리형 및 성형 네트워크는 마스터/팔로워 링크와 동일한 방법 (페이지 31 참고)으로 구성할 수 있습니다. 이들의 차이점은 외부 컨트롤러가 CH2 대신에 RDCO의 CH0에 접속되고, FDCO 통신 모듈 채널은 사용자가 자유롭게 선택할 수 있습니다.

또한 차폐 튜브스트 케이블을 사용하여 XD2D 단자에 접속될 수 있습니다. 이것의 연결 방법은 파라미터 60.51 DDCS controller comm port에서 선택할 수 있고, 전송 속도는 파라미터 60.56 DDCS controller baud rate에 설정합니다.

통신 방법

외부 컨트롤러와 드라이브 사이의 통신은 각각 3개의 16비트 데이터 세트로 구성되며, 제어기는 데이터 세트를 드라이브에 전송하고 드라이브는 다음 데이터 세트를 제어기로 반환합니다.
통신은 10…33번 데이터 세트를 사용하며 데이터 세트의 목록은 자유롭게 구성될 수 있습니다. 그러나 10번 데이터 세트는 일반적으로 제어 워드와 1개 또는 2개의 기준 소스를 포함하고 11번 데이터 세트는 상태 워드와 선택된 실제 신호를 반환합니다. 모듈 버스 통신을 위해서 파라미터 60.50 DDCS controller drive type에 “standard drive” 또는 “engineered drive”를 설정합니다. 모듈 버스는 “standard drive”로 1…4번 데이터 세트를 사용하고 “engineered drive”로 10…33번 데이터 세트를 사용합니다.

ABB Drives profile에 대한 필드버스 제어 워드는 내부적인 드라이브 로직에 연결되어 있으며, 제어 워드의 비트별 내용은 페이지 557에서 확인할 수 있고 상태 워드의 비트별 내용은 페이지 558에서 확인할 수 있습니다.

일반적으로 32번과 33번 데이터 세트는 파라미터 설정 및 확인을 위한 전용의 메일박스 서비스 (Mailbox service)를 제공하며, 이것은 다음 그림에서 볼 수 있습니다.

24번 및 25번 데이터 세트는 파라미터 60.64 Mailbox dataset selection에서 32번 및 33번 데이터 세트를 대신하여 선택될 수 있습니다.

데이터 세트의 업데이트 주기는 다음과 같습니다.
- 10…11번 데이터 세트: 2 ms
- 12…13번 데이터 세트: 4 ms
- 14…17번 데이터 세트: 10 ms
- 18…25, 32, 33번 데이터 세트: 100 ms

파라미터 설정

파라미터 그룹 60 DDCS communication (페이지 353), 61 D2D and DDCS transmit data (페이지 366), 62 D2D and DDCS receive data (페이지 370).
서플라이 유닛 제어 (LSU)

일반 사항

서플라이 유닛과 1개의 인버터 유닛으로 구성된 드라이브 시스템에서 서플라이 유닛은 인버터 유닛에 의해 제어될 수 있습니다 (단, 멀티 인버터로 구성된 드라이브 시스템에서는 사용할 수 없음). 예를 들어, 인버터는 서플라이 유닛으로 제어 워드 및 기준 소스를 전송할 수 있어서 단일 제어 프로그램으로 두 장치를 모두 제어합니다.

자세한 사항은 컨버터 사용자 펌웨어 매뉴얼을 참고하십시오.

토폴로지

서플라이 유닛과 인버터 유닛은 서로 광통신선으로 연결됩니다. 여기서 RDCO 모듈이 장착된 BCU 제어 유닛의 경우 인버터의 CH1은 서플라이 유닛의 CH0에 접속됩니다.

BCU 기반 드라이브 시스템에서의 접속 예는 다음 그림과 같습니다.

통신 방법

컨버터와 인버터 사이의 통신은 각각 3개의 16비트 데이터 세트로 구성되며, 인버터 유닛은 서플라이 유닛으로 데이터 세트를 전송하고 서플라이 유닛은 다음 데이터 세트를 인버터 유닛으로 반환합니다.

통신은 10번 및 11번 데이터 세트를 사용하고, 이것의 업데이트 주기는 2 ms입니다. 10번 데이터 세트는 인버터 유닛에서 서플라이 유닛으로 전송되고, 11번 데이터 세트는 서플라이 유닛에서 인버터로 전송됩니다. 데이터 세트의 목록은 자유롭게 구성될 수 있으나, 일반적으로 10번 데이터 세트는 제어 워드를 포함하고 11번 데이터 세트는 상태 워드를 반환합니다.
별도의 서플라이 유닛이 있는 ACS880 드라이브에서 표준 통신은 파라미터 95.20 HW options word 1에 의해 초기화되며 이때 몇가지 숨겨진 파라미터 항목들이 생성됩니다.

서플라이 유닛이 회생형 드라이브 (IGBT 서플라이 유닛)인 경우에 인버터는 파라미터 그룹 94 LSU control을 통해 기준 DC 전압 (DC voltage reference) 및 기준 무효 전력 (Reactive power reference)을 서플라이 유닛으로 전송할 수 있습니다.

또한 회생형 드라이브는 인버터 파라미터 그룹 01 Actual values에 생성된 파라미터로 실제 신호를 전송할 것입니다.

파라미터 설정

• 파라미터 01.102…01.164 (페이지 118), 05.111…05.121 (페이지 128), 06.36…06.43 (페이지 136), 06.116…06.118 (페이지 142), 07.106…07.107 (페이지 145), 30.101…30.149 (페이지 261), 31.120…31.121 (페이지 273), 95.20 HW options word 1 (페이지 404), 96.108 LSU control board boot (페이지 416).

• 파라미터 그룹 60 DDCS communication (페이지 353), 61 D2D and DDCS transmit data (페이지 366), 62 D2D and DDCS receive data (페이지 370), 94 LSU control (페이지 398).
모터 제어 (Motor control)

■ 직접ток스제어 (DTC; Direct Torque Control)

ACS880은 DTC 기반의 모터 제어를 수행하며, 전력용 스위칭 소자는 필요한 고정자 자속 (Stator flux)과 모터 토크 (Motor torque)를 발생시키기 위해 제어됩니다. 여기서 전력용 소자의 스위칭 주파수는 기준 자속과 기준 토크로부터 허용된 히스테리시스 밴드 (Hysteresis band) 안에서 실제 토크와 실제 고정자 자속과의 차이가 있는 경우에만 변경됩니다. 기준 토크는 속도 제어기 또는 외부 기준 토크 소스로부터 직접 제공됩니다.

DTC에서는 인버터의 DC 전압과 모터로 공급되는 2개의 상전류 정보가 필수적으로 요구됩니다. 여기서 고정자 자속은 공간 벡터 (Space vector)에서 모터의 고정자 전압을 적분 (Integrating)하여 얻어내며, 모터 토크는 고정자 자속과 회전자 전류와의 벡터곱 (Cross product)에 의해 계산됩니다. 그리고 검증된 모터 모델을 이용함으로써 모터의 고정자 자속을 정확하게 추정 (Estimation)할 수 있습니다. 특히 이 제어 방법은 회전자의 속도 정보를 요구하지 않는 것이 특징입니다.

전통적인 제어 방식과의 차이점은 전력용 스위칭의 제어 주기와 동일한 시간으로 토크 제어가 수행되는 것입니다. 또한 전압 및 주파수 제어를 위한 별도의 PWM 모듈레이터 (PWM modulator) 없이 전적으로 모터의 전자기적 상태를 기반으로 제어가 수행됩니다.

여기서 정밀한 모터 제어를 수행하기 위해서는 대상 모터로부터 제어에 필요한 각종 파라미터 정보를 얻어내는 것이 필요합니다. (ID run; identification run).

파라미터 설정
파라미터 99.04 Motor control mode (페이지 423) 및 99.13 ID run requested (페이지 426).

■ 기준 소스 램프 설정

가감속 시간은 기준 속도, 기준 토크, 그리고 기준 주파수에 대해서 개별적으로 설정할 수 있습니다. 속도 또는 주파수에 대한 램프 시간 (Ramp time)은 영속도 (Zero speed) 또는 영주파수 (Zero frequency)에서 파라미터 46.01 Speed scaling 또는 46.02 Frequency scaling에 설정한 값까지 드라이브가 가속 또는 감속하는데 걸리는 시간을 의미합니다. 여기서 사용자는 디지털 입력과 같은 2진수 소스를 사용하여 미리 정해놓은 2개의 램프 시간을 선택할 수 있으며, 기준 속도를 S자 형태의 곡선으로 제어할 수도 있습니다.

토크에 대한 램프 시간은 영토크 (Zero torque)와 정격 토크 (파라미터 01.30 Nominal torque scale) 사이에서 기준 토크가 변하는데 걸리는 시간을 의미합니다.
스페셜 가감속 �프 설정

조깅 (Jogging)은 별도로 가감속 시간을 설정할 수 있습니다. (페이지 55 참고)
모터 포텐셔미터 (Motor potentiometer)은 회전 방향에 관계없이 동일한 비율로 적응되며, 이것의 변화율 (Change rate)은 조정하는 것이 가능합니다. (페이지 69 참고)
비상 정지 (Emergency stop)는 별도의 감속 시간을 설정할 수 있습니다. (“Off3” 모드)

파라미터 설정

• 램프 기준 속도: 파라미터 23.11…23.19 및 46.01 (페이지 218 및 324).
• 램프 기준 토크: 파라미터 01.30, 26.18 및 26.19 (페이지 117 및 243).
• 램프 기준 주파수: 파라미터 28.71…28.75 및 46.02 (페이지 252 및 324).
• 조강 기능: 파라미터 23.20 및 23.21 (페이지 221).
• 모터 포텐셔미터 기능: 파라미터 22.75 (페이지 216).
• 비상 정지 (“Off3” 모드): 파라미터 23.23 Emergency stop time (페이지 221).

■ 일정 속도/주파수 설정 (Constant speeds/frequencies)

일정 속도 및 일정 주파수는 예를 들어, 디지털 입력을 통해 미리 정해놓은 기준값으로 빠르게 운전하는 것입니다. 이것은 속도 제어를 위한 7가지 일정 속도와 주파수 제어를 위한 7가지 일정 주파수로 정의될 수 있습니다.

⚠️ WARNING: 일정 속도 및 일정 주파수는 우선 순위가 가장 높습니다.

일정 속도/주파수 기능은 2 ms 주기로 수행됩니다.

파라미터 설정

파라미터 그룹 22 Speed reference selection (페이지 210) 및 28 Frequency reference chain (페이지 246).

■ 위험 속도/주파수 설정 (Critical speeds/frequencies)

위험 속도는 기계적인 공진 (Mechanical resonance) 문제에 대비하여 미리 정해놓은 특정 속도 범위를 피해서 운전하는 것입니다.
이 기능은 기준 속도가 장시간 동안 임계 영역 내에 머무르는 것을 방지할 수 있습니다. 만약 기준 속도 입력 (22.87 Speed reference act 7)이 임계 범위로 들어가면 이를 벗어날 때까지 기준 속도 출력 (22.01 Speed ref unlimited)을 고정시킵니다.

또한 이 기능은 기준 주파수로 제어되는 스칼라 제어 모드에서도 사용할 수 있습니다. 여기서 기준 주파수의 입력 및 출력은 각각 28.96 Frequency ref act 7, 28.97 Frequency ref unlimited에서 확인할 수 있습니다.

설정 예

팬(Fans)이 540 rpm에서 690 rpm, 그리고 1380 rpm에서 1560 rpm까지의 범위에서 진동하는 경우에 드라이브가 이와 같은 속도 범위를 피해서 운전하려면,

- 파라미터 22.51 Critical speed function의 비트 0을 1로 세트해서 이 기능을 허용합니다.

다음 아래 그림과 같이 위험 속도 범위를 설정합니다.

파라미터 설정

- 위험 속도: 파라미터 22.51…22.57 (페이지 215)
- 위험 주파수: 파라미터 28.51…28.57 (페이지 251).

속도 제어기 오토 튜닝 (Speed controller auto tuning)

드라이브의 속도 제어기는 오토 튜닝 기능으로 자동 조정될 수 있으며, 이것은 모터와 기계 시스템에서 추정한 기계 시정수 (Mechanical time constant)를 기반으로 합니다.

오토 튜닝 과정은 일련의 가감속 주기에 따라 모터를 운전하고 반복 횟수는 파라미터 25.38 Autotune repeat times으로 조절할 수 있습니다. 반복 횟수가 많을수록 특히 초기 속도와 최고 속도의 차이가 작을수록 더욱 정밀한 결과를 얻을 수 있습니다.

오토 튜닝 과정에서 사용되는 최대 기준 토크는 최대 토크 (파라미터 그룹 30 Limits) 또는 정격 토크 (99 Motor data)로 제한되지 않는 한, 튜닝이 시작될 때의 초기 토크와 25.38 Autotune torque step 설정값의 합이 될 것입니다.

예를 들어, 25.40 Autotune repeat times을 2로 설정한 경우에 오토 튜닝 과정에서의 속도 및 토크를 보이면 다음 그림과 같습니다.

Notes:
• 드라이브가 튜닝 과정에서 요구한 제동력을 공급할 수 없다면, 이 결과는 오직 가속 단계만큼 기반으로 하여 완전 제동한 만큼 정확하지는 않습니다.
• 모터는 각각의 가속 단계 끝부분에서 계산된 최고 속도를 약간 초과할 것입니다.

오토 튜닝을 시작하기 전에
오토 튜닝 과정은 다음과 같은 전체 조건하에서 수행합니다:
• 모터 ID run이 성공적으로 완료되어야 합니다.
• 속도 및 토크 제한값 (파라미터 그룹 30 Limits)을 설정해야 합니다.

• 속도 피드백은 기계적으로 발생하는 소음, 진동, 그리고 기타 외란 등을 확인하기 위해 관측해야 하며, 다음의 파라미터를 이용하여 이러한 외란을 제거해야 합니다.
 • 속도 피드백 필터링 (파라미터 그룹 90 Feedback selection)
 • 속도 오차 필터링 (24 Speed reference conditioning)
 • 영속도 (파라미터 21.06 및 21.07)
• 드라이브가 시작되고 속도 제어 모든으로 운전 중이어야 합니다.

위와 같은 조건들을 모두 충족한다면 파라미터 25.33 Speed controller autotune으로 오토 튜닝을 시작하십시오.
오토투닝 모드

오토투닝은 파라미터 25.34 *Speed controller autotune mode*의 설정에 따라 3가지 방법 (Smooth, Normal, Tight)으로 수행됩니다. 이 방법들은 튜닝 완료 후에 기준 토크가 기준 속도의 스텝 입력에 대해서 어떻게 반응하는지를 정의합니다. *Smooth*를 선택한 경우에 응답은 느리지만 강하고 (Robust)하고, Tight를 선택한 경우에 응답은 빠르지만 일부 응용에서 제어 이득 (Control gain)이 높게 설정될 수 있습니다. 아래 그림은 스텝 기준 속도에 대한 속도 응답 (일반적으로 1...20%) 파형을 보여주고 있습니다.

![모션 그래프](image)

A: 부족 보상 (Undercompensated)
B: 정상 튜닝 (오토투닝)
C: 정상 튜닝 (수동 튜닝). B보다 동적 성능이 우수함.
D: 과보상 (Overcompensated)

오토투닝 결과

오토투닝 과정이 성공적으로 완료되면 그 결과는 다음 파라미터에 자동으로 반영됩니다.

- **25.02 Speed proportional gain** (속도 제어기의 비례 이득)
- **25.03 Speed integration time** (속도 제어기의 적분 시간)
- **25.37 Mechanical time constant** (모터와 기계 시스템의 기계 시정수)

이 결과값을 만족하지 못한다면 제어기의 비례 이득, 적분 시간, 그리고 미분 시간을 수동으로 조정하십시오.
아래 그림은 속도 제어기를 간략화시킨 블록도를 나타냅니다. 여기서 속도 제어기의 출력은 토크 제어기의 기준값으로 사용됩니다.

경고 표시

오토 튜닝이 성공하지 못하면 경고 메시지 _AF90 Speed controller autotuning_이 발생할 것입니다. 이에 대한 자세한 사항은 고장 추적 (페이지 487) 장을 확인하십시오.

파라미터 설정

파라미터 _25.33…25.40_ (페이지 238).

 진동 감쇠 (Oscillation damping)

진동 감쇠 알고리즘은 그 결과가 적용되기 전에 출력 신호를 기준 체인에 연결하지 않고 입력 신호와 출력 신호를 비교하여 주가 조정할 수 있습니다.
진동 감쇠를 위한 튜닝 과정

• 26.53 Oscillation compensation input에 입력 신호 선택
• 26.51 Oscillation damping에 알고리즘 허용
• 26.57 Oscillation damping gain을 0으로 설정

• 입력 신호로부터 진동 주파수 계산 (Drive composer PC 툴 사용)
• 26.55 Oscillation damping frequency를 설정
• 26.56 Oscillation damping phase*를 설정

• 진동 감쇠 알고리즘을 시작하기 위해 26.57 Oscillation damping gain을 점차 증가

진동폭 감소 진동폭 증가

• 26.57 Oscillation damping gain을 증가
• 26.56 Oscillation damping phase를 미세 조정

• 26.57 Oscillation damping gain을 점차 증가시키면 완전히 진동을 억제

• 26.56 Oscillation damping phase를 다른 값으로 시도
 * DC 발진의 위상을 결정하기 어렵다면 0도가 조기값으로 가장 적절합니다.

Note: 속도 오차에 대한 저역 통과 필터 (Low-pass filter) 또는 속도 제어기의 적분 시간을 변경하면 진동 감쇠 알고리즘의 튜닝 결과에 영향을 줄 수 있습니다. 그러므로 진동 감쇠 기능을 적용하기 전에 먼저 속도 제어기를 튜닝하십시오. (단, 속도 제어기의 비례 이득은 이 알고리즘이 적용된 후에도 변경될 수 있습니다.)

파라미터 설정

파라미터 26.51…26.58 (페이지 244).

공진 주파수 제거 (Resonance frequency elimination)

이 제어 프로그램은 속도 오차 신호로부터 공진 주파수를 제거하기 위한 노치 필터 (Notch filter) 기능을 포함하고 있습니다.

파라미터 설정

파라미터 24.13…24.17 (페이지 225).

러시 제어 (Rush control)

토크 제어에서 부하가 갑자기 제거되면 모터는 급격하게 가속할 것입니다. 이 제어 프로그램은 모터 속도가 30.11 Minimum speed 또는 30.12 Maximum speed를 초과하는 경우에 기준 토크를 감소시키는 러시 제어 기능을 가지고 있습니다.
이 기능은 PI 제어기를 기반으로 수행되며, 비례 이득과 적분 시간은 파라미터에 의해 정의될 수 있습니다. 이 설정이 0이면 러시 제어 기능은 동작하지 않습니다.

파라미터 설정

파라미터 26.81 Rush control gain 및 26.82 Rush control integration time (페이지 246).

- **엔코더 지원 (Encoder support)**

 이 프로그램은 2개의 싱글턴 엔코더 (Single-turn encoder), 멀티턴 엔코더 (Multi-turn encoder) 또는 레졸버 (Resolvers)를 지원합니다.

아래와 같은 인터페이스 옵션 모듈이 사용됩니다.

- TTL 엔코더 인터페이스 FEN-01: 2개의 TTL 입력, TTL 출력 (엔코더 에뮬레이션 및 에코)과 2개의 디지털 입력.
- 절대치형 엔코더 인터페이스 FEN-11: 절대치형 엔코더 입력, TTL 입력, TTL 출력, 2개의 디지털 입력.
- 레حلول터 인터페이스 FEN-21: 레حلول터 입력, TTL 입력, TTL 출력, 2개의 디지털 입력.
- HTL 엔코더 인터페이스 FEN-31: HTL 입력, TTL 출력, 2개의 디지털 입력.
- HTL/TTL 엔코더 인터페이스 FSE-31 (FSO-xx 안전 기능 모듈과 함께 사용): 2개의 HTL/TTL 입력 (현재는 1개의 HTL 입력만 지원).

인터페이스 모듈은 드라이브 제어 유닛의 옵션 슬롯 중 하나에 설치되며, FEA-03 확장 어댑터에 설치 (FSE-31 모듈 제외)될 수도 있습니다.
엔코더 에코 및 에뮬레이션 (Encoder echo and emulation)

엔코더 에코와 에뮬레이션은 위에서 언급한 FEN-xx 인터페이스 모듈에서 지원합니다.

엔코더 에코는 TTL, TTL+, HTL 엔코더와 함께 사용이 가능하며, 엔코더로부터 받은 신호를 변환하지 않고 TTL 신호로 출력합니다. 이렇게 하면 하나의 엔코더 신호를 여러 드라이브에 사용할 수 있습니다.

엔코더 에뮬레이션은 엔코더 출력 신호를 전달하지만, 이 신호는 스케일링되거나 위치 데이터는 펌스 형태로 변환됩니다. 이것은 절대치형 엔코더 또는 레졸버의 위치를 펌스 형태의 TTL 신호로 변환하거나 원래의 신호를 다른 펌스수로 변환할 필요가 있을 때 사용할 수 있습니다.

부하 및 모터 피드백

3개의 피드백 소스 (엔코더 1, 엔코더 2, 또는 위치 추정값)는 속도 및 위치 정보로 사용될 수 있으며, 어느 것이나 부하의 위치 계산 또는 모터 제어에 사용할 수 있습니다. 예를 들어, 부하의 위치를 계산하여 컨베이어 벨트 (Conveyor belt)의 위치 또는 크레인 부하의 높이를 결정합니다. 피드백 소스는 파라미터 90.41 Motor feedback selection 및 90.51 Load feedback selection에서 선택합니다. 모터 및 부하 피드백과 파라미터와의 연결 관계는 페이지 567 및 568의 블록도를 참고 하십시오.

모터, 모터측 엔코더, 부하, 부하측 엔코더 사이에 기계적인 기어비 (Gear ratio)는 아래의 블록도에 표시된 기어 파라미터를 사용하여 설정할 수 있습니다.

부하 및 모터 사이에 기어비는 90.53 Load gear numerator 및 90.54 Load gear denominator에 정의하며, 이와 유사하게 부하 모터측 엔코더와 모터 사이에 기어비는 90.43 Motor gear numerator 및 90.44 Motor gear denominator에 정의합니다. 그리고 내부 위치 추정값을 부하 피드백으로 선택하게 되면 모터와 부하 사이에 기어비는 90.61 Gear numerator and 90.62 Gear denominator에 정의합니다.
위치 카운터 (Position counter)

이 제어 프로그램은 부하측 위치 정보를 표시하기 위한 위치 카운터 기능을 포함하고 있습니다. 여기서 위치 카운터의 출력 (파라미터 90.07 Load position scaled int)은 선택한 피드백 소스로부터 얻어 들인 회전수 (Number of revolutions)를 나타내며, 이에 대한 자세한 사항은 부하 및 모터 피드백 (페이지 50)을 참고하십시오.

모터 회전축의 회전 운동과 부하의 직선 운동과의 관계 (주어진 거리)는 90.63 Feed constant numerator 및 90.64 Feed constant denominator에 의해 정의됩니다. 이 기능은 파라미터 캡션 또는 위치 카운터 초기화없이 변경될 수 있습니다. 그러나 위치 카운터의 출력은 새로운 위치 데이터를 입력받을 때만 새롭게 업데이트됩니다.

부하 피드백 기능의 자세한 파라미터 연결은 페이지 568의 블록도를 확인하십시오.

위치 카운터는 제어 프로그램에서 부하의 알려진 물리적 위치 (Physical position)를 설정하는 것에 의해 초기화됩니다. 이것의 초기 위치는 파라미터 90.58 Pos counter init value int에 수동으로 입력하거나 또 다른 파라미터에서 가져올 수 있습니다. 예를 들어, 이 값은 파라미터 90.67 Pos counter init cmd source에서 스스로 선택된 근접 스위치 (Proximity switch)의 디지털 입력이 세트된 경우에 위치 카운터 값으로 갱신됩니다.
여기서 초기화가 완료되면 90.35 Pos counter status의 비트 4가 1로 세트됩니다.

이후 초기화는 먼저 파라미터 90.69 Reset pos counter init ready에 의해 준비 상태가 되어야 하며, 초기화를 위한 시간 범위 (Time window)를 지정하기 위해 파라미터 90.68 Disable pos counter initialization을 사용하여 근접 스위치의 신호를 무시할 수 있습니다.

엔코더 오류 처리

엔코더를 평균으로 사용하고 있을 때, 만약 엔코더 오류가 발생한 경우에 드라이브가 어떻게 반응할 것인지 파라미터 90.55 Load feedback fault에 설정할 수 있습니다. 만약 이 파라미터가 Warning으로 설정되었다면 모터의 위치 추정값을 사용하여 원활하게 운전을 계속할 것입니다. 그리고 엔코더 오류가 북구되면 엔코더 평균으로 부드럽게 전환될 것입니다. 이때 파라미터 90.35 Pos counter status의 비트 4는 부정확한 위치 데이터를 표시하기 위해 1로 세트되며, 이때, 부하 위치 신호 (90.04, 90.05 및 90.07)는 계속해서 업데이트될 것입니다. 추가적으로 파라미터 90.35의 비트 4는 0으로 클리어되어 위치 카운터의 초기화가 다시 필요한 것을 사용자에게 알려줍니다.

파라미터 90.60 Pos counter error and boot action는 엔코더 오류가 발생하였거나 제어 유닛을 재부팅한 경우에 이전 저장된 값부터 계산을 시작할 것인지 정의합니다. 기본적으로 90.35 Pos counter status의 비트 4는 오류가 해제된 후에 0으로 클리어되어 위치 카운터의 초기화가 다시 필요한 상태를 알리줍니다. 여기서 90.60을 Continue from previous value로 설정할 경우에 오류 또는 재부팅 상황에서 위치값이 유지될 것입니다. 그리고 이때 오류가 발생한 상태를 표시하기 위해 90.35의 비트 6이 1로 세트됩니다.

Note: 멀티턴 방식의 절대치형 엔코더는 오류가 복구되면 다음 정지 시점에서 90.35의 비트 6은 0으로 클리어되지만, 비트 4는 클리어되지 않습니다. 위치 카운터의 상태는 제어 유닛을 재부팅한 경우에도 그대로 유지되며, 90.58에 지정된 초기 위치를 고려하여 엔코더가 제공한 절대 위치부터 계산을 다시 시작합니다.

WARNING! 엔코더에서 오류가 발생하였을 때, 드라이브를 정지하거나 전원을 차단하면 부하의 움직임을 감지할 수 없으므로 파라미터 90.04, 90.05, 90.07 및 90.35는 업데이트되지 않습니다. 그리고 이전 위치값을 사용한 경우 (90.60 Pos counter error and boot action을 Continue from previous value로 설정)에 부하가 이동하면 이 위치 데이터는 신뢰할 수 없다는 점에 유의하십시오.

필드버스를 이용한 위치 카운터 읽기/쓰기

위치 카운터 기능의 파라미터 90.07 Load position scaled int 및 90.58 Pos counter init value int는 상위 제어 시스템으로부터 아래와 같은 포맷으로 접근할 수 있습니다.
- 16비트 정수형 (16비트 응용 프로그램인 경우, 1개의 16비트 워드로 접근)
- 32비트 정수형 (32비트 응용 프로그램인 경우, 2개의 16비트 워드로 접근)
예를 들어, 필드버스로부터 파라미터 90.07 Load position scaled를 읽는다면 파라미터 그룹 52에 Other – 90.07를 설정하고 원하는 데이터 포맷을 선택합니다. 여기서 32비트 포맷을 선택한다면 자동으로 다음 데이터 세트도 이 영역으로 지정될 것입니다.

HTL 엔코더 피드백의 구성

1. 엔코더 인터페이스 모듈 타입 (91.11 Module 1 type = FEN-31)과 모듈이 설치된 슬롯의 번호 (91.12 Module 1 location)를 지정하십시오.
2. 엔코더의 타입 (92.01 Encoder 1 type = HTL)을 지정하십시오. 이 값이 변경되면 드라이브로부터 자동으로 파라미터 리스트를 다시 읽어 들입니다.
3. 엔코더가 연결될 모듈 (92.02 Encoder 1 source = Module 1)을 지정하십시오.
4. 엔코더 명판에 따라서 웰스수 (92.10 Pulses/revolution)를 설정하십시오.
5. 엔코더가 모터의 회전축에 직접 설치되지 아니 하여 모터와 회전 속도가 다르다면 해당 기어비 (90.43 Motor gear numerator 및 90.44 Motor gear denominator)를 입력하십시오.
6. 새로운 파라미터를 적용하기 위해 91.10 Encoder parameter refresh에서 Refresh를 선택하십시오. 이 파라미터 설정이 완료되면 Done으로 자동 복귀하십시오.
7. 모듈 인터페이스 타입이 올바르게 설정 (92.01 Module 1 status = FEN-31)되었는지 확인하십시오. 또한 모듈의 상태 LED가 모두 녹색으로 점등되었는지 확인하십시오.
8. 예를 들어, 400 rpm의 기준 속도로 모터를 기동하십시오.
9. 계산된 추정 속도 (01.02 Motor speed estimated)와 실제 측정 속도 (01.04 Encoder 1 speed filtered)를 비교하여 이 값이 같다면 피드백 소스 (90.41 Motor feedback selection = Encoder 1)를 설정하십시오.
10. 피드백 신호에서 오류가 발생한 경우에 드라이브가 어떻게 반응할지 (90.45 Motor feedback fault) 선택하십시오.

예제 1: 부하와 모터 피드백을 동일한 엔코더로 사용하는 경우

드라이브는 크레인 부하를 들어 옮기기 위한 모터를 제어합니다. 모터의 회전축에는 속도 측정을 위한 엔코더가 설치되어 있으며, 이것은 부하의 높이를 계산하기 위한 용도로도 사용됩니다. 그리고 모터 회전축과 케이블 드럼 (Cable drum) 사이에는 기어가 존재합니다. 엔코더는 위에서 설명한 것과 같이 엔코더 1로 구성되었으며, 추가적으로 다음과 같이 설정합니다.

- 90.43 Motor gear numerator = 1
- 90.44 Motor gear denominator = 1

(엔코더가 모터 회전축에 직접 설치되어 있으므로 기어비가 없습니다.)

- 90.51 Load feedback selection = Encoder 1
• 90.53 Load gear numerator = 1
• 90.54 Load gear denominator = 50

케이블 드럼은 모터가 50회전할 때, 1회전합니다.

• 90.61 Gear numerator = 1
• 90.62 Gear denominator = 1

(이 파라미터는 위치 추정값이 피드백으로 사용되지 않으므로 변경할 필요가 없습니다.)

• 90.63 Feed constant numerator = 7
• 90.64 Feed constant denominator = 10

 부하는 케이블 드럼이 1회전할 때, 7/10 m (70 cm)를 이동합니다.

미터 단위의 부하 높이는 90.07 Load position scaled int에서 읽을 수 있으며, 90.03 Load speed는 케이블 드럼의 회전 속도를 나타냅니다.

예제 2: 2개의 엔코더를 사용한 경우

1개의 엔코더 (엔코더 1)는 모터 피드백으로 사용됩니다. 이 엔코더는 기어를 통해 모터 회전축에 설치되어 있으며, 나머지 엔코더 (엔코더 2)는 다른 위치에서 선속도 (Line speed)를 측정합니다. 각각의 엔코더는 위와 같이 구성되어 있으며, 추가적으로 다음과 같이 설정합니다.

• 90.41 Motor feedback selection = Encoder 1
• 90.43 Motor gear numerator = 1
• 90.44 Motor gear denominator = 3

엔코더는 모터 회전축이 1회전할 때, 3회전합니다.

• 90.51 Load feedback selection = Encoder 2

엔코더 2에 의해 측정된 선속도는 90.03 Load speed에서 읽을 수 있습니다. 이 값은 90.53 Load gear numerator 및 90.54 Load gear denominator를 사용하여 다른 단위로 변환될 수 있는 rpm을 제공합니다. 단, 피드 상수 (Feed constant)는 90.03 Load speed 에 영향이 없으므로 이 변환에 사용되지 않습니다.

예제 3: ACS600 / ACS800 호환성

ACS800 드라이브의 경우에 엔코더 신호 채널 A, B로부터 최상의 정밀도를 얻기 위해 상승 에지 (Rising edge) 및 하강 에지 (Falling edge)에서 들다 카운트하므로 엔코더의 회전당 필스수 (PPR; Pulse Per Revolution)보다 최대 4체배의 결과를 얻을 수 있습니다.

이 예제에서는 HTL 타입 2048 필스 엔코더가 모터 회전축에 직접 설치되어 있습니다. 근접 스위치의 위치에서 초기값은 66770입니다.
ACS880에서는 다음과 같이 설정합니다.

- 92.01 Encoder 1 type = HTL
- 92.02 Encoder 1 source = Module 1
- 92.10 Pulses/revolution = 2048
- 92.13 Position estimation enable = Enable
- 90.51 Load feedback selection = Encoder 1
- 90.63 Feed constant numerator = 8192 (92.10에 설정된 펄스수의 4배로 정의)

• 원하는 “data out” 파라미터는 Other – 90.58 Pos counter init value int (32비트)로 설정합니다. 32비트 중에서 상위 워드 (High word)를 지정하면 하위 워드 (Low word)는 자동으로 지정됩니다.
• 디지털 입력 또는 제어 워드의 사용자 비트는 90.67 Pos counter init cmd source 및 90.69 Reset pos counter init ready에 설정합니다.

PLC에서 초기값이 32비트 포맷이라면 이 워드에 다음과 같이 66770을 입력하십시오. (ACS800 파라미터는 POS COUNT INIT LO 및 POS COUNT INIT HI에 해당)

프로피버스 통신인 경우:
- FBA data out x = POS COUNT INIT HI = 1 (10진수로 66536과 같음)
- FBA data out (x + 1) = POS COUNT INIT LO = 1234

DDCS 통신을 사용하는 ABB Automation인 경우
- Data set 12.1 = POS COUNT INIT HI
- Data set 12.2 = POS COUNT INIT LO

PLC의 구성요소를 사용하는데 관계없이 엔코더가 연결된 상태에서 위치 카운터를 초기화하십시오. PLC에서 전송한 초기값은 즉시 파라미터 90.07 Load position scaled int에 반영됩니다. 드라이브에서 이 값을 읽은 후에 동일한 값이 PLC에 표시될 것입니다.

파라미터 설정

파라미터 그룹 90 Feedback selection (페이지 378), 91 Encoder module settings (페이지 387), 92 Encoder 1 configuration (페이지 390), 93 Encoder 2 configuration (페이지 396).

조깅 (Jogging)

조깅 기능은 스위치를 사용하여 모터를 단시간 동안 회전시킬 수 있습니다. 이 기능은 통상 서비스 또는 시운전 중에 로컬 위치에서 기계를 제어하기 위해 사용됩니다.

ACS880은 2개의 조깅 기능을 사용할 수 있으며, 허용 소스와 기준값을 각각 설정할 수 있습니다. 신호 소스는 파라미터 20.26 Jogging 1 start source 및 20.27 Jogging 2 start source에서 선택합니다. 조깅 기능이 동작하면 드라이브는 미리 정의한 조깅 속도 (22.42 Jogging 1 ref 또는 22.43 Jogging 2 ref)와 가속 시간 (23.20 Acc time jogging)에 따라 운전을 시작합니다.
조깅 스위치가 오프되면 드라이브는 미리 정의한 감속 시간(23.21 Dec time jogging)에 따라 정지할 때까지 감속합니다.

아래 그림과 표는 조깅 기능을 수행하는 동안에 드라이브의 동작 상태를 나타냅니다. 여기서 파라미터 21.03 Stop mode는 램프 정지로 설정되어 있습니다.

조그 명령 = 20.26 Jogging 1 start source 또는 20.27 Jogging 2 start source의 상태.
조그 허용 = 20.25 Jogging enable의 상태.
시작 명령 = 기본 시작 명령의 상태.

![Jogging Diagram](image)

<table>
<thead>
<tr>
<th>순서</th>
<th>조그 명령</th>
<th>조그 허용</th>
<th>시작 명령</th>
<th>상세 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>조깅 기능의 가속 시간에 따라 조깅 속도까지 가속합니다.</td>
</tr>
<tr>
<td>2-3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>조깅 속도로 운전합니다.</td>
</tr>
<tr>
<td>3-4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>조깅 기능의 감속 시간에 따라 영속도까지 감속합니다.</td>
</tr>
<tr>
<td>4-5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>드라이브는 정지합니다.</td>
</tr>
<tr>
<td>5-6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>조깅 기능의 가속 시간에 따라 조깅 속도까지 가속합니다.</td>
</tr>
<tr>
<td>6-7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>조깅 속도로 운전합니다.</td>
</tr>
<tr>
<td>7-8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>조깅 기능의 감속 시간에 따라 영속도까지 감속합니다.</td>
</tr>
<tr>
<td>8-9</td>
<td>0</td>
<td>1->0</td>
<td>0</td>
<td>드라이브는 정지합니다. 만약 조그 허용 신호가 1이면 기본 시작 명령은 무시됩니다.</td>
</tr>
<tr>
<td>9-10</td>
<td>x</td>
<td>0</td>
<td>1</td>
<td>선택된 기본 감속 시간에 따라 기준 속도까지 가속합니다. (파라미터 23.11…23.19).</td>
</tr>
</tbody>
</table>
또한 페이지 566의 블록도를 참고하십시오.

조깅 기능은 2 ms 주기로 수행됩니다.

Notes:

- 로컬 제어 모드에서 조깅 기능은 허용되지 않습니다.
- 기본 시작 명령이 온되어 있거나 조깅이 허용되어 있을 때, 드라이브가 시작되면 조깅 기능은 허용되지 않습니다. 조그 허용 스위치가 오프된 후에 드라이브를 시작하려면 새로운 기본 시작 명령이 필요합니다.

WARNING! 기본 시작 명령이 온되어 있는 동안에 조깅 기능 허용되어 있을 때, 기본 시작 명령이 오프되면 즉시 조깅 기능이 수행됩니다.

- 2개의 조깅이 모두 허용된 경우에는 먼저 동작된 조깅 기능이 우선 순위를 갖습니다.
- 조깅 기능은 속도 제어 모드에서만 사용됩니다.
- S자 기준 속도 (파라미터 23.16…23.19)는 조깅 기능에 적용되지 않습니다.
- 인칭 기능 (Inching functions)은 조깅 기능에 정의된 기준 속도 및 램프 시간에 따라 필드버스 (06.01 Main control word, 비트 8…9)를 통해 수행됩니다. 단, 조그 허용 신호는 이 기능에서 필요하지 않습니다.
파라미터 설정

파라미터 20.25 Jogging enable (페이지 202), 20.26 Jogging 1 start source (페이지 202), 20.27 Jogging 2 start source (페이지 203), 22.42 Jogging 1 ref (페이지 214), 22.43 Jogging 2 ref (페이지 214), 23.20 Acc time jogging (페이지 221) 및 23.21 Dec time jogging (페이지 221).

스칼라 모터 제어 (Scalar motor control)

DTC를 대신하여 모터 제어 방법으로 스칼라 제어를 선택할 수 있습니다. 이 제어 모드에서 드라이브는 기준 속도 또는 주파수로 제어될 수 있습니다. 그러나 DTC와 같이 뛰어난 제어 성능은 스칼라 제어에서 달성되지 않습니다.

스칼라 모터 제어 모드는 다음과 같은 경우에 사용할 것을 권장합니다.

- 드라이브의 정격 전류에 비해 모터의 정격 전류가 1/6만큼 작은 경우.
- 드라이브가 모터 없이 사용되는 경우 (예를 들어, 시험용 전원 장치로 사용).
- 드라이브가 승압형 변압기 (Step-up transformer)로 고압 모터를 운전하는 경우.
- 드라이브가 모터를 여러 대 병렬로 운전하는 경우.
 - 모터들 간에 부하는 정확하게 분담되지 않는 경우.
 - 모터 사이즈가 서로 다른 경우.
 - 모터가 ID run 후에 변경되어야 하는 경우.

단, 스칼라 제어 모드에서 일부 기본 기능들은 사용될 수 없습니다.

자세한 사항은 드라이브의 운전 모드 (페이지 22) 장을 참고하십시오.

스칼라 제어 모드에서의 전압 보상

IR 보상 (또는 전압 강화 보상)은 스칼라 제어 모드에서만 적용되며, 저속 영역에서 모터에 추가적인 전압을 공급합니다. 무엇 보다 이 기능은 높은 기동 토크 (Starting torque)를 요구하는 부하에서 사용할 수 있으며, 특히 승압형 변압기로 고압 모터를 구동하는 경우에 영주파수 근처에서 전압 보상을 위해 사용됩니다.
파라미터 설정

- 파라미터 19.20 Scalar control reference unit (페이지 194), 97.12 IR comp step-up frequency (페이지 419), 97.13 IR compensation (페이지 420), 99.04 Motor control mode (페이지 423)
- 파라미터 그룹 28 Frequency reference chain (페이지 246).

오토 페이지링(Autophasing)

오토 페이지링은 영구자석 동기 모터 (PMSM; Permanent Magnet Synchronous Motor) 또는 동기 릴럭턴스 모터 (SynRM; Synchronous Reluctance Motor)에서 자속의 위치를 결정하기 위해 이를 자동으로 측정하는 과정입니다. 이러한 모터들은 토크를 정밀하게 제어하기 위해 회전자 자속의 절대 위치를 정확하게 알아내는 것이 매우 중요합니다.

절대치형 엔코더 또는 레apollo와 같은 센서들은 회전자의 0°와 센서가 설치된 위치 사이에 오프셋(Offset)이 설정된 후에 정확한 회전자의 위치 정보를 제공합니다. 반면에 증분형 엔코더는 모터가 회전하는 동안에 회전자의 위치 정보를 얻을 수 있지만, 정지 상태에서 초기 위치를 알 수 없습니다. 그러나 자극 검출용 홀센서(Hall sensor)가 설치된 경우에 정밀한 초기 위치는 아니지만, 절대치형 엔코더처럼 사용될 수 있습니다. 하지만, 이 홀센서 신호는 1회전당 6번 상태가 변하는 정류 필스(Commutation pulses) 신호를 발생시키므로 회전자의 초기 위치는 오직 60° 간격으로만 얻어집니다.

대부분의 증분형 엔코더들은 1회전당 한 번의 영점 필스(Zero pulse)를 발생시키는 데 이는 Z-필스(Z-pulse)라고도 부르며, 영점 필스의 위치는 고정되어 있습니다. 결국 이 위치가 모터 제어에 사용되는 0° 위치와 관련이 있다는 것을 알고 있다면, 영점 필스가 발생하는 순간에 회전자 위치는 0°가 됩니다.

영점 필스의 사용은 회전자 위치 측정의 정확성을 향상시킵니다. 회전자 위치 정보는 엔코더가 영점인 경우에 얻어진 초기값이므로 반드시 기동 시점에 결정되어야 합니다. 오토 페이지링 과정은 회전자 위치 정보를 결정할 수 있지만, 여기에는 위치 오류가 포함될 수 있습니다. 그러므로 영점 필스를 이용하면 오토 페이지링 과정에서 검출된 회전자의 위치 정보를 기동 시점에서 첫번째 영점 필스가 검출되는 즉시 보정할 수 있습니다.
오토페이징 과정은 다음과 같은 경우에 PMSM 및 SynRM에서 수행됩니다.

1. 절대치형 엔코더, 레졸버, 또는 정류 신호를 갖는 엔코더를 사용하는 경우에 회전자와 엔코더 위치와의 차이를 측정하기 위해 수행합니다.

2. 증분형 엔코더를 사용하는 경우에 전원을 켠 때마다 수행합니다.

3. 개루프 제어 (Open loop control)에서 기동할 때마다 회전자 위치를 알아내기 위해 반복적으로 수행합니다.

4. 전원이 켜지고 첫 번째 기동하기 전에 영점 펄스의 위치가 측정되어야 할 때 수행합니다.

Note: 폐루프 제어 (Close loop control)에서 오토페이징은 ID run 후 또는 필요에 따라 기동하기 전에 자동으로 수행됩니다.

개루프 제어에서 회전자 영점 위치는 기동 전에 결정되며, 폐루프 제어에서는 센서가 영점을 지시하고 있을 때 오토페이징 기능에 의해 회전자의 실제 위치를 결정합니다. 이 위치값은 실제로 센서의 영점과 회전자의 위치가 정확히 일치하지 않기 때문에 여기에 오프셋이 반영되어야 합니다. 오토페이징 모드에서는 개루프 제어 및 폐루프 제어에서 이것이 어떻게 수행되는데지를 결정합니다.

회전자의 위치 오프셋은 사용자가 직접 지정할 수도 있습니다. 이것은 파라미터 98.15 Position offset user를 확인하십시오. 또한 이 파라미터에서 오토페이징 결과가 자동으로 입력되며, 98.01 User motor model mode에서 사용자 설정을 사용하지 않는 경우에도 항상 업데이트됩니다.

Note: 개루프 제어에서는 모터를 기동할 때마다 잔류 자속 (Remanence flux)의 방향으로 회전축이 항상 움직일 것입니다.
여기서 만약 회전자 위치가 결정되었다면 06.21 Drive status word 3의 비트 4가 1로 세트될 것입니다.

오토 페이지 모드

ACS880은 사용자가 몇가지 오토 페이지 모드 (파라미터 21.13 Autophasing mode)를 선택할 수 있습니다.

회전형 모드 (Turning)는 가장 강인하고 정확한 방법으로 움직이기 위한 1번의 경우에 해당합니다. 이 모드에서는 모터와 회전축은 회전자가 유효한 영역 안에 정확히 정부정도를 지원하기 위해 정방향 또는 역방향으로 (±360/polepairs)° 정복 확인합니다. 또한 개루프 제어를 수행하는 3번의 경우에는 회전축이 단방향으로 작용 각도로 얽힌 회전할 것입니다.

이와 다른 회전형 모드 (Turning with Z-pulse)는 큰 마찰 (Friction) 때문에 위직의 회전형 모드 사용이 어려운 경우에 선택할 수 있습니다. 이 모드에서는 엔코더로부터 영점 필스가 검출될 때까지 천천히 회전하여, 첫번째 영점 필스 신호가 검출될 때 위치 정보를 파라미터 98.15 Position offset user에 저장합니다. 또한 미세 조정으로 자체 튜닝할 수도 있습니다. 이 모드는 영점 필스 신호가 갖는 엔코더를 피드백으로 사용할 때, 필수 사항은 아니며 개루프 제어에서 2가지 회전 모드는 모두 동일한 결과를 얻습니다.

정지형 모드 (Standstill 1, Standstill 2)는 부하가 연결되어 모터를 회전시킬 수 없는 경우에 사용됩니다. 모터와 부하의 특성이 다르므로 가장 적합한 정지형 모드를 찾기 위해 시험해야 합니다.

개루프 또는 폐루프 제어에서 모터가 회전 중에 드라이브를 시작한 경우에도 회전자 위치를 결정할 수 있습니다. 이때에는 21.13 Autophasing mode가 적용되지 않습니다.

오토 페이지 과정은 실패할 수 있으므로 여러 번 이 과정을 반복하고, 파라미터 98.15 Position offset user의 값을 확인하는 것이 좋습니다.

모터의 추정 각도와 측정 각도 사이에 큰 오차가 발생하였다면 드라이브는 운전 중에 오토 페이지 폴트 (3385 Autophasing)를 발생할 수 있습니다. 이것은 주로 다음과 같은 경우에 발생합니다.

• 엔코더가 모터 회전축에 정확히 고정되지 않았습니다.
• 부정확한 값이 파라미터 98.15 Position offset user에 입력되었습니다.
• 모터가 오토 페이지 과정을 수행하기 전에 이미 회전하고 있습니다.
• 21.13 Autophasing mode가 Turning으로 선택되었는데, 회전축이 구속이 되어 있습니다.
• 21.13 Autophasing mode가 Turning with Z-pulse로 선택되었는데, 1회전 내에 영점 필스가 검출되지 않았습니다.
• 99.03 Motor type에서 모터 타입이 잘못 선택되었습니다.
• 모터 ID run을 실패하였습니다.

파라미터 설정 및 진단

파라미터 06.21 Drive status word 3 (페이지 134), 21.13 Autophasing mode (페이지 208), 98.15 Position offset user (페이지 423), 99.13 ID run requested (페이지 426)
자속 제동 (Flux braking)

드라이브는 모터의 자속 레벨을 증가시켜 큰 감속 능력을 제공할 수 있습니다. 모터 자속을 증가시키는 것으로 제동하는 동안에 모터에서 발생된 전기 에너지는 대부분 열 에너지 (Thermal energy)로 변화될 것입니다.

드라이브는 자속 제동하는 동안에도 모터의 운전 상태를 확인합니다. 그러므로 자속 제동은 모터를 정지하거나 속도를 변경시키는 경우에도 유용하게 사용될 수 있습니다.

자속 제동 기능은 다음과 같이 몇가지 장점이 있습니다.
- 자속 제동 기능은 정지 명령 후에 즉시 동작합니다.
- 자속 제동하는 동안 모터의 회전자 전류 증가없이 고정자 전류를 증가시키므로 유도 모터 (IM; Induction Motor)의 효과적인 냉각이 가능합니다. 즉, 회전자를 냉각시키는 것보다 고정자를 냉각시키는 것이 더욱 유리합니다.
- 자속 제동은 유도 모터 및 영구자석 동기 모터에서 사용될 수 있습니다.

ACS880은 2가지 자속 제동 레벨을 사용할 수 있습니다.
- 보통 제동 (Moderate braking)은 자속 제동 기능을 사용하지 않는 경우에 비해 빠른 감속 능력을 제공합니다. 자속 레벨은 발열 증가를 방지하기 위해 적절히 제한됩니다.
- 완전 제동 (Full braking)은 가용할 수 있는 모든 전류를 이용하여 기계적인 제동 에너지를 열 에너지로 변환합니다. 보통 제동에 비해 제동 시간을 단축되지만, 이는 주 반복해서 사용하는 부하에서는 모터의 냉각 성능이 중요합니다.

⚠️ WARNING: 모터는 자속 제동에 의해 발생된 열 에너지를 감당할 수 있도록 절연 등급이 결정되어야 합니다.

파라미터 설정

파라미터 97.05 Flux braking (페이지 417).
DC 자화 (DC magnetization)

DC 자화는 다음과 같은 경우에 모터에 적용될 수 있습니다.
- 모터를 가열하여 결로 현상 (Condensation)을 제거하거나 방지합니다.
- 영속도 근처에서 회전자를 구속합니다.

예열 (Pre-heating)

모터 예열 기능은 정지 상태에서 결로를 방지하거나 기동 전에 결로를 제거하는데 이용할 수 있으며, DC 전류를 주입하여 모터 권선을 가열합니다.

예열 기능은 모터를 기동하거나 다른 자화 기능이 사용 중일 때에는 동작하지 않으며, 안전 토크 차단 (STO; Safe Torque Off), 프로세스 PID 슬립 기능 또는 드라이브 폴트로 정지된 경우에도 허용되지 않습니다. 이 기능은 드라이브가 정지되고 약 1분 후부터 동작을 시작합니다.

예열 기능을 동작시키기 위해서는 동작 신호를 21.14 Pre-heating input source에 선택하며, 가열 전류는 파라미터 21.16 Pre-heating current에 설정합니다.

사전 자화 (Pre-magnetization)

사전 자화 기능은 기동하기 전에 모터를 자화시킵니다. 선택된 시작 모드 (21.01 Start mode 또는 21.19 Scalar start mode)에 의존하여 200 %까지 높은 기동 토크를 만족하기 위해 적용할 수 있습니다. 그리고 자화 시간 (21.02 Magnetization time)을 조절함으로써, 기계 브레이크 (Mechanical brake)의 동작과 모터의 기동 시점을 동기화시킬 수 있습니다.

DC 홀드 (DC hold)

DC 홀드 기능은 정상 운전 중에 영속도 근처에서 회전자를 구속시킬 수 있습니다. 이 기능은 파라미터 21.08 DC current control에 의해 허용됩니다. 모터의 기준 속도와 실제 속도가 일정 레벨 (파라미터 21.09 DC hold speed) 아래로 떨어지면 드라이브는 정현파 전류를 발생하지 않고 모터에 DC 전류를 주입합니다. 이 전류는 파라미터 21.10 DC current reference에 설정되며, 기준 속도가 파라미터 21.09 DC hold speed를 초과하면 드라이브는 정상적으로 연속 운전될 것입니다.
Notes:

- DC 홀드 기능은 오직 DTC 모드에서 속도 제어하는 경우에만 사용할 수 있습니다.
- 이 기능은 회전자의 위치에 따라서 오직 한 상에만 DC 전류가 공급되며, 반환 전류 (Return current)는 다른 상이 분담할 것입니다.

사후 자화 (Post-magnetization)

이 기능은 드라이브가 정지한 후에 일정한 주기 (파라미터 21.11 Post magnetization time)동안 모터의 자화를 유지할 것입니다. 이것은 기계 브레이크가 동작하기 전에 기계 시스템이 부하를 받고 움직이는 것을 방지할 수 있습니다. 사후 자화는 파라미터 21.08 DC current control에서 허용시킬 수 있으며, 파라미터 21.10 DC current reference에 자화 전류를 설정합니다.

Note: 사후 자화는 DTC 모드에서 속도 제어하는 경우에만 사용될 수 있고, 파라미터 21.03 Stop mode가 램프 정지인 경우에만 동작합니다.

연속 자화 (Continuous magnetization)

필드버스 제어 워드에서 사용자 비트는 연속 자화 기능을 허용하기 위해 선택될 수 있습니다. 이것은 모터의 정지가 필요한 공정에서 자화 과정없이 빠르게 기동할 필요가 있는 경우에 유용하게 사용될 수 있습니다.

Note: 연속 자화는 DTC 모드에서 속도 제어하는 경우에만 사용될 수 있고, 파라미터 21.03 Stop mode가 램프 정지인 경우에만 동작합니다.
WARNING: 모터는 연속 자화에 의해 발생된 열 에너지를 흡수하거나 방출할 수 있도록 설계되어야 합니다. (예를 들어, 타닝식 강제 냉각 방식)

파라미터 설정

파라미터 06.21 Drive status word 3 (페이지 134), 21.01 Start mode, 21.02 Magnetization time, 21.08…21.12, 21.14 Pre-heating input source, 21.16 Pre-heating current (페이지 203).

■ 육각형 모터 자속 패턴 (Hexagonal motor flux pattern)

Note: 이 기능은 오직 스칼라 제어 모드에서만 사용할 수 있습니다.

드라이브는 모터 제어를 위해 통상적으로 원형 패턴으로 회전자계 (Rotating field)를 발생시킵니다. 이것은 대부분의 응용에서 이상적인 방법이지만, 모터를 약계자 운전점 (FWP; Field Weakening Point) 이상으로 운전해야 하는 경우에 출력 전압의 100 %까지도 달릴 수 없습니다.

이때 육각형 자속 패턴을 사용하면 약계자 운전점 이상에서 전압을 최대로 출력할 수 있습니다. 이것은 원형 패턴에 비해 최대 부하 용량을 증가시킬 수 있지만, 모터에서의 손실이 증가하여 FWP…1.6xFWP 범위에서 연속 부하 용량이 감소합니다. 육각형 자속 패턴을 동작시키면 주파수가 FWP의 100 %에서 120 %로 상승함에 따라 자속이 원형 패턴에서 육각형 패턴으로 점차 변형됩니다.

파라미터 설정

파라미터 97.18 Hexagonal field weakening 및 97.19 Hexagonal field weakening point (페이지 420).
응용 제어 (Application control)

응용 매크로 (Application macros)

응용 매크로는 미리 정의된 응용 파라미터 및 I/O 구성률 미리 정의하는 것입니다. 자세한 사항은 응용 매크로 (페이지 95) 장을 참고하십시오.

프로세스 PID 제어 (Process PID control)

ACS880은 프로세스 PID 제어기를 포함하고 있으며, 압력 (Pressure), 유량 (Flow) 또는 유체 레벨 (Fluid level)과 같은 프로세스 변수를 제어하는데 사용할 수 있습니다.

프로세스 PID 제어기의 프로세스 세트포인트 (Setpoint)는 기준 속도 대신에 드라이브에 연결되고 프로세스 실제값 (Actual value)은 페루프 제어를 위한 피드백으로 사용됩니다. 즉, 프로세스 PID 제어기는 사용자가 원하는 레벨로 측정된 프로세스 양이 유지되도록 드라이브의 속도를 제어하는 기능입니다.

프로세스 PID 제어기는 2 ms 주기로 수행됩니다.

아래 그림은 프로세스 PID 제어기의 간략한 블록도를 나타냅니다. 자세한 블록도는 페이지 578을 확인하십시오.

이 제어 프로그램은 필요에 따라 사용자가 선택적으로 사용할 수 있는 2개의 프로세스 PID 제어기를 포함합니다. 자세한 사항은 파라미터 40.57 PID set1/set2 selection을 확인하십시오.

Note: 프로세스 PID 제어기는 오직 외부 제어에서만 사용할 수 있습니다. 자세한 사항은 로컬 제어 vs. 외부 제어 (페이지 20) 장을 참고하십시오.
프로그램 기능

프로세스 PID 제어기의 빠른 구성

1. 프로세스 PID 제어기를 허용합니다. (파라미터 40.07 Set 1 PID operation mode).
2. 피드백 소스를 선택합니다. (파라미터 40.08…40.11).
3. 셋포인트 소스를 선택합니다. (파라미터 40.16…40.25).
4. 비례 이득, 적분 시간, 미분 시간, 그리고 PID 출력 레벨을 설정합니다. (40.32 Set 1 gain, 40.33 Set 1 integration time, 40.34 Set 1 derivation time, 40.36 Set 1 output min, 40.37 Set 1 output max).
5. PID 제어기의 출력은 파라미터 40.01 Process PID output actual에 표시됩니다. 이것을 실제 기준 소스 (예를 들어, 22.11 Speed ref1 source)로 선택하십시오.

프로세스 PID 제어기의 슬립 기능

슬립 기능 (Sleep function)은 상대적으로 장시간 동안 수요 (Demand)가 낮은 경우에 에너지 절약을 위해 사용할 수 있습니다. 이 시간 동안 모터를 효율적인 운전 범위 이하로 천천히 운전하는 대신에 모터를 완전히 정지시켜 전체 시스템의 에너지를 절약합니다. 그리고 피드백이 변경되면 슬립 기능은 자동으로 해제 (Wake-up)됩니다.

Note: 기계적인 브레이크 (페이지 70)를 사용하는 경우에는 슬립 기능이 금지됩니다.

사용 예: 드라이브는 압력 부스터 펌프 (Pressure booster pump)를 제어합니다. 밤에는 물의 소비량이 낮아지므로 프로세스 PID 제어기는 모터 속도를 감소시킵니다. 그러나 배관에서의 자연 손실 (Natural losses)과 저속에서 원심 펌프 (Centrifugal pump)의 낮은 효율 때문에 모터는 절대 정지 상태로 들어가지 못합니다. 이러한 경우에 슬립 기능을 이용하면 모터의 회전 속도를 감소시켜 저속에서 지연 시간 이후에 불필요한 펌핑을 중단시킬 수 있습니다. 드라이브는 압력을 감지하면서 슬립 모드로 진입하며, 압력이 해제 레벨 (셋포인트 - 해제 레벨) 이하로 감소하면 지연 시간 이후에 펌핑을 재개합니다.
트래킹 (Tracking)

트래킹 모드에서 PID 출력은 직접 파라미터 40.50 (또는 41.50) Set 1 tracking ref selection에 설정합니다. PID 제어기의 적분항은 출력이 과도하게 발생하지 않도록 설정되어 있으므로 이 모드에 있을 때, 정상적으로 프로세스 제어가 재개될 것입니다.

Settings

- 파라미터 96.04 Macro select (메크로 선택)
- 파라미터 그룹 40 Process PID set 1 (페이지 301), 41 Process PID set 2 (페이지 313).
모터 포텐시미터 (Motor potentiometer)

모터 포텐시미터는 실체적으로 파라미터 22.73 Motor potentiometer up source와 22.74 Motor potentiometer down source에 의해 선택된 2개의 디지털 신호를 사용하여 기준값을 증가 또는 감소시키는 카운터 기능입니다. 드라이브가 정지된 경우에는 아무런 효과가 없습니다.

파라미터 22.71 Motor potentiometer function에서 모터 포텐시미터 기능이 허용되면 22.72 Motor potentiometer initial value에 설정한 초기값으로 운전됩니다. 22.71에 선택된 모드에 따라서 모터 포텐시미터의 값은 정지 또는 재부팅한 경우에 유지되거나 리셋시킬 수 있습니다.

이것의 변화율 (Change rate)은 최솟값 (22.76 Motor potentiometer min value)에서 최댓값 (22.77 Motor potentiometer max value)으로 변경하거나 그 반대인 경우에 값이 변하는 데 걸리는 시간을 22.75 Motor potentiometer ramp time에 정의합니다. 만약 증가 및 감소 신호가 동시에 입력되면 모터 포텐시미터의 값은 변하지 않습니다.

이 기능의 출력값은 파라미터 22.80 Motor potentiometer ref act에 표시되며, 22.11 Speed ref1 source와 같은 기준 소스로 직접 선택될 수 있습니다.

아래 예는 모터 포텐시미터 값의 변화를 나타냅니다.

![모터 포텐시미터 변화 그래프]

파라미터 설정

파라미터 22.71…22.80 (페이지 215).
기계 브레이크 제어 (Mechanical brake control)

기계 브레이크는 드라이브가 정지해 있거나 전원이 차단된 경우에 영속도에서 모터와 운전 기기를 고정시키기 위해 사용됩니다. 이것은 제어 로직은 몇몇 외부 신호뿐만 아니라, 파라미터 그룹 44 Mechanical brake control의 설정을 관측하며, 페이지 71의 브레이크 상태 블록도에 따라 동작합니다. 그리고 아래 표에는 브레이크의 상태 및 동작 과정을 자세히 설명하며, 페이지 73의 타이밍도 (Timing diagram)는 브레이크의 닫힘-열림-닫힘 순서를 나타냅니다.

기계 브레이크의 제어 로직은 10 ms 주기로 수행됩니다.

브레이크 제어 로직의 입력

브레이크 제어 로직의 입력

드라이브의 시작 명령 (06.16 Drive status word 1의 비트 5)은 브레이크 로직의 메인 제어 소스이며, 외부에서의 닫힘/열림 신호는 파라미터 44.12 Brake close request에 의해 선택됩니다. 이 2개의 신호는 다음과 같이 상호적인 관계를 갖습니다.

- 시작 명령 = 1 AND 44.12 Brake close request = 0인 경우
 → 브레이크 열림 요청.
- 시작 명령 = 0 OR 44.12 Brake close request = 1인 경우
 → 브레이크 닫힘 요청.

그리고 상위 제어 시스템에서는 파라미터 44.11 Keep brake closed를 통해 브레이크가 열리지 않도록 제어할 수 있습니다.

또한 다음과 같은 신호들이 제어 로직의 상태에 영향을 미치게 됩니다.
- 브레이크 상태 확인 신호 (파라미터 44.07 Brake acknowledge selection).
- 06.11 Main status word의 비트 2 (드라이브가 준비 상태인지 확인).
- 06.16 Drive status word 1의 비트 6 (드라이브가 모듈레이션 중인지 확인).
- FSO-xx 안전 기능 옵션 모듈.

브레이크 제어 로직의 출력

브레이크 제어 로직의 출력

기계 브레이크는 파라미터 44.01 Brake control status의 비트 0에 의해 제어됩니다. 이 비트는 브레이크 코일에 연결된 릴레이 출력 (또는 디지털 입/출력 신호의 출력 설정)의 소스로 선택되어야 합니다. 이것은 결선 방법은 페이지 74에서 확인하십시오.

브레이크 제어 로직은 다양한 상황에서 모터 홀드, 토큰 증가, 또는 속도 감속 등을 드라이브 제어 로직에 요청할 것이며, 이러한 요청들은 파라미터 44.01 Brake control status에서 확인할 수 있습니다.

파라미터 설정

파라미터 그룹 44 Mechanical brake control (페이지 317).
브레이크 상태 블록도

상태 설명

<table>
<thead>
<tr>
<th>상태 이름</th>
<th>상태 설명</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>브레이크 금지</td>
<td>브레이크 제어가 금지됨 (파라미터 44.06 Brake control enable = 0과 44.01 Brake control status b4 = 0). 브레이크가 닫힘 (44.01 Brake control status b0=0).</td>
<td></td>
</tr>
<tr>
<td>브레이크 열림 동작:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>브레이크 열림 대기</td>
<td>브레이크 열림 요청, 부하를 제자리에 유지하기 위해 오프닝 토큰까지 토큰을 증가시킬 것을 드라이브 로직에 요청 (44.01 Brake control status b1=1, b2=1). 44.11 Keep brake closed의 상태 확인, 만약 적당한 시간 안에 0이 아니면 71A5 Mechanical brake opening not allowed 트립이 발생함*.</td>
<td></td>
</tr>
<tr>
<td>브레이크 열림 시간 지연</td>
<td>오프닝 상태를 만족하였고 열림 신호가 허용됨 (44.01 Brake control status b0=1). 오프닝 토큰의 요청이 해제됨 (44.01 Brake control status b1=0). 부하는 44.08 Brake open delay 경과할 때까지 드라이브의 속도 제어에 의해 제자리로 유지함. 이때 44.07 Brake acknowledge selection가 No acknowledge로 설정되었다면, 브레이크 로직은 열림 상태가 되고 acknowledge로 설정되었다면 이전의 상태를 확인함. 만약 상태가 "브레이크 열림"이 아니면 71A3 Mechanical brake opening failed 트립이 발생함*.</td>
<td></td>
</tr>
<tr>
<td>브레이크 열림</td>
<td>브레이크가 열림 (44.01 Brake control status b0=1). 홀드 요청이 해제됨 (44.01 Brake control status b2=0), 그리고 드라이브는 기준 소스에 따라 운전함.</td>
<td></td>
</tr>
</tbody>
</table>
상태 이름 | 상태 설명
--- | ---
브레이크 닫힘 대기 | 브레이크 닫힘 요청, 감속 정지할 것을 드라이브에 요청 (44.01 Brake control status b3=1). 열림 신호를 허용을 유지함 (44.01 Brake control status b0=1). 브레이크 로직은 44.15 Brake close level delay에 정의된 시간에 모터 속도가 44.14 Brake close level 아래로 유지될 때까지 이 상태를 유지함.

브레이크 닫힘 시간 지연 | 닫힘 상태를 만족하면 열림 신호는 금지됨 (44.01 Brake control status b0=0) 그리고 클로징 토크가 44.02 Brake torque memory에 쓰여짐. 감속 요청이 유지됨 (44.01 Brake control status b3=1). 브레이크 로직은 44.13 Brake close delay 경과할 때까지 이 상태를 유지함. 이때 44.07 Brake acknowledge selection가 No acknowledge로 설정되었으면, 브레이크 로직은 닫힘 상태가 되고 acknowledge로 설정되었다면 이전의 상태를 확인함. 만약 상태가 “브레이크 닫힘”이 아니면 A7A1 Mechanical brake closing failed 경고를 발생함. 만약 44.17 Brake fault function = Fault라면, 드라이브 로직은 44.18 Brake fault delay 후에 71A2 Mechanical brake closing failed 트립이 발생함.

브레이크 닫힘 | 브레이크가 닫힘 (44.01 Brake control status b0=0). 모듈레이션을 중단함. 개루프 제어 (엔코더리스) 용용에 대한 참고 사항: 브레이크가 5초 이상 드라이브 모듈레이션 유무에 관여없이 브레이크의 닫힘 요청 (파라미터 44.12 또는 FSO-xx 안전 기능 옵션 모듈)에 의해 닫혀 있다면, 브레이크는 강제로 닫힘 상태가 되고 드라이브는 71A5 Mechanical brake opening not allowed 트립이 발생함.

*경고는 44.17 Brake fault function에서 선택할 수 있습니다. 이때 드라이브는 동작을 계속하고 경고 상태를 유지합니다.

상태 변경 (n)

1. 브레이크 제어가 금지되었습니다 (파라미터 44.06 Brake control enable → 0).
2. 06.11 Main status word의 bit 2=0 이거나 브레이크가 FSO-xx 모듈에 의해 강제로 닫혀있습니다.
3. 브레이크 열림 요청을 받았고, 44.16 Brake reopen delay 시간을 경과했습니다.
4. 브레이크가 열림 상태 (44.10 Brake open torque처럼)가 촉촉되었고, 44.11 Keep brake closed = 0 입니다.
5. 44.08 Brake open delay 시간이 경과하고 열림 신호 (44.07 Brake acknowledge selection)를 수신하였습니다.
6. 브레이크 닫힘 요청을 받았습니다.
7. 모터 속도가 44.15 Brake close level delay 시간 동안 44.14 Brake close level속도 이하로 유지되었습니다.
8. 44.13 Brake close delay 시간이 경과하고 닫힘 신호 (44.07 Brake acknowledge selection)를 수신하였습니다.
9. 브레이크 열림 요청을 받았습니다.
10. 브레이크 제어가 허용되었습니다 (파라미터 44.06 Brake control enable → 1).
타이밍도

아래 그림은 브레이크 제어 기능의 간략한 타이밍도를 나타냅니다. 자세한 사항은 위의 상태 블록도를 참고하십시오.
결선 예

아래 그림은 브레이크 제어 결선의 한가지 예를 보여줍니다. 여기서 브레이크 제어 하드웨어 및 결선은 사용자가 공급하고 작업해야 합니다.

WARNING! 드라이브와 결합된 기계 시스템이 안전 규정을 만족하는지 확인 하십시오. 유럽 기계 지침과 관련된 표준에서는 주파수 변환기를 안전 장치로 규정하지 않습니다. 기계 장치에 대한 개인의 안전은 주파수 변환기의 특정 기능이 아닌 정의된 규정을 준수해야 합니다.

브레이크는 파라미터 44.01 Brake control status의 비트 0에 의해 제어되며, 상태 확인 신호는 파라미터 44.07 Brake acknowledge selection에서 선택합니다. 이 예에서 파라미터는 다음과 같이 구성하십시오.

- 파라미터 10.24 RO1 source는 Open brake command (예: 44.01 Brake control status의 비트 0)로 설정합니다.
- 파라미터 44.07 Brake acknowledge selection은 DI5로 설정합니다.

![브레이크 제어 유닛 다이어그램](attachment:brake_diagram.png)
DC 전압 제어 (DC voltage control)

■ 과전압 제어 (Overvoltage control)

일반적으로 모터가 발전기 모드 (Generating mode)로 동작하는 경우에 직류 링크 (DC-link)의 과전압 제어가 필요합니다. 모터는 감속 동작을 하거나 회전축이 부하에 이끌려 회전하는 경우에 적용된 속도 또는 주파수보다 모터 회전축이 빠르게 회전합니다. 이때 모터는 발전기 모드로 동작하게 되는데, 과전압 제어기는 DC 전압이 과전압 한계를 초과하지 않도록 제한값에 도달할 때 발전 토크를 억제함으로써 모터를 설정된 램프 시간보다 느리게 감속합니다. 이러한 경우에 모터를 빠르게 감속시키기 위해서는 제동초퍼 (Brake chopper) 및 제동저항 (Brake resistor)을 설치해야 합니다.

■ 부족전압 제어 (Undervoltage control)

갑자기 메인 전원이 차단되거나 순간 정전 (Momentary power failure)이 발생한 경우에 드라이브는 모터의 운동 에너지 (Kinetic energy)를 이용하여 연속 운전할 것입니다. 이때 드라이브는 모터가 회전하고 모터에서의 발전 에너지가 공급되는 한 계속해서 운전하게 됩니다. 만약 메인 접촉기 (Main contactor)가 설치된 경우라면, 전원이 차단된 이후에도 이 접촉기가 닫힘 상태를 유지하고 있다면 계속해서 운전할 것입니다.

Note: 메인 접촉기가 설치된 드라이브 유닛은 짧은 시간 동안 전원이 차단된 경우에 이 접촉기를 닫힘 상태로 유지하기 위한 홀드 회로 (예: UPS)가 반드시 필요합니다.
자동차 재시동 (Automatic restart)

메인 전원에서 순간 정전 (최대 5초)이 발생한 경우에 이 기능을 이용하면 부전된 후에 드라이브를 자동으로 다시 가동시킬 수 있습니다. 단, 드라이브는 냉각팬이 동작하지 않는 상태에서 5초 동안 운전 상태를 유지할 수 있어야 합니다.

이 기능을 사용하면 전원이 차단된 경우에 성공적으로 재시동할 수 있도록 다음과 같은 동작을 수행합니다.

- 부족전압 폴트를 발생하지 않습니다. (단, 경고 발생)
- 전류 에너지를 절약하기 위해 모듈레이션 및 냉각을 중지합니다.
- DC 링크 전압을 사전에 충전합니다.

만약 파라미터 21.18 Auto restart time에 정의된 시간 전에 DC 전압이 복전되고 시작 명령이 온되어 있으면 드라이브는 정상적으로 운전될 것입니다. 그러나 DC 전압이 이 시점에서 너무 낮으면 드라이브는 3280 Standby timeout 폴트를 발생시킬 것입니다.

⚠️ WARNING! 기능이 동작할 때 위험 상황이 발생하지 않도록 주의 하십시오. 이 기능은 드라이브를 자동으로 재시작하고 전원 차단 후에도 계속 동작합니다.

전압 제어 및 트립 한계 (Voltage control and trip limits)

DC 링크 전압의 제어 및 트립 한계는 드라이브/인버터 타입뿐만 아니라, 메인 전압의 크기에도 비례합니다. DC 전압은 통상 선간 전압의 약 1.35배의 크기를 갖으며, 이 값은 파라미터 01.11 DC voltage에 표시됩니다.

이것은 파라미터 95.01 Supply voltage에 선택된 공급 전압 범위와 관련이 있으며, 공급 전압 범위의 상한치에 대한 100 % 값 (Udcmax)을 기준으로 선택된 전압 레벨에 따른 DC 전압의 크기를 아래 표에 나타내었습니다.
파라미터 설정

파라미터 01.11 DC voltage (페이지 115), 30.30 Overvoltage control (페이지 261), 30.31 Undervoltage control (페이지 261), 95.01 Supply voltage (페이지 400), 95.02 Adaptive voltage limits (페이지 401).

제동초퍼 (Brake chopper)

제동초퍼는 감속하는 모터에서 발전된 전기 에너지를 처리하는데 사용됩니다. 즉, DC 전압이 충분히 높아지면 제동초퍼는 제동저항을 DC 회로에 연결시키며, PWM 제어 원리에 따라 초징 동작을 수행합니다.

ACS880 드라이브는 기본적으로 내부 제동초퍼를 내장하고 있으며, 일부는 내부 또는 외부 옵션으로 제동초퍼를 설치할 수 있습니다. 이것은 해당 하드웨어 매뉴얼 및 제품 카탈로그를 확인하십시오.

ACS880의 내장형 제동초퍼는 DC 링크 전압이 \(1.156 \times U_{DC\text{max}}\)에 도달하는 경우에 초징 동작을 시작하며, 전압 범위 설정에 따라 약 \(1.2 \times U_{DC\text{max}}\)에 도달하는 경우에 100 % 펄스폭으로 동작합니다. 이것은 위에서의 전압 제어 및 트립 한계 표를 참고하십시오. 그리고 외부 제동초퍼에 대한 정보는 해당 문서를 확인하십시오.

Note: 제동초퍼를 사용하는 경우에는 과전압 제어 (파라미터 30.30 Overvoltage control) 기능은 반드시 사용을 금지해야 합니다.
파라미터 설정

파라미터 01.11 DC voltage (페이지 115), 30.30 Overvoltage control (페이지 261);
파라미터 그룹 43 Brake chopper (페이지 315).
안전 및 보호 기능 (Safety and protections)

■ 비상 정지 (Emergency stop)

비상 정지 신호는 파라미터 21.05 Emergency stop source에 선택된 입력에 연결하며, 필드 버스 통신 (06.01 Main control word, 비트 0…2)을 통해 동작시킬 수도 있습니다.

비상 정지 모드는 21.04 Emergency stop mode에서 다음과 같이 선택할 수 있습니다.
• Off1: 운전 모드에 따라 정의된 램프 시간으로 정지합니다.
• Off2: 관성으로 정지합니다.
• Off3: 파라미터 23.23 Emergency stop time에 설정된 램프 시간에 따라 정지합니다.

비상 정지 모드 (Off1 또는 Off3)에서 모터 감속은 31.32 Emergency ramp supervision 및 31.33 Emergency ramp supervision delay로 감시할 수 있습니다.

Notes:
• SIL 3 / PL e-레벨의 비상 정지 기능을 위해 TÜV 규격의 FSO-xx 안전 옵션 모듈을 드라이브에 장착할 수 있습니다. 이 모듈은 안전 시스템 인증 규격에 만족합니다.
• 해당 장비 설치자는 필수 비상 정지 카테고리를 만족하기 위해 비상 정지에 필요한 모든 추가적인 장치들을 설치할 의무가 있습니다.
• 비상 정지 신호가 검출된 후에 신호가 해제되더라도 이 기능은 취소할 수 없습니다.
• 만약 토크 상한값 및 하한값을 0 %로 설정하였다면 비상 정지 기능으로 드라이브를 정지시키지 못할 수도 있습니다.
• 램프 비상 정지의 경우, 기준 속도 및 토크의 추가적인 입력 (파라미터 22.15, 22.17, 26.16, 26.25, 26.41)과 S자 기준 속도 (파라미터 23.16…23.19)는 무시됩니다.

파라미터 설정

파라미터 06.17 Drive status word 2 (페이지 131), 06.18 Start inhibit status word (페이지 132), 21.04 Emergency stop mode (페이지 205), 21.05 Emergency stop source (페이지 205), 23.23 Emergency stop time (페이지 221), 25.13 Min torq sp ctrl em stop (페이지 235), 25.14 Max torq sp ctrl em stop (페이지 235), 25.15 Proportional gain em stop (페이지 235), 31.32 Emergency ramp supervision (페이지 270), 31.33 Emergency ramp supervision delay (페이지 271).
모터 열 보호 (Motor thermal protection)

제어 프로그램은 2개의 모터 온도 감시 기능을 가지고 있습니다. 이에 대한 온도 데이터 소스 및 경고/트립 제한값은 각각 독립적으로 설정할 수 있습니다.

모터 온도는 다음과 같은 방법으로 감시할 수 있습니다.
- 모터 열모델 (드라이브 내부에서 얻은 추정 온도)
- 모터 권선에 설치된 센서. 이것은 모터 모델로 얻은 값보다 정밀합니다.

추가적으로 이 기능은 방폭형 모터 ('Ex')에도 적용할 수 있습니다.

모터 열모델

드라이브는 아래 가정들을 바탕으로 모터의 온도를 계산합니다.

1. 드라이브에 전원이 입력되면 파라미터 35.50 Motor ambient temperature에 정의된 값을 주변 온도로 가정합니다.

2. 모터 온도는 사용자가 설정한 모터 열 시정수와 부하 곡선을 사용하여 계산됩니다.
 모터 부하 곡선은 주변 온도가 30 °C를 초과하는 경우에 조절되어야 합니다.

Note: 모터의 열모델은 인버터에 1개의 모터가 연결된 경우에만 사용될 수 있습니다.

PTC 센서를 사용한 온도 감소

1개의 PTC 센서는 디지털 입력 DI6에 접속될 수 있습니다.

PTC 센서는 온도가 상승할 때, 저항값이 증가합니다. 센서의 저항값이 증가하면 입력 전압이 감소하고 결과적으로 이것은 상태는 1에서 0으로 변하게 되므로 제어 유닛은 모터를 과열로 판단합니다.

또한 1...3개의 PTC 센서가 아날로그 입력과 출력 사이에 직렬로 접속될 수 있습니다. 아날로그 출력은 센서를 통해 1.6 mA의 정전류를 공급하고 센서의 저항은 모터 온도가 상승함에 따라 증가하므로 여기에 걸리는 전압이 높아질 것입니다.
이것의 온도 측정 기능은 센서의 저항값을 계산하고 만약 과열이 검출된 경우에 경고 또는 폴트를 발생시킵니다. 결선 방법은 드라이브의 하드웨어 매뉴얼을 참고하십시오.

아래 그림은 일반적인 PTC 센서의 저항값을 보여줍니다.

위에 설명한 것 외에도 FEN-xx 앱코더 옵션 인터페이스와 FPTC-xx 옵션 모듈은 PTC 센서를 접속하기 위한 별도의 단자를 가지고 있습니다. 이에 대한 자세한 정보는 해당 측정 모듈의 매뉴얼을 확인하십시오.

Pt100 또는 Pt1000 센서를 사용한 온도 감시

1...3개의 Pt100 또는 Pt1000은 아날로그 입력/출력 사이에 직접로 접속될 수 있습니다.

아날로그 출력으로 센서에 9.1 mA (Pt100) 또는 1 mA (Pt1000)의 정전류를 공급하고 센서의 저항은 모터 온도가 상승함에 따라 증가하므로 여기에 걸리는 전압이 높아질 것입니다. 이것의 온도 측정 기능은 아날로그 입력으로 전압을 읽어 들이고 이를 센서 온도로 환산합니다. 여기서 경고값 및 폴트값은 파라미터로 조절할 수 있습니다.

센서 접선 방법은 드라이브의 하드웨어 매뉴얼을 참고하십시오.

KTY84 센서를 사용한 온도 감시

1개의 KTY84 센서는 제어 유닛의 아날로그 입력과 출력 사이에 접속될 수 있습니다. 아날로그 출력은 센서를 통해 2 mA의 정전류를 공급하고 센서의 저항은 모터 온도가 상승함에 따라 증가하므로 여기에 걸리는 전압이 높아질 것입니다. 이것의 온도 측정 기능은 아날로그 입력으로 전압을 읽어 들이고 이를 센서 온도로 환산합니다.
또한 FEN-xx 엔코더 옵션 인터페이스는 1개의 KTY84 센서를 접속하기 위한 별도의 단자를 가지고 있습니다.

아래 그림과 표는 일반적인 KTY84 센서의 저항값을 보여줍니다.

<table>
<thead>
<tr>
<th>KTY84 scaling</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °C = 936 ohm</td>
</tr>
<tr>
<td>110 °C = 1063 ohm</td>
</tr>
<tr>
<td>130 °C = 1197 ohm</td>
</tr>
<tr>
<td>150 °C = 1340 ohm</td>
</tr>
</tbody>
</table>

여기서 경고값 및 풀트값은 파라미터에서 조절할 수 있습니다. 여기서 센서 결선 방법은 드라이브의 하드웨어 매뉴얼을 참고하십시오.

모터 팬 제어 로직 (파라미터 35.100...35.106)

만약 모터가 외부 냉각팬 (Cooling fan)을 가지고 있다면, 구동 신호 (예: 운전 및 정지 신호)를 사용하여 릴레이 또는 디지털 출력을 통해 팬을 제어 할 수 있습니다. 1개의 디지털 입력은 팬 피드백 신호를 위해 선택될 수 있으며, 이 신호가 정상이 아니면 드라이브는 경고 또는 폴트를 발생할 수 있습니다.

팬의 기동 및 정지를 위한 지연 시간을 정의할 수 있습니다. 또한 팬이 기동한 후에 피드백을 수신하는 피드백 지연 시간을 설정할 수 있습니다.

방폭(‘Ex’) 모터 지원(파라미터 95.15, 비트 0)

제어 프로그램은 폭발 위험이 있는 곳에 설치된 방폭 모터를 위한 온도 보호 기능을 포함합니다. 이 기능을 허용하기 위해서는 파라미터 95.15 Special HW settings의 비트 0을 1로 세트하십시오.

파라미터 설정

파라미터 그룹 35 Motor thermal protection (페이지 284), 91 Encoder module settings (page 387); 파라미터 95.15 Special HW settings (페이지 403).
모터 케이블 열보호 (Thermal protection of motor cable)

제어 프로그램은 모터 케이블을 위한 열보호 기능을 포함합니다. 이 보호 기능은 드라이브의 정격 전류가 모터 케이블의 허용 전류를 초과하는 경우에 사용해야 합니다.

제어 프로그램은 아래의 데이터를 바탕으로 케이블 온도를 계산합니다.
- 측정된 모터의 출력 전류 (파라미터 01.07 Motor current)
- 케이블의 연속 허용 전류 (파라미터 35.61 Cable nominal current)
- 케이블의 열 시정수 (파라미터 35.62 Cable thermal rise time)

여기서 계산된 케이블 온도가 정격 최대 전류의 102 %를 초과하는 경우에 경고 (A480 Motor cable overload)를 발생하고, 106 %에 도달한 경우에는 폴트 (4000 Motor cable overload)를 발생합니다.

파라미터 설정
파라미터 35.60…35.62 (페이지 292).

사용자 부하 곡선 (User load curve)

사용자 부하 곡선은 드라이브의 출력 속도 또는 주파수에 따라 입력 신호 (예: 모터 토크 또는 모터 전류)를 감시하는 기능이며, 과부하 (Overload) 및 부족부하 (Underload)에 대한 상태 감시 기능을 포함합니다. 예를 들면, 과부하 감시는 펌프가 막혀있거나 톱날이 걸려 있는 상태를 감지하는데 사용할 수 있으며, 부족부하 감시는 변속기 벨트의 파손 때문에 부하가 감소한 상태를 감지하는데 사용할 수 있습니다.

감시 기능은 모터의 속도 또는 주파수 범위 내에서 유효합니다. 여기서 주파수 범위는 스펙트로 제어에서 사용되며, 그렇지 않으면 속도 범위가 사용됩니다. 이것의 범위는 속도 (파라미터 37.11…37.15) 또는 주파수 (37.16…37.20) 값에 대해서 5구간으로 설정합니다. 이 값은 항상 양의 값이지만 역방향 운전에 대해서도 대칭으로 감지가 가능하며, 설정된 속도 및 주파수 범위를 벗어날 경우에는 감지가 해제됩니다.

부족부하 (37.21…37.25) 및 과부하 (37.31…37.35) 제한은 각각 속도 또는 주파수에 대해서 5구간으로 설정할 수 있으며, 이것은 선형적으로 연결되어 과부하 및 부족부하에 대한 제한 영역을 형성합니다.
신호가 허용된 영역을 벗어난 경우에 후속 동작 (동작 없음, 경고 또는 폴트)은 과부하 및 부족부하 상태에 대해 각각 선택할 수 있으며, 동작 시간을 지연시키기 위한 선택적 타이머 (37.41 및 37.42)를 가지고 있습니다.

파라미터 설정

파라미터 그룹 37 User load curve (페이지 298).

■ 자동 폴트 리셋 (Automatic fault resets)

드라이브는 과전류, 과전압, 부족전압, 외부 폴트 (External fault) 등이 발생한 경우에 자동으로 리셋을 시도하는 기능을 가지고 있습니다. 또한 사용자는 자동으로 리셋시킬 특정 폴트를 선택할 수 있습니다. 단, STO와 관련된 폴트는 제외됩니다.

자동 리셋 기능은 기본적으로 금지되어 있으며, 사용자가 특별히 이를 허용해야 합니다.

⚠️ WARNING! 이 기능을 허용하기 전에 위험 상황이 발생하지 않도록 주의하십시오. 드라이브는 폴트가 발생한 후에 자동으로 리셋되고 연속 운전할 것입니다.

파라미터 설정

파라미터 31.12...31.16 (페이지 265).
기타 프로그래밍 가능한 보호 기능

외부 이벤트 (External events, 파라미터 31.01...31.10)

5가지의 이벤트 신호를 선택 가능한 디지털 입력에 연결하여 구동 장치에 대한 트립 및 경고를 발생할 수 있습니다. 드라이브는 입력 신호가 손실된 경우에 외부 이벤트 (폴트, 경고, 또는 경고/폴트)를 발생시킵니다. 이것의 메시지는 제어 패널의 Menu - Settings - Edit texts에서 편집할 수 있습니다.

모터 결상 검출 (Motor phase loss detection, 파라미터 31.19)

모터가 결상한 경우에 드라이브가 어떻게 반응할지 선택합니다.

지락 검출 (Earth fault detection, 파라미터 31.20)

지락 검출 기능은 3상 전류의 합을 기반으로 합니다.
- 전원 케이블에서의 지락은 보호 기능이 동작하지 않습니다.
- 접지 계통 (Grounded supply)에서는 2 ms 안에 보호 기능이 동작합니다.
- 비접지 계통 (Ungrounded supply)에서는 배전 계통의 커패시턴스 (Capacitance)가 1 μF 이상인 경우에만 보호 기능이 동작합니다.
- 최대 300 m까지 차폐된 모터 케이블에 의해 응량성 전류 (Capacitive current)가 발생하면 보호 기능이 동작하지 않습니다.
- 드라이브가 정지된 상태에서는 보호 기능이 동작하지 않습니다.

입력 결상 검출 (Supply phase loss detection, 파라미터 31.21)

전원 입력이 결상한 경우에 드라이브가 어떻게 반응할지 선택합니다.

안전 토크 차단 기능 동작 (STO; Safe torque off detection, 파라미터 31.22)

드라이브는 STO 입력 상태를 항상 감시하며, 이 파라미터에서는 STO 신호가 오프된 경우에 드라이브가 어떻게 반응할지 선택합니다. (단, 이 파라미터는 STO 자체 동작에는 영향이 없음). STO 기능에 관한 자세한 정보는 하드웨어 매뉴얼을 확인하십시오.

전원 및 모터 케이블 스왑 (Swapped supply and motor cabling, 파라미터 31.23)

드라이브는 전원 케이블이 출력 단자에 연결되어 모터 케이블과 서로 뒤바뀐 경우에 이를 감지하는 기능을 가지고 있습니다. 이 파라미터에서는 풀트 또는 없음으로 설정할 수 있습니다. 커먼 DC 버스로 공급되는 드라이브의 경우에는 이 기능을 해제해야 합니다.

스톨 보호 (Stall protection, 파라미터 31.24...31.28)

드라이브는 스폴 상태에서 모터를 보호합니다. 이 파라미터에 전류, 주파수, 시간에 대한 제한값을 설정하고 모터 스폴 상태에서 드라이브가 어떻게 반응할지 선택합니다.
과속 보호 (Overspeed protection, 파라미터 31.30)

사용자는 현재 설정된 속도 상한값 및 하한값에 추가적인 속도 마진을 주어 과속 보호 기능을 허용할 수 있습니다.

램프 정지 감시 (Ramp stop supervision, 파라미터 31.32, 31.33, 31.37, 31.38)

제어 프로그램은 일반 또는 비상 정지에 대한 감시 기능을 포함합니다. 사용자는 최대 정지 시간 및 예상 감속률 (Deceleration rate)에서의 최대 편차를 정의할 수 있습니다. 만약 드라이브가 예상대로 정지하지 않으면 폴트가 발생되고 모터는 관성으로 정지합니다.

메인 냉각팬 감시 (Main cooling fan supervision , 파라미터 31.35)

메인 냉각팬에서 오류가 발생한 경우에 드라이브가 어떻게 반응할지 선택합니다.

R8i 프레임 인버터 모듈로 구성된 인버터 유닛의 경우에는 인버터 모듈의 냉각 팬이 정지해도 계속해서 동작할 수 있습니다. 자세한 사항은 해당 파라미터를 참고하십시오.

모터 고장 전류 제한 (Custom motor current fault limit, 파라미터 31.42)

제어 프로그램은 드라이브의 하드웨어를 기반으로 출력 전류의 상한값을 설정합니다. 이 값은 대부분의 경우에 적절하지만, 영구자석 모터의 경우 감자 현상 (Demagnetization)을 막기 위해 이 파라미터에 수동으로 제한값을 설정할 수 있습니다.

로컬 제어 상태 검출 (Local control loss detection, 파라미터 49.05)

로컬 제어 위치 (제어 패널 또는 PC 툴)에서 운전 중인 경우에 통신이 중단되면 이에 대해 드라이브가 어떻게 반응할지 선택합니다.
진단 기능 (Diagnostics)

■ 폴트 및 경고 메시지 (Fault and warning messages)

자세한 사항은 고장 추적(페이지 487) 장을 참고하십시오.

■ 신호 감시 (Signal supervision)

제어 프로그램은 3개의 신호를 선택하여 이 기능으로 감시할 수 있습니다. 감시 신호가 미리 정의된 제한값을 초과하거나 미만인 경우에 파라미터 32.01 Supervision status의 해당 상태 비트가 1로 세트되고 경고 또는 폴트를 발생시킵니다. 이것의 메시지는 제어 패널의 Menu - Settings - Edit texts에서 편집할 수 있습니다.

감시 신호는 저역 통과 필터로 필터링할 수 있으며, 이 기능은 2ms 주기로 수행됩니다. 그리고 10 ms 주기로 구성 파라미터의 변경 사항을 스캔합니다.

파라미터 설정

파라미터 그룹 32 Supervision (페이지 273).

■ 유지 보수 타이머 및 카운터 (Maintenance timers and counters)

제어 프로그램은 사전 정의된 제한값에 도달한 경우에 경고를 발생시킬 수 있는 6개의 유지 보수 타이머 및 카운터를 가지고 있습니다. 이것의 메시지는 제어 패널의 Menu - Settings - Edit texts에서 편집할 수 있습니다.

타이머/카운터는 대부분의 파라미터를 감시하도록 설정할 수 있습니다. 이 기능은 특히 “서비스 알리미”로 유용하게 사용될 수 있습니다.

카운터의 3가지 타입은 다음과 같습니다.

• 온 타이머 (On-time timers)는 사용자에 의해 지정된 2진수 소스 (예: 상태 워드의 비트) 가 1로 세트된 경우에 경고 시간을 측정합니다.
• 신호 에지 카운터 (Signal edge counters)는 사용자에 의해 지정된 2진수 소스의 상태가 변할 때마다 카운터를 증가시킵니다.
• 벨류 카운터 (Value counters)는 사용자에 의해 지정된 파라미터의 값을 누적하여 카운터를 증가시킵니다.

파라미터 설정

파라미터 그룹 33 Generic timer & counter (페이지 276).
■ 에너지 절약 계산기 (Energy saving calculators)

에너지 절약 계산기는 다음과 같이 구성되어 있습니다.

- 전체 시스템 효율이 최대가 되도록 모터 자속을 조절하여 에너지를 최적화합니다.
- 모터에 의해 사용되고 절약된 에너지를 감시하고 전력량 (kWh), 통화 (Currency), 또는 이산화탄소 (CO2)의 배출량을 표시합니다.
- 부하의 프로파일 (Profile)을 보여주는 부하 분석기 (Load analyzer)로 사용합니다.

Note: 에너지 절약 계산기의 정확도는 파라미터 45.19 Comparison power에 설정한 모터 기준 전력에 대해서 직접적인 영향을 받습니다.

파라미터 설정

파라미터 그룹 45 Energy efficiency (페이지 321).

■ 부하 분석기 (Load analyzer)

피크값 로거 (Peak value logger)

사용자는 피크값 로기를 사용하여 감시 신호를 선택할 수 있습니다. 로거는 피크값이 발생한 시간과 발생한 시점에서의 모터 전류, DC 전압, 그리고 모터 속도의 피크값을 기록합니다. 여기서 피크값은 2 ms 주기로 샘플링됩니다.

진폭 로거 (Amplitude loggers)

제어 프로그램은 2개의 진폭 로거를 가지고 있습니다.

진폭 로거 1은 모터 전류를 감시하기 위해 지정되어 있으며, 사용자에 의해 리셋될 수 없습니다. 이것의 100 %는 하드웨어 매뉴얼에 명시되어 있는 드라이브의 최대 출력 전류 Imax에 해당합니다. 여기서 측정 전류는 항상 기록되고 있으며, 수집된 샘플값의 분포는 파라미터 36.20…36.29에서 확인할 수 있습니다.

반면에 진폭 로거 2의 경우에 사용자는 200 ms 주기로 샘플링할 신호를 선택하고 100 %에 해당하는 값을 지정할 수 있으며, 수집된 샘플값은 그것의 진폭에 따라 10개의 읽기 전용 파라미터로 분류됩니다. 여기서 각각의 파라미터는 10 %의 진폭 범위를 나타내며, 해당 범위 안에서 수집된 샘пл값의 비율을 표시합니다. 가장 낮은 범위에는 음수 (있는 경우)가 포함되며, 최고 범위에는 100 % 이상의 값이 포함될 수도 있습니다.
수집된 샘플값의 비율

진폭 범위
(파라미터 36.40…36.49)

파라미터 설정

파라미터 그룹 36 Load analyzer (페이지 294).
그밖에 유용한 기능

■ 사용자 파라미터 세트 (User parameter sets)

드라이브는 파라미터 설정을 영구 메모리에 저장하고 필요에 따라 저장 파라미터를 다시 불러올 수 있는 4개의 사용자 파라미터 세트를 지원합니다. 이것은 디지털 입력을 사용하여 사용자 파라미터 세트 사이에서 전환하는 것이 가능합니다.

사용자 파라미터 세트에는 아래 파라미터를 제외하고 파라미터 그룹 10...99에서 편집 가능한 모든 값을 포함합니다.

• 파라미터 10.03 D1 force selection 및 10.04 D1 force data와 같은 강제 동작 I/O 값
• I/O 확장 옵션 모듈 설정(파라미터 그룹 14...16)
• 필드버스 통신 허용 파라미터 (50.01 FBA A enable 및 50.31 FBA B enable)
• 기타 필드버스 통신 설정 (파라미터 그룹 51...56, 58)
• 앤타커 구성 설정 (파라미터 그룹 92...93)
• 파라미터 95.01 Supply voltage

사용자 파라미터 세트에는 모터 설정이 포함되어 있으므로 사용자 설정을 불러 오기 전에 여기에 사용될 모터 데이터와 일치하는지 확인하십시오. 그리고 1대의 드라이브에 여러 대의 모터를 사용할 경우에는 먼저 각각의 모터에 대해서 ID run을 수행하고 그 결과를 사용자 파라미터 세트에 저장해야 합니다. 그러면 모터가 전환 될 때, 적절한 파라미터 세트가 호출될 것입니다.

파라미터 설정
파라미터 96.10...96.13 (페이지 409).

■ 파라미터 체크섬 계산 (Parameter checksum calculation)

설정 가능한 파라미터로부터 체크섬을 계산하여 드라이브의 구성 변경 사항을 감시할 수 있습니다. 여기서 계산된 체크섬은 1...4개의 기준 체크섬과 비교되어 만약 일치하지 않을 경우에 드라이브는 순수 이벤트, 경고, 또는 폴트를 발생시킵니다.

다음은 제외한 대부분의 파라미터가 체크섬 계산에 포함됩니다.

• 실제 신호
• 파라미터 그룹 47 Data storage
• 새로운 설정을 허용하기 위해 사용하는 파라미터 (51.27 및 96.07)
• 플래시 메모리에 저장되지 않는 파라미터 (96.24...96.26)
• 내부적으로 계산된 파라미터 (98.09...98.14).
• 동적 파라미터 (예: 하드웨어에 따라 달라지는 파라미터)
• 응용 프로그램 파라미터

기본 설정은 Drive customizer PC 툴을 사용하여 편집할 수 있습니다.
파라미터 설정

파라미터 96.53…96.59 (페이지 413).

■ 사용자 잠금 (User lock)

예를 들어, 파라미터 값을 변경하거나 펌웨어 및 기타 파일 로딩과 같은 사이버 보안을 강화하기 위해 사용자는 마스터 암호 (Master pass code)를 설정하는 것이 좋습니다.

⚠️ WARNING! ABB에서는 신규 암호를 설정하여 사용자 잠금 기능을 허용하지 않은 경우에 발생하는 어떠한 손해나 손실에 대해서 책임지지 않습니다. 자세한 사항은 페이지 15의 사이버 보안 경고를 확인하십시오.

처음으로 사용자 잠금 기능을 허용하는 경우에 다음과 같이 설정합니다.

• 96.02 Pass code에 기본 암호 10000000을 입력하십시오. 그러면 파라미터 96.100 …96.102가 표시될 것입니다.
• 96.100 Change user pass code에 신규 암호를 입력하십시오. 이때 사용자 암호는 반드시 8자리 숫자로 입력하십시오.
• 96.101 Confirm user pass code에 신규 암호를 한번 더 입력하십시오.

⚠️ WARNING! 사용자 암호는 반드시 안전한 장소에 저장하십시오. 사용자 암호를 분실한 경우에는 ABB에서도 사용자 잠금 기능을 해제할 수 없습니다.

• 96.102 User lock functionality에 사용자 잠금 기능을 허용할 모든 작업을 선택하십시오.
• 96.02 Pass code에 무작위로 유호하지 않은 암호를 입력하십시오.
• 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.
• 파라미터 96.100…96.102가 숨겨져 있는지 확인하십시오. 그렇지 않은 경우에는 다시 96.02에 무작위로 다른 암호를 입력하십시오.

사용자 잠금을 해제하려면 96.02에 설정한 사용자 암호를 입력하십시오. 이렇게 하면 파라미터 96.100…96.102가 다시 표시될 것입니다.

파라미터 설정

파라미터 96.02 (페이지 406) 및 96.100…96.102 (페이지 415).

■ 데이터 저장 파라미터 (Data storage parameters)

15개의 32비트 및 8개의 16비트 파라미터 (총 24개)는 데이터 저장 영역으로 예약되어 있습니다. 이 파라미터들은 기본적으로 제어 프로그램에 연결되어 있지 않으며, 시험 및 시운전을 목적으로 해당 파라미터에 읽고 쓰기를 원할 경우에 사용할 수 있습니다.
“Analog src” 타입 파라미터 (페이지 431 참고)는 32비트 실수형 소스이므로 파라미터 47.01…47.08에 사용할 수 있지만, 47.11…47.28에는 사용할 수 없습니다.

16비트 정수형 데이터 (예: DDCS 데이터 세트에서 수신된 데이터)를 32비트 실수형 파라미터의 소스로 사용하기 위해서는 먼저 실수형 데이터 저장 파라미터 (47.01…47.08)에 값을 써주십시오. 그리고 해당 파라미터를 소스로 선택하고 파라미터 47.31…47.38에 적절한 스케일링 방법을 설정하십시오.

파라미터 설정
파라미터 그룹 47 Data storage (페이지 328).

축소 운전 기능 (Reduced run function)

드라이브 축소 운전 기능은 인버터 모듈이 병렬 연결된 시스템에서 사용할 수 있으며, 하나 또는 그이상의 모듈을 유지 보수할 경우에 제한된 전류 내에서 연속으로 인버터를 운전할 수 있습니다. 인버터 축소 운전 기능은 원칙적으로 1개의 모듈만으로도 운전이 가능하지만, 이 모듈은 모터에 자화 전류를 충분히 공급할 수 있는 용량이어야 합니다.

드라이브 축소 운전 기능을 허용하기 전에

Note: 판넬로 제작된 드라이브를 공급받은 경우에는 여기에 필요한 결선 도구 (Wiring accessories) 및 에어 배플 (Air baffle)을 판넬과 함께 배송합니다.

⚠️ ⚠️ WARNING! 드라이브 또는 인버터 유닛과 함께 제공된 안전 지침에 따라 해당 작업을 진행하십시오.

1. 드라이브/인버터 유닛으로부터 공급 전원 및 모든 보조 전원을 분리하십시오.
2. 만약 결합이 있는 인버터로부터 인버터 유닛에 제어 전원을 공급하고 있다면 연장선을 설치하고 나머지 하나의 모듈에 연결하십시오.
3. 판넬 베이 (Pnael bay)에서 서비스할 인버터 모듈을 제거하십시오. 이에 대한 자세한 사항은 하드웨어 매뉴얼을 참고하십시오.
4. 만약 STO 기능을 사용하는 경우에는 STO 관련 배선을 점퍼하십시오.
5. 모듈이 비어있는 베이에는 공기 흐름을 차단할 수 있는 에어 배플을 설치하십시오.
6. 인버터에 충전 회로를 포함한 DC 스위치를 사용하는 경우에 충전 컨트롤러 (xSFC-xx)의 해당 채널 사용을 해제하십시오.
7. 드라이브/인버터 유닛에 전원을 투입하십시오.

8. 파라미터 95.13 Reduced run mode에 인버터 모듈의 수량을 입력하십시오.

9. 모든 폴트 상태를 리셋하고 드라이브를 시작하십시오. 최대 전류는 새로운 인버터 구성에 따라 자동으로 제한됩니다. 만약 파라미터 95.13에 설정한 값과 95.14에서 검출된 모듈의 수량이 다르면 드라이브는 폴트를 발생할 것입니다.

모든 모듈을 다시 설치한 후에는 파라미터 95.13 Reduced run mode에 0을 써서 축소 운전 기능을 해제하십시오. 또한 인버터 유닛에 초기 충전 회로가 설치되어 있는 경우라면 충전 상태 감시 기능을 다시 허용해야 합니다.

파라미터 설정

파라미터 06.17 (페이지 131), 95.13…95.14 (페이지 403).

- **du/dt 필터 지원 (du/dt filter support)**

 드라이브의 출력에 외부 du/dt 필터를 설치한 경우에는 95.20 HW options word 1의 비트 13을 1로 세트하십시오. 해당 설정은 인버터의 스위칭 주파수 (Switching frequency)를 제한하며, 인버터 내부의 방열을 위해 메인 냉각팬을 최고 속도로 운전합니다. 단, du/dt 필터가 내장된 인버터 모듈의 경우에는 해당 설정이 불필요합니다.

파라미터 설정

파라미터 95.20 HW options word 1 (페이지 404).

- **사인 필터 지원 (Sine filter support)**

 제어 프로그램은 외부 사인 필터의 사용을 허용하는 파라미터를 가지고 있습니다.

 드라이브의 출력에 ABB 전용 사인 필터를 설치한 경우에는 반드시 95.15 Special HW settings의 비트 1을 1로 세트하십시오. 해당 설정은 아래와 같은 상황을 방지하기 위해 스위칭 주파수 및 출력 주파수를 제한합니다.

 - 드라이브가 필터의 공진 주파수 영역에서 운전되지 않도록 합니다.
 - 과열로부터 필터를 보호합니다.

 사용자 사인 필터를 설치한 경우에는 반드시 95.15 Special HW settings의 비트 3을 1로 세트하십시오. 단, 이 설정은 출력 주파수를 제한하지 않습니다. 그리고 아래와 같이 필터의 L값 및 C값을 추가적인 파라미터에 입력해야 합니다.

파라미터 설정

ABB 필터 및 사용자 필터: 파라미터 95.15 Special HW settings (페이지 403).
Program features

사용자 필터: 파라미터 97.01 Switching frequency reference, 97.02 Minimum switching frequency (페이지 417), 99.18 Sine filter inductance, 99.19 Sine filter capacitance (페이지 429).
응용 매크로

이 장의 내용

이 장에서는 응용 매크로 사용, 운전 및 기본적인 제어 신호 연결을 방법을 설명합니다. 제어 유닛의 연결 방법에 대한 자세한 사항은 하드웨어 매뉴얼을 참고하십시오.

일반 사항

응용 매크로는 해당 응용에 적합한 기본 파라미터 값을 갖습니다. 사용자는 드라이브 운전에 가장 적합한 응용 매크로를 선택하고, 응용에 맞는 파라미터만을 설정하여 사용하는 것이 편리합니다. 이것은 일반적으로 드라이브의 파라미터를 설정하는 기존의 방식과 달리 사용자 편집 횟수가 적어집니다.

응용 매크로는 파라미터 96.04 Macro select에서 선택하며, 사용자 파라미터 세트는 파라미터 그룹 96 System에서 관리할 수 있습니다.
공장 매크로 (Factory macro)

공장 매크로는 컨베이어 (Conveyor), 펌프 및 팬 (Pump and fan), 테스트 벤치 (Test benche)와 같은 비교적 단순한 속도 제어 응용 분야에 적합합니다.

드라이브는 아날로그 입력 AI1에 접속된 기준 신호로 속도 제어를 수행합니다. 여기서 시작/정지 명령은 디지털 입력 DI1을 통해 주어지며, DI2에 의해 회전 방향이 결정됩니다. 이 매크로는 제어 위치가 외부 운전 1 (EXT1)입니다.

폴트는 디지털 입력 DI3에 의해 리셋됩니다.

DI4는 가감속 시간 설정 1과 2 사이의 전환 신호로 사용됩니다. 그리고 가감속 시간을 비롯한 S자 기준 속도의 파라미터 23.12…23.19에 의해 정의됩니다.

DI5는 일정 속도 1 (Constant speed 1)을 허용하는 신호로 사용됩니다.

■ 공장 매크로의 기본 파라미터 설정

공장 매크로를 위한 기본 파라미터 설정은 파라미터 (페이지 115) 장에서 제공하는 목록을 확인하십시오.
공장 매크로의 기본 제어 신호 결선

<table>
<thead>
<tr>
<th>XPOW</th>
<th>External power input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24VI 24 V DC, 2 A</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XAI</th>
<th>Reference voltage and analog inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+VREF 10 V DC, Rl 1…10 kohm</td>
</tr>
<tr>
<td>2</td>
<td>-VREF -10 V DC, Rl 1…10 kohm</td>
</tr>
<tr>
<td>3</td>
<td>AGND Ground</td>
</tr>
<tr>
<td>4</td>
<td>AI1+ Speed reference</td>
</tr>
<tr>
<td>5</td>
<td>AI1- 0(2)…10 V, Rl > 200 kohm</td>
</tr>
<tr>
<td>6</td>
<td>AI2+ By default not in use.</td>
</tr>
<tr>
<td>7</td>
<td>AI2- 0(4)…20 mA, Rl = 100 ohm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XAO</th>
<th>Analog outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AO1 Motor speed rpm</td>
</tr>
<tr>
<td>2</td>
<td>AGND 0…20 mA, Rl < 500 ohm</td>
</tr>
<tr>
<td>3</td>
<td>AO2 Motor current</td>
</tr>
<tr>
<td>4</td>
<td>AGND 0…20 mA, Rl < 500 ohm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XD2D</th>
<th>Drive-to-drive link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B Master/follower, drive-to-drive or embedded fieldbus interface connection</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>BGND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XRO1, XRO2, XRO3</th>
<th>Relay outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC Ready run</td>
</tr>
<tr>
<td>2</td>
<td>COM 250 V AC / 30 V DC 2 A</td>
</tr>
<tr>
<td>3</td>
<td>NO</td>
</tr>
<tr>
<td>1</td>
<td>NC Running</td>
</tr>
<tr>
<td>2</td>
<td>COM 250 V AC / 30 V DC 2 A</td>
</tr>
<tr>
<td>3</td>
<td>NO</td>
</tr>
<tr>
<td>1</td>
<td>NC Fault (-1)</td>
</tr>
<tr>
<td>2</td>
<td>COM 250 V AC / 30 V DC 2 A</td>
</tr>
<tr>
<td>3</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XD24</th>
<th>Digital interlock</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DILL Run enable</td>
</tr>
<tr>
<td>2</td>
<td>+24VD +24 V DC 200 mA</td>
</tr>
<tr>
<td>3</td>
<td>DICOM Digital input ground</td>
</tr>
<tr>
<td>4</td>
<td>+24VD +24 V DC 200 mA</td>
</tr>
<tr>
<td>5</td>
<td>DIOGND Digital input/output ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XDIO</th>
<th>Digital input/outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIO1 Output: Ready run</td>
</tr>
<tr>
<td>2</td>
<td>DIO2 Output: Running</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XDI</th>
<th>Digital inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D11 Stop (0) / Start (1)</td>
</tr>
<tr>
<td>2</td>
<td>D12 Forward (0) / Reverse (1)</td>
</tr>
<tr>
<td>3</td>
<td>D13 Reset</td>
</tr>
<tr>
<td>4</td>
<td>D14 Acc/Dec time set 1 (0) / set 2 (1)</td>
</tr>
<tr>
<td>5</td>
<td>D15 Constant speed 1 (1 = On)</td>
</tr>
<tr>
<td>6</td>
<td>D16 By default, not in use.</td>
</tr>
</tbody>
</table>

| XSTO | Safe torque off circuits must be closed for the drive to start. See Hardware manual of drive. |

<table>
<thead>
<tr>
<th>X12</th>
<th>Safety options connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>X13</td>
<td>Control panel connection</td>
</tr>
<tr>
<td>X205</td>
<td>Memory unit connection</td>
</tr>
</tbody>
</table>
수동/자동 매크로 (Hand/Auto macro)

수동/자동 매크로는 2개의 외부 제어 장치가 있는 속도 제어 응용 분야에 적합합니다.

드라이브는 외부 위치 EXT1 (수동)과 EXT2 (자동)에 의해 속도 제어를 수행합니다. 여기서 제어 위치의 선택은 디지털 입력 DI3에 의해 결정됩니다.

EXT1의 시작/정지 신호는 디지털 입력 DI1을 통해 주어지며, DI2에 의해 회전 방향이 결정됩니다. EXT2의 경우에는 시작/정지 명령은 디지털 입력 DI6을 통해 주어지며, DI5에 의해 회전 방향이 결정됩니다.

EXT1과 EXT2의 기준 신호는 각각 아날로그 입력 AI1과 A2에 접속됩니다.

일정 속도 기능 (기본값 300 rpm)은 DI4를 통해 허용됩니다.

- 수동/자동 매크로의 기본 파라미터 설정

아래 파라미터 목록은 공장 매크로와 다른 기본 파라미터 설정값을 나타냅니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>수동/자동 매크로 기본 설정</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.30</td>
<td>AI2 scaled at AI2 max</td>
<td>1500.000</td>
</tr>
<tr>
<td>19.11</td>
<td>Ext1/Ext2 selection</td>
<td>DI3</td>
</tr>
<tr>
<td>20.06</td>
<td>Ext2 commands</td>
<td>In1 Start; In2 Dir</td>
</tr>
<tr>
<td>20.08</td>
<td>Ext2 in1 source</td>
<td>DI6</td>
</tr>
<tr>
<td>20.09</td>
<td>Ext2 in2 source</td>
<td>DI5</td>
</tr>
<tr>
<td>20.12</td>
<td>Run enable 1 source</td>
<td>DI1L</td>
</tr>
<tr>
<td>22.12</td>
<td>Speed ref2 source</td>
<td>AI2 scaled</td>
</tr>
<tr>
<td>22.14</td>
<td>Speed ref1/2 selection</td>
<td>Follow Ext1/Ext2 selection</td>
</tr>
<tr>
<td>22.22</td>
<td>Constant speed sel1</td>
<td>DI4</td>
</tr>
<tr>
<td>23.11</td>
<td>Ramp set selection</td>
<td>Acc/Dec time 1</td>
</tr>
<tr>
<td>31.11</td>
<td>Fault reset selection</td>
<td>Not selected</td>
</tr>
</tbody>
</table>
수동/자동 매크로의 기본 제어 신호 결선

Application macros

XPOW
- External power input
- 1: +24V
- 2: GND

XAI
- Reference voltage and analog inputs
- 1: +VREF (10 V DC, R₁ 1...10 kohm)
- 2: -VREF (-10 V DC, R₁ 1...10 kohm)
- 3: AGND (Ground)
- 4: AI1+ (Speed reference (Hand))
- 5: AI1- (0(2)...10 V, R_{in} > 200 kohm)
- 6: AI2+ (Speed reference (Auto))
- 7: AI2- (0(4)...20 mA, R_{in} = 100 ohm)

XAO
- Analog outputs
- 1: AO1 (Motor speed rpm)
- 2: AGND (0...20 mA, R_i < 500 ohm)
- 3: AO2 (Motor current)
- 4: AGND (0...20 mA, R_i < 500 ohm)

XD2D
- Drive-to-drive link
- 1: B (Master/follower, drive-to-drive or embedded fieldbus interface connection)
- 2: A
- 3: BGND

XRO1, XRO2, XRO3
- Relay outputs
 - 1 NC (Ready run)
 - 2 COM: 250 V AC / 30 V DC
 - 3 NO: 2 A
 - 1 NC (Running)
 - 2 COM: 250 V AC / 30 V DC
 - 3 NO: 2 A
 - 1 NC (Fault (-1))
 - 2 COM: 250 V AC / 30 V DC
 - 3 NO: 2 A

XD24
- Digital interlock
- 1 DIL (Run enable)
- 2 +24VD (+24 V DC 200 mA)
- 3 DICOM (Digital input ground)
- 4 +24VD (+24 V DC 200 mA)
- 5 DIOGND (Digital input/output ground)

XDI
- Digital inputs
- 1 DI1 (Stop (0) / Start (1) – Hand)
- 2 DI2 (Forward (0) / Reverse (1) – Hand)
- 3 DI3 (Hand (0) / Auto (1))
- 4 DI4 (Constant speed 1 (1 = On))
- 5 DI5 (Forward (0) / Reverse (1) – Auto)
- 6 DI6 (Stop (0) / Start (1) – Auto)

XSTO
- Safe torque off circuits must be closed for the drive to start. See Hardware manual of drive.

X12
- Safety options connection

X13
- Control panel connection

X205
- Memory unit connection
PID 제어 매크로 (PID control macro)

PID 제어 매크로는 압력, 수위, 유량 제어와 같은 프로세스 제어 응용에 적합합니다.

- 도시 용수 공급 시스템 (Municipal water supply systems)의 압력 부스트 펌프
- 저수지 (Water reservoirs)의 수위 조절 펌프
- 지역 난방 시스템 (District heating systems)의 압력 부스트 펌프
- 컨베이어 라인 (Conveyor line)의 자재 이송 제어

프로세스 기준 신호는 통상 아날로그 입력 AI1에 접속되고, 프로세스 피드백 신호는 AI2에 접속됩니다. 또는 AI1을 통해 직접 기준 속도를 지정할 수 있습니다. 이때, PID 제어기는 바이패스되고 드라이브는 더 이상 프로세스 변수를 제어하지 않습니다.

직접 속도 제어하는 경우 (EXT1)와 프로세스 변수를 제어하는 경우 (EXT2)의 선택은 디지털 입력 DI3에 의해 결정됩니다.

EXT1과 EXT2의 시작/정지 신호는 각각 DI1과 DI6에 접속됩니다.

일정 속도 기능 (기본값 300 rpm)은 DI4를 통해 허용됩니다.

Note: PID 제어기를 시운전할 때, 먼저 EXT1을 사용하여 모터를 속도 제어하는 것이 좋습니다. 이를 통해 PID 제어기의 피드백과 스케일링 값을 확인할 수 있습니다. 이렇게 피드백이 확인되면 EXT2로 전환하여 폐루프 PID 제어를 수행할 수 있습니다.
PID 제어 매크로의 기본 파라미터 설정

아래 파라미터 목록은 공장 매크로와 다른 기본 파라미터 설정값을 나타냅니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>PID 제어 매크로 기본 설정</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.27</td>
<td>AI2 min</td>
<td>4.000</td>
</tr>
<tr>
<td>19.11</td>
<td>Ext1/Ext2 selection</td>
<td>DI3</td>
</tr>
<tr>
<td>20.01</td>
<td>Ext1 commands</td>
<td>ln1 Start</td>
</tr>
<tr>
<td>20.04</td>
<td>Ext1 in2 source</td>
<td>Not selected</td>
</tr>
<tr>
<td>20.06</td>
<td>Ext2 commands</td>
<td>ln1 Start</td>
</tr>
<tr>
<td>20.08</td>
<td>Ext2 in1 source</td>
<td>DI6</td>
</tr>
<tr>
<td>20.12</td>
<td>Run enable 1 source</td>
<td>DI5</td>
</tr>
<tr>
<td>22.12</td>
<td>Speed ref2 source</td>
<td>PID</td>
</tr>
<tr>
<td>22.22</td>
<td>Constant speed sel1</td>
<td>DI4</td>
</tr>
<tr>
<td>23.11</td>
<td>Ramp set selection</td>
<td>Acc/Dec time 1</td>
</tr>
<tr>
<td>31.11</td>
<td>Fault reset selection</td>
<td>Not selected</td>
</tr>
<tr>
<td>40.07</td>
<td>Set 1 PID operation mode</td>
<td>On when drive running</td>
</tr>
<tr>
<td>40.08</td>
<td>Set 1 feedback 1 source</td>
<td>AI2 scaled</td>
</tr>
<tr>
<td>40.11</td>
<td>Set 1 feedback filter time</td>
<td>0.040 s</td>
</tr>
<tr>
<td>40.35</td>
<td>Set 1 derivation filter time</td>
<td>1.0 s</td>
</tr>
<tr>
<td>40.60</td>
<td>Set 1 PID activation source</td>
<td>Follow Ext1/Ext2 selection</td>
</tr>
</tbody>
</table>

Note: 이 매크로 선택은 파라미터 그룹 41 Process PID set 2에 영향을 주지 않습니다.
- **PID 제어 메크로의 기본 제어 신호 결선**

<table>
<thead>
<tr>
<th>PID 제어의 기본 제어 신호 결선</th>
</tr>
</thead>
<tbody>
<tr>
<td>XPOW</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>XAI</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>XAO</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>XD2D</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>XRO1, XRO2, XRO3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>XD24</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>XDO1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>XDI</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>XSTO</td>
</tr>
</tbody>
</table>

*센서 결선 예는 페이지 103을 확인하십시오.
PID 제어 매크로의 센서 결선 예

Note: 센서 전원은 외부에서 공급됩니다.
토크 제어 매크로 (Torque control macro)

토크 제어 매크로는 모터의 토크 제어가 필요한 응용 분야에서 적합합니다. 이것은 통상 기계 시스템에서 특정 장력 (Particular tension)을 유지하기 위한 장력 제어 부하에 주로 사용됩니다.

기준 토크는 아날로그 입력 AI2에 접속되고, 이것은 일반적으로 0…20 mA 범위 (정격 모터 토크의 0…100%에 해당)를 갖는 전류 신호입니다. 시작/정지 신호는 디지털 입력 DI1을 통해 주어지며, DI2에 의해 회전 방향이 결정됩니다. 디지털 입력 DI3에 의해 토크 제어 (EXT2) 대신에 속도 제어 (EXT1)를 선택하는 것이 가능합니다. PID 제어 매크로와 마찬가지로 시운전 및 모터 회전 방향 확인을 위해 속도 제어가 사용될 수 있습니다.

이것은 Loc/Rem 버튼 (제어 패널 또는 PC 툴)으로 외부 제어에서 로컬 제어로 제어 위치를 변경할 수 있는데, 기본적으로 로컬에서의 운전 모드는 속도 제어입니다. 만약 토크 제어가 필요하다면 파라미터 19.16 Local control mode에서 Torque를 선택하십시오.

일정 속도 기능은 DI4를 통해 허용됩니다. DI5는 가감속 시간 1과 2의 전환 신호로 사용됩니다. 그리고 가감속 시간을 비롯한 S자 기준 속도의 파라미터 23.12…23.19에 의해 정의됩니다.

토크 제어 매크로의 기본 파라미터 설정

아래 파라미터 목록은 공장 매크로와 다른 기본 파라미터 설정값을 나타냅니다.

<table>
<thead>
<tr>
<th>파라미터</th>
<th>토크 제어 매크로 기본 설정</th>
</tr>
</thead>
<tbody>
<tr>
<td>번호 이름</td>
<td></td>
</tr>
<tr>
<td>19.11 Ext1/Ext2 selection</td>
<td>DI3</td>
</tr>
<tr>
<td>19.14 Ext2 control mode</td>
<td>Torque</td>
</tr>
<tr>
<td>20.02 Ext1 start trigger type</td>
<td>Level</td>
</tr>
<tr>
<td>20.06 Ext2 commands</td>
<td>In1 Start; In2 Dir</td>
</tr>
<tr>
<td>20.07 Ext2 start trigger type</td>
<td>Level</td>
</tr>
<tr>
<td>20.08 Ext2 in1 source</td>
<td>DI1</td>
</tr>
<tr>
<td>20.09 Ext2 in2 source</td>
<td>DI2</td>
</tr>
<tr>
<td>20.12 Run enable 1 source</td>
<td>DI6</td>
</tr>
<tr>
<td>22.22 Constant speed sel1</td>
<td>DI4</td>
</tr>
<tr>
<td>23.11 Ramp set selection</td>
<td>DI5</td>
</tr>
<tr>
<td>26.11 Torque ref1 source</td>
<td>AI2 scaled</td>
</tr>
<tr>
<td>31.11 Fault reset selection</td>
<td>Not selected</td>
</tr>
</tbody>
</table>
Application Macros

External Power Input

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Voltage/Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24VDC</td>
<td>24 V DC, 2 A</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td></td>
</tr>
</tbody>
</table>

Reference Voltage and Analog Inputs

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Voltage/Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+VREF</td>
<td>10 V DC, Rs 1...10 kohm</td>
</tr>
<tr>
<td>2</td>
<td>-VREF</td>
<td>-10 V DC, Rs 1...10 kohm</td>
</tr>
<tr>
<td>3</td>
<td>AGND</td>
<td>Ground</td>
</tr>
<tr>
<td>4</td>
<td>AI1+</td>
<td>Speed reference</td>
</tr>
<tr>
<td>5</td>
<td>AI1-</td>
<td>0(2)...10 V, Rs 1 > 200 kohm</td>
</tr>
<tr>
<td>6</td>
<td>AI2+</td>
<td>Torque reference</td>
</tr>
<tr>
<td>7</td>
<td>AI2-</td>
<td>0(4)...20 mA, Rs 1 = 100 ohm</td>
</tr>
</tbody>
</table>

Analog Outputs

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AO1</td>
<td>Motor speed rpm</td>
</tr>
<tr>
<td>2</td>
<td>AGND</td>
<td>0...20mA, Rs 1 < 500 ohm</td>
</tr>
<tr>
<td>3</td>
<td>AO2</td>
<td>Motor current</td>
</tr>
<tr>
<td>4</td>
<td>AGND</td>
<td>0...20mA, Rs 1 < 500 ohm</td>
</tr>
</tbody>
</table>

Drive-to-Drive Link

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>BGND</td>
</tr>
</tbody>
</table>

Relay Outputs

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>State</th>
<th>Voltage/Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>Ready run</td>
<td>250 V AC / 30 V DC</td>
</tr>
<tr>
<td>2</td>
<td>COM</td>
<td>Ready run</td>
<td>2 A</td>
</tr>
<tr>
<td>3</td>
<td>NO</td>
<td>Running</td>
<td>250 V AC / 30 V DC</td>
</tr>
<tr>
<td>1</td>
<td>NC</td>
<td>Running</td>
<td>2 A</td>
</tr>
<tr>
<td>2</td>
<td>COM</td>
<td>Fault (-1)</td>
<td>250 V AC / 30 V DC</td>
</tr>
<tr>
<td>3</td>
<td>NO</td>
<td>Fault (-1)</td>
<td>2 A</td>
</tr>
</tbody>
</table>

Digital Interlock

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DIIL Digital interlock. By default, not in use.</td>
</tr>
<tr>
<td>2</td>
<td>+24VD</td>
</tr>
<tr>
<td>3</td>
<td>DICOM Digital input ground</td>
</tr>
<tr>
<td>4</td>
<td>+24VD</td>
</tr>
<tr>
<td>5</td>
<td>DIOGND Digital input/output ground</td>
</tr>
</tbody>
</table>

Digital Inputs

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D11 Stop (0) / Start (1)</td>
</tr>
<tr>
<td>2</td>
<td>D12 Forward (0) / Reverse (1)</td>
</tr>
<tr>
<td>3</td>
<td>D13 Speed control (0) / Torque control (1)</td>
</tr>
<tr>
<td>4</td>
<td>D14 Constant speed 1 (1 = On)</td>
</tr>
<tr>
<td>5</td>
<td>D15 Acc/Dec time set 1 (0) / set 2 (1)</td>
</tr>
<tr>
<td>6</td>
<td>D16 Run enable (1 = On)</td>
</tr>
</tbody>
</table>

Safe Torque Off Circuits

Safe torque off circuits must be closed for the drive to start. See **Hardware manual of drive.**

Safety Options Connection

X12

Control Panel Connection

X13

Memory Unit Connection

X205
순차 제어 매크로 (Sequential control macro)

순차 제어 매크로는 기준 속도, 다중 일정 속도 및 2개의 가감속 시간이 사용되는 속도 제어 응용에 적합합니다. 이 매크로는 오직 EXT1만 사용됩니다.

디지털 입력 DI4…DI6을 사용하여 정의된 7가지 일정 속도로 운전할 수 있습니다. 이에 대한 자세한 사항은 파라미터 22.21 Constant speed function을 확인하십시오. 외부 기준 속도는 아날로그 입력 AI1을 통해 주어지며, 일정 속도 기능을 사용하지 않는 경우 (DI4…DI6=0)에만 허용됩니다. 또한 제어 패널에서 운전할 수도 있습니다.

시작/정지 명령은 디지털 입력 DI1으로 주어지며, DI2에 의해 회전 방향이 결정됩니다.

DI3은 가감속 시간 설정 1과 2 사이의 전환 신호로 사용됩니다. 그리고 가감속 시간을 비롯한 S자 기준 속도는 파라미터 23.12…23.19에 의해 정의됩니다.

동작 상태도

아래 그림은 이 매크로를 사용한 예를 나타냅니다.
일정 속도 선택 (Selection of constant speeds)

기본적으로 일정 속도 1…7은 아래와 같이 디지털 입력 DI4…DI6을 사용하여 선택할 수 있습니다.

<table>
<thead>
<tr>
<th>DI4</th>
<th>DI5</th>
<th>DI6</th>
<th>일정 속도 선택</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>선택 없음.</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Constant speed 1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Constant speed 2</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Constant speed 3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Constant speed 4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Constant speed 5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>Constant speed 6</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Constant speed 7</td>
</tr>
</tbody>
</table>

순차 제어 매크로의 기본 파라미터 설정

아래 파라미터 목록은 공장 매크로와 다른 기본 파라미터 설정값을 나타냅니다.

<table>
<thead>
<tr>
<th>파라미터</th>
<th>순차 제어 매크로 기본 설정</th>
</tr>
</thead>
<tbody>
<tr>
<td>번호</td>
<td>이름</td>
</tr>
<tr>
<td>20.12</td>
<td>Run enable 1 source</td>
</tr>
<tr>
<td>21.03</td>
<td>Stop mode</td>
</tr>
<tr>
<td>22.21</td>
<td>Constant speed function</td>
</tr>
<tr>
<td>22.22</td>
<td>Constant speed sel1</td>
</tr>
<tr>
<td>22.23</td>
<td>Constant speed sel2</td>
</tr>
<tr>
<td>22.24</td>
<td>Constant speed sel3</td>
</tr>
<tr>
<td>22.27</td>
<td>Constant speed 2</td>
</tr>
<tr>
<td>22.28</td>
<td>Constant speed 3</td>
</tr>
<tr>
<td>22.29</td>
<td>Constant speed 4</td>
</tr>
<tr>
<td>22.30</td>
<td>Constant speed 5</td>
</tr>
<tr>
<td>22.31</td>
<td>Constant speed 6</td>
</tr>
<tr>
<td>22.32</td>
<td>Constant speed 7</td>
</tr>
<tr>
<td>23.11</td>
<td>Ramp set selection</td>
</tr>
<tr>
<td>25.06</td>
<td>Acc comp derivation time</td>
</tr>
</tbody>
</table>
순차 제어 매크로의 기본 제어 신호 결선

<table>
<thead>
<tr>
<th>XPOW</th>
<th>External power input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24Vl</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XAI</th>
<th>Reference voltage and analog inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VREF</td>
</tr>
<tr>
<td>2</td>
<td>-VREF</td>
</tr>
<tr>
<td>3</td>
<td>AGND</td>
</tr>
<tr>
<td>4</td>
<td>A1+</td>
</tr>
<tr>
<td>5</td>
<td>A1-</td>
</tr>
<tr>
<td>6/7</td>
<td>A2+</td>
</tr>
<tr>
<td>7</td>
<td>A2-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XAO</th>
<th>Analog outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AO1</td>
</tr>
<tr>
<td>2</td>
<td>AGND</td>
</tr>
<tr>
<td>3</td>
<td>AO2</td>
</tr>
<tr>
<td>4</td>
<td>AGND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XD2D</th>
<th>Drive-to-drive link</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>BGND</td>
</tr>
</tbody>
</table>

Master/follower, drive-to-drive or embedded fieldbus interface connection

<table>
<thead>
<tr>
<th>XRO1, XRO2, XRO3</th>
<th>Relay outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 NC</td>
<td>Ready run</td>
</tr>
<tr>
<td>2 NO</td>
<td>250 V AC / 30 V DC</td>
</tr>
<tr>
<td>3 NO</td>
<td>2 A</td>
</tr>
<tr>
<td>1 NC</td>
<td>Running</td>
</tr>
<tr>
<td>2 NO</td>
<td>250 V AC / 30 V DC</td>
</tr>
<tr>
<td>3 NO</td>
<td>2 A</td>
</tr>
<tr>
<td>1 NC</td>
<td>Fault (-1)</td>
</tr>
<tr>
<td>2 NO</td>
<td>250 V AC / 30 V DC</td>
</tr>
<tr>
<td>3 NO</td>
<td>2 A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XD24</th>
<th>Digital interlock</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DIIL</td>
<td>Run enable</td>
</tr>
<tr>
<td>2 +24VD</td>
<td>+24 V DC 200 mA</td>
</tr>
<tr>
<td>3 DIOCOM</td>
<td>Digital input ground</td>
</tr>
<tr>
<td>4 +24VD</td>
<td>+24 V DC 200 mA</td>
</tr>
<tr>
<td>5 DIOGND</td>
<td>Digital input/output ground</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XDIO</th>
<th>Digital input/outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DIO1</td>
<td>Output: Ready run</td>
</tr>
<tr>
<td>2 DIO2</td>
<td>Output: Running</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XDI</th>
<th>Digital inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 DI1</td>
<td>Stop (0) / Start (1)</td>
</tr>
<tr>
<td>2 DI2</td>
<td>Forward (0) / Reverse (1)</td>
</tr>
<tr>
<td>3 DI3</td>
<td>Acc/Dec time set 1 (0) / set 2 (1)</td>
</tr>
<tr>
<td>4 DI4</td>
<td></td>
</tr>
<tr>
<td>5 DI5</td>
<td>Constant speed selection (see page 107)</td>
</tr>
<tr>
<td>6 DI6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>XSTO</th>
<th>Safe torque off circuits must be closed for the drive to start. See Hardware manual of drive.</th>
</tr>
</thead>
</table>

X12 Safety options connection
X13 Control panel connection
X205 Memory unit connection
필드버스 제어 매크로 (Fieldbus control macro)

이 응용 매크로는 현재의 펌웨어 버전에서 지원하지 않습니다.
Application macros
이 장의 내용

이 장에서는 제어 프로그램의 실제 신호를 포함하는 파라미터를 자세히 설명합니다.
용어 및 약어

<table>
<thead>
<tr>
<th>용어 및 약어</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual signal</td>
<td>측정 결과값, 드라이브의 계산값, 또는 상태 정보를 포함하는 파라미터의 타입을 의미합니다. 대부분의 실제 신호는 잎기 전용이며, 특별히 카운터 타입의 값들은 리셋시킬 수 있습니다.</td>
</tr>
<tr>
<td>Def</td>
<td>(다음 표에서 파라미터 이름과 같은 행에 표시되어 있음.) 공장 매크로가 사용될 때의 파라미터의 기본값입니다. 다른 매크로에 대한 특정 파라미터의 기본값은 응용 매크로 (페이지 85) 장을 참고하십시오. Note: 별도의 구성 또는 음성 장치를 사용하는 경우에는 특정 기본값으로 설정됩니다. 이것은 다음과 같은 레이블로 표시됩니다. $(95.20\ bx)$ = 파라미터 95.20의 비트 x에 의해 기본 변경되거나 쓰기가 보호됨.</td>
</tr>
<tr>
<td>FbEq16</td>
<td>(다음 표에서 파라미터 범위와 동일한 행에 표시되거나 각 선택 항목에 표시되어 있음.) 16비트 필드버스 데이터로 동가화: 외부 시스템으로 전송하기 위해 16 비트 값이 선택되었을 때, 제어 패널에 표시된 값과 통신에 사용된 정수값 사이의 비율을 의미합니다. 단, 값이 대시 (−)로 표시된 파라미터는 32비트 포맷으로 접근해야 합니다. 해당 32비트 스펙일값 값은 추가적인 파라미터 데이터 (페이지 431) 장을 참고하십시오.</td>
</tr>
<tr>
<td>Other</td>
<td>기타 파라미터에서 값을 가져옵니다. 사용자가 "Other"를 선택하면 소스 파라미터를 선택할 수 있는 파라미터 목록이 나타납니다. Note: 소스 파라미터는 32비트 실수형입니다. 소스로 16비트 정수형 (예: 외부 장치에서 수신된 데이터 세트)을 사용하기 위해서는 파라미터 47.01..47.08 (페이지 328)를 사용하십시오.</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 파라미터에서 값을 가져옵니다. 사용자가 "Other"를 선택하면 소스 파라미터 비트를 선택할 수 있는 파라미터 목록이 나타납니다.</td>
</tr>
<tr>
<td>Parameter</td>
<td>설정 가능한 사용자 운전 명령 또는 실제 신호.</td>
</tr>
<tr>
<td>p.u.</td>
<td>Per unit</td>
</tr>
</tbody>
</table>
파라미터 그룹 요약

<table>
<thead>
<tr>
<th>그룹</th>
<th>내용</th>
<th>페이지</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Actual values</td>
<td>드라이브를 감시하기 위한 기본 신호.</td>
<td>115</td>
</tr>
<tr>
<td>03 Input references</td>
<td>다양한 소스로부터 입력된 기준값.</td>
<td>119</td>
</tr>
<tr>
<td>04 Warnings and faults</td>
<td>최근 발생된 경고 및 풀트 정보.</td>
<td>120</td>
</tr>
<tr>
<td>05 Diagnostics</td>
<td>유지 보수와 관련된 다양한 운전 시간 카운터 및 측정 데이터.</td>
<td>127</td>
</tr>
<tr>
<td>06 Control and status words</td>
<td>드라이브의 제어 워드 및 상태 워드.</td>
<td>128</td>
</tr>
<tr>
<td>07 System info</td>
<td>드라이브의 하드웨어, 플매플웨어, 응용 프로그램 정보.</td>
<td>143</td>
</tr>
<tr>
<td>10 Standard DI, RO</td>
<td>디지털 입력 및 릴레이 출력 구성.</td>
<td>145</td>
</tr>
<tr>
<td>11 Standard DIO, FI, FO</td>
<td>디지털 입/출력 및 주파수 입/출력 구성.</td>
<td>152</td>
</tr>
<tr>
<td>12 Standard Al</td>
<td>표준 아날로그 입력 구성.</td>
<td>157</td>
</tr>
<tr>
<td>13 Standard AO</td>
<td>표준 아날로그 출력 구성.</td>
<td>161</td>
</tr>
<tr>
<td>14 I/O extension module 1</td>
<td>I/O 확장 모듈 1의 구성.</td>
<td>165</td>
</tr>
<tr>
<td>15 I/O extension module 2</td>
<td>I/O 확장 모듈 2의 구성.</td>
<td>184</td>
</tr>
<tr>
<td>16 I/O extension module 3</td>
<td>I/O 확장 모듈 3의 구성.</td>
<td>188</td>
</tr>
<tr>
<td>19 Operation mode</td>
<td>로컬 및 외부 제어에서 위치 소스 및 운전 모드 선택.</td>
<td>192</td>
</tr>
<tr>
<td>20 Start/stop/direction</td>
<td>시작/정지/방향 및 운전/시작/조그 허용 신호의 소스 선택.</td>
<td>194</td>
</tr>
<tr>
<td>21 Start/stop mode</td>
<td>시작 및 정지 모드, 비상 정지 모드 및 신호 소스 선택.</td>
<td>203</td>
</tr>
<tr>
<td>22 Speed reference selection</td>
<td>기준 속도 선택, 모터 포텐서터미 설정.</td>
<td>210</td>
</tr>
<tr>
<td>23 Speed reference ramp</td>
<td>램프 기준 속도 설정 (드라이브의 가속률 및 감속률 정의).</td>
<td>218</td>
</tr>
<tr>
<td>24 Speed reference conditioning</td>
<td>속도 오차 계산, 속도 오차 원도우 제어 구성. 속도 오차의 스텝 입력.</td>
<td>224</td>
</tr>
<tr>
<td>25 Speed control</td>
<td>속도 제어기 설정.</td>
<td>229</td>
</tr>
<tr>
<td>26 Torque reference chain</td>
<td>기존 토크 제어 설정.</td>
<td>240</td>
</tr>
<tr>
<td>28 Frequency reference chain</td>
<td>기술 주파수 제어 설정.</td>
<td>246</td>
</tr>
<tr>
<td>30 Limits</td>
<td>드라이브 운전 제한.</td>
<td>255</td>
</tr>
<tr>
<td>31 Fault functions</td>
<td>외부 이벤트 구성. 품질 상태에서 드라이브가 여덟개 반응할지 선택.</td>
<td>263</td>
</tr>
<tr>
<td>32 Supervision</td>
<td>신호 감시 기능 1…3 구성.</td>
<td>273</td>
</tr>
<tr>
<td>33 Generic timer & counter</td>
<td>유지 보수 타이머/카운터 구성.</td>
<td>276</td>
</tr>
<tr>
<td>35 Motor thermal protection</td>
<td>운전 측정 구성과 같은 모터 열 보호 설정. 부하 곡선 정의 및 모터 난각면 제어 구성.</td>
<td>284</td>
</tr>
<tr>
<td>36 Load analyzer</td>
<td>피크값 및 전폭 로거 설정.</td>
<td>294</td>
</tr>
<tr>
<td>37 User load curve</td>
<td>사용자 부하 곡선 설정.</td>
<td>298</td>
</tr>
<tr>
<td>40 Process PID set 1</td>
<td>프로세스 PID 제어를 위한 파라미터 세트 1.</td>
<td>301</td>
</tr>
<tr>
<td>41 Process PID set 2</td>
<td>프로세스 PID 제어를 위한 파라미터 세트 2.</td>
<td>313</td>
</tr>
<tr>
<td>43 Brake chopper</td>
<td>내장형 제동チョ퍼 설정.</td>
<td>315</td>
</tr>
<tr>
<td>그룹</td>
<td>내용</td>
<td>페이지</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>44 Mechanical brake control</td>
<td>기계 브레이크 제어 구성.</td>
<td>317</td>
</tr>
<tr>
<td>45 Energy efficiency</td>
<td>에너지 절약 계산기 설정.</td>
<td>321</td>
</tr>
<tr>
<td>46 Monitoring/scaling settings</td>
<td>속도 감시 설정. 실제 신호 필터링, 신호 스케일링 설정.</td>
<td>324</td>
</tr>
<tr>
<td>47 Data storage</td>
<td>기타 파라미터 소스 및 대상 설정을 설정하여 데이터를 쓰거나 읽을 수 있는 데이터 저장 파라미터.</td>
<td>328</td>
</tr>
<tr>
<td>49 Panel port communication</td>
<td>제어 패널의 통신 설정.</td>
<td>331</td>
</tr>
<tr>
<td>50 Fieldbus adapter (FBA)</td>
<td>필드버스 통신 구성.</td>
<td>333</td>
</tr>
<tr>
<td>51 FBA A settings</td>
<td>필드버스 어댑터 A 구성.</td>
<td>341</td>
</tr>
<tr>
<td>52 FBA A data in</td>
<td>필드버스 어댑터 A의 전송 데이터 매핑.</td>
<td>342</td>
</tr>
<tr>
<td>53 FBA A data out</td>
<td>필드버스 어댑터 A의 수신 데이터 매핑.</td>
<td>343</td>
</tr>
<tr>
<td>54 FBA B settings</td>
<td>필드버스 어댑터 B 구성.</td>
<td>343</td>
</tr>
<tr>
<td>55 FBA B data in</td>
<td>필드버스 어댑터 B의 전송 데이터 매핑.</td>
<td>344</td>
</tr>
<tr>
<td>56 FBA B data out</td>
<td>필드버스 어댑터 B의 수신 데이터 매핑.</td>
<td>345</td>
</tr>
<tr>
<td>58 Embedded fieldbus</td>
<td>임베디드 필드버스 인터페이스 구성.</td>
<td>345</td>
</tr>
<tr>
<td>60 DDCS communication</td>
<td>DDCS 통신 구성.</td>
<td>353</td>
</tr>
<tr>
<td>61 D2D and DDCS transmit data</td>
<td>DDCS의 전송 데이터 매핑.</td>
<td>366</td>
</tr>
<tr>
<td>62 D2D and DDCS receive data</td>
<td>DDCS의 수신 데이터 매핑.</td>
<td>370</td>
</tr>
<tr>
<td>90 Feedback selection</td>
<td>모터 및 부하 피드백 구성.</td>
<td>378</td>
</tr>
<tr>
<td>91 Encoder module settings</td>
<td>엔코더 인터페이스 모듈 구성.</td>
<td>387</td>
</tr>
<tr>
<td>92 Encoder 1 configuration</td>
<td>엔코더 1 설정.</td>
<td>390</td>
</tr>
<tr>
<td>93 Encoder 2 configuration</td>
<td>엔코더 2 설정.</td>
<td>396</td>
</tr>
<tr>
<td>94 LSU control</td>
<td>서플라이 유닛의 DC 전압 및 기준 무효 전력 제어.</td>
<td>396</td>
</tr>
<tr>
<td>95 HW configuration</td>
<td>드라이브의 하드웨어와 관련된 다양한 설정.</td>
<td>400</td>
</tr>
<tr>
<td>96 System</td>
<td>표시 언어 선택. 접근 레벨. 매크로 선택. 파라미터 저장 및 복원.</td>
<td>405</td>
</tr>
<tr>
<td></td>
<td>제어 유닛 재부팅. 사용자 파라미터 세트. 단위 선택.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>데이터 로거 트리거. 파라미터 체크 심 계산. 사용자 임."</td>
<td></td>
</tr>
<tr>
<td>97 Motor control</td>
<td>모터 모델 설정.</td>
<td>417</td>
</tr>
<tr>
<td>98 User motor parameters</td>
<td>모터 모델에 사용된 사용자 모터 파라미터.</td>
<td>421</td>
</tr>
<tr>
<td>99 Motor data</td>
<td>모터 구성 설정.</td>
<td>423</td>
</tr>
<tr>
<td>200 Safety</td>
<td>FSO-xx 설정.</td>
<td>429</td>
</tr>
</tbody>
</table>
파라미터 목록

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>01 Actual values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01.01</td>
<td>Motor speed used</td>
<td>드라이브를 감지하기 위한 기본 신호. 이 그룹에서 별도 표기가 없는 한 모든 파라미터는 임기 전용입니다.</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>피드백 선택 (파라미터 90.41 Motor feedback selection)에 따른 측정 또는 추정된 모터 속도입니다. 이 값의 필터는 파라미터 46.11 Filter time motor speed에서 설정할 수 있습니다.</td>
</tr>
<tr>
<td>01.02</td>
<td>Motor speed estimated</td>
<td>추정된 모터 속도입니다. 이 값의 필터는 파라미터 46.11 Filter time motor speed에서 설정할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>모터 속도 추정값.</td>
</tr>
<tr>
<td>01.03</td>
<td>Motor speed %</td>
<td>파라미터 01.01 Motor speed used에 동기 속도 (Synchronous speed)에 대한 백분율로 표시합니다.</td>
</tr>
<tr>
<td></td>
<td>-1000.00 ... 1000.00%</td>
<td>모터 속도 측정값 또는 추정값.</td>
</tr>
<tr>
<td>01.04</td>
<td>Encoder 1 speed filtered</td>
<td>엔코더 1에서 측정된 모터 속도입니다. 이 값의 필터는 파라미터 46.11 Filter time motor speed에서 설정할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>엔코더 1 속도.</td>
</tr>
<tr>
<td>01.05</td>
<td>Encoder 2 speed filtered</td>
<td>엔코더 2에서 측정된 모터 속도입니다. 이 값의 필터는 파라미터 46.11 Filter time motor speed에서 설정할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>엔코더 2 속도.</td>
</tr>
<tr>
<td>01.06</td>
<td>Output frequency</td>
<td>추정된 드라이브의 출력 주파수입니다. 이 값의 필터는 파라미터 46.12 Filter time output frequency에서 설정할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-500.00 ... 500.00 Hz</td>
<td>출력 주파수.</td>
</tr>
<tr>
<td>01.07</td>
<td>Motor current</td>
<td>측정된 모터 전류의 실효값 (Effective value)입니다. 이 값은 절댓값 (Absolute value)으로 표시됩니다.</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 30000.00 A</td>
<td>모터 전류.</td>
</tr>
<tr>
<td>01.08</td>
<td>Motor current % of motor nom</td>
<td>모터 전류를 모터 정격 전력에 대한 백분율로 표시합니다.</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1000.0%</td>
<td>모터 전류.</td>
</tr>
<tr>
<td>01.10</td>
<td>Motor torque</td>
<td>모터 토크를 모터 정격 토크에 대한 백분율로 표시합니다. 01.30 Nominal torque scale을 확인하시오. 이 값의 필터는 파라미터 46.13 Filter time motor torque에서 설정할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-1600.0 ... 1600.0%</td>
<td>모터 토크.</td>
</tr>
<tr>
<td>01.11</td>
<td>DC voltage</td>
<td>측정된 DC 링크 전압입니다.</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 2000.00 V</td>
<td>DC 링크 전압.</td>
</tr>
<tr>
<td>01.13</td>
<td>Output voltage</td>
<td>계산된 모터 전압의 실효값입니다.</td>
</tr>
<tr>
<td></td>
<td>0...2000 V</td>
<td>모터 전압.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>01.14</td>
<td>Output power</td>
<td>드라이브의 출력 전력입니다. 이것의 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다. 이 값의 필터는 파라미터 46.14 Filter time power out에서 설정할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-32768.00 … 32767.00 kW or hp</td>
<td>출력 전력.</td>
</tr>
<tr>
<td>01.15</td>
<td>Output power % of motor nom</td>
<td>01.14 Output power를 퍼센트 단위로 표시합니다.</td>
</tr>
<tr>
<td></td>
<td>-300.00 … 300.00%</td>
<td>출력 전력.</td>
</tr>
<tr>
<td>01.17</td>
<td>Motor shaft power</td>
<td>모터 회전에서 추정된 기계적 출력입니다. 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다. 이 값의 필터는 파라미터 46.14 Filter time power out에서 설정할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-32768.00 … 32767.00 kW or hp</td>
<td>기계적 모터 출력.</td>
</tr>
<tr>
<td>01.18</td>
<td>Inverter GWh motoring</td>
<td>모터에서 소비한 GWh 단위의 전력량입니다. 이것은 최솟값은 0입니다.</td>
</tr>
<tr>
<td></td>
<td>0…32767 GWh</td>
<td>GWh 단위의 소비 전력량.</td>
</tr>
<tr>
<td>01.19</td>
<td>Inverter MWh motoring</td>
<td>모터에서 소비한 MWh 단위의 전력량입니다. 이 값이 0으로 설정될 때마다 01.18 Inverter GWh motoring이 증가됩니다. 이것은 최솟값은 0입니다.</td>
</tr>
<tr>
<td></td>
<td>0…999 MWh</td>
<td>MWh 단위의 소비 전력량.</td>
</tr>
<tr>
<td>01.20</td>
<td>Inverter kWh motoring</td>
<td>모터에서 소비한 kWh 단위의 전력량입니다. 이 값이 0으로 설정될 때마다 01.19 Inverter MWh motoring이 증가됩니다. 이것은 최솟값은 0입니다.</td>
</tr>
<tr>
<td></td>
<td>0…999 kWh</td>
<td>kWh 단위의 소비 전력량.</td>
</tr>
<tr>
<td>01.21</td>
<td>U-phase current</td>
<td>측정된 U상 순시 전류입니다.</td>
</tr>
<tr>
<td></td>
<td>-30000.00 … 30000.00 A</td>
<td>U상 전류.</td>
</tr>
<tr>
<td>01.22</td>
<td>V-phase current</td>
<td>측정된 V상 순시 전류입니다.</td>
</tr>
<tr>
<td></td>
<td>-30000.00 … 30000.00 A</td>
<td>V상 전류.</td>
</tr>
<tr>
<td>01.23</td>
<td>W-phase current</td>
<td>측정된 W상 순시 전류입니다.</td>
</tr>
<tr>
<td></td>
<td>-30000.00 … 30000.00 A</td>
<td>W상 전류.</td>
</tr>
<tr>
<td>01.24</td>
<td>Flux actual %</td>
<td>기존 자속을 모터 정격 자속에 대한 백분율로 표시합니다.</td>
</tr>
<tr>
<td></td>
<td>0…200%</td>
<td>기존 자속.</td>
</tr>
<tr>
<td>01.25</td>
<td>INU momentary cos φ</td>
<td>드라이브의 출력 순시 역률입니다.</td>
</tr>
<tr>
<td></td>
<td>-1.00 … 1.00</td>
<td>역률.</td>
</tr>
<tr>
<td>01.29</td>
<td>Speed change rate</td>
<td>실제 속도의 변화율입니다. 여기서 양수값은 가속, 음수값은 감속을 나타냅니다. 또한 파라미터 31.32 Emergency ramp supervision, 31.33 Emergency ramp supervision delay, 31.37 Ramp stop supervision, 31.38 Ramp stop supervision delay를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>-15000 … 15000 rpm/s</td>
<td>속도 변화율.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>01.30</td>
<td>Nominal torque scale</td>
<td>정격 토크의 100 %에 해당하는 모터 토크를 나타냅니다. 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다. Note: 이 값은 파라미터 99.12 Motor nominal torque에 직접 입력할 경우에 복사되거나 입력한 모터 데이터에 의해 계산됩니다.</td>
</tr>
<tr>
<td>0.000... N-m or lb-ft</td>
<td>정격 토크.</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>01.31</td>
<td>Ambient temperature</td>
<td>외부에서 들어오는 냉각된 공기에서 측정된 주변 온도입니다. 이들의 단위는 96.16 Unit selection에서 선택할 수 있습니다.</td>
</tr>
<tr>
<td>-40 ... 120 °C or °F</td>
<td>냉각된 공기 온도.</td>
<td>1 = 1°</td>
</tr>
<tr>
<td>01.32</td>
<td>Inverter GWh regenerating</td>
<td>모터에서 발전한 GWh 단위의 전력량입니다. 이 값은 0으로 생성될 때마다 01.32 Inverter GWh regenerating이 증가됩니다. 이들의 최솟값은 0입니다.</td>
</tr>
<tr>
<td>0...32767 GWh</td>
<td>GWh 단위의 발전 전력량.</td>
<td>1 = 1 GWh</td>
</tr>
<tr>
<td>01.33</td>
<td>Inverter MWh regenerating</td>
<td>모터에서 발전한 MWh 단위의 전력량입니다. 이 값은 0으로 생성될 때마다 01.33 Inverter MWh regenerating이 증가됩니다. 이들의 최솟값은 0입니다.</td>
</tr>
<tr>
<td>0...999 MWh</td>
<td>MWh 단위의 발전 전력량.</td>
<td>1 = 1 MWh</td>
</tr>
<tr>
<td>01.34</td>
<td>Inverter kWh regenerating</td>
<td>모터에서 발전한 kWh 단위의 전력량입니다. 이 값은 0으로 생성될 때마다 01.33 Inverter kWh regenerating이 증가됩니다. 이들의 최솟값은 0입니다.</td>
</tr>
<tr>
<td>0...999 kWh</td>
<td>kWh 단위의 발전 전력량.</td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>01.35</td>
<td>Mot - regen energy GWh</td>
<td>모터 소비 전력량과 발전 전력량과의 차이 (Net energy)를 GWh 단위로 표시한 전력량입니다.</td>
</tr>
<tr>
<td>-32768...32767 GWh</td>
<td>GWh 단위의 에너지 균형.</td>
<td>1 = 1 GWh</td>
</tr>
<tr>
<td>01.36</td>
<td>Mot - regen energy MWh</td>
<td>모터 소비 전력량과 발전 전력량과의 차이를 MWh 단위로 표시한 전력량입니다. 이 값은 0으로 생성될 때마다 01.35 Mot - regen energy GWh가 증가 또는 감소됩니다.</td>
</tr>
<tr>
<td>-999...999 MWh</td>
<td>MWh 단위의 에너지 균형.</td>
<td>1 = 1 MWh</td>
</tr>
<tr>
<td>01.37</td>
<td>Mot - regen energy kWh</td>
<td>모터 소비 전력량과 발전 전력량과의 차이를 kWh 단위로 표시한 전력량입니다. 이 값은 0으로 생성될 때마다 01.36 Mot - regen energy MWh가 증가 또는 감소됩니다.</td>
</tr>
<tr>
<td>-999...999 kWh</td>
<td>kWh 단위의 에너지 균형.</td>
<td>10 = 1 kWh</td>
</tr>
<tr>
<td>01.61</td>
<td>Abs motor speed used</td>
<td>01.01 Motor speed used의 절댓값입니다.</td>
</tr>
<tr>
<td>0.00 ... 30000.00 rpm</td>
<td>측정 또는 추정된 모터 속도.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>01.62</td>
<td>Abs motor speed %</td>
<td>01.03 Motor speed %의 절댓값입니다.</td>
</tr>
<tr>
<td>0.00 ... 1000.00%</td>
<td>측정 또는 추정된 모터 속도.</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>01.63</td>
<td>Abs output frequency</td>
<td>01.06 Output frequency의 절댓값입니다.</td>
</tr>
<tr>
<td>0.00 ... 500.00 Hz</td>
<td>측정된 출력 주파수.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>01.64</td>
<td>Abs motor torque</td>
<td>01.10 Motor torque의 절댓값입니다.</td>
</tr>
<tr>
<td>0.0 ... 1600.0%</td>
<td>모터 토크.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>01.65</td>
<td>Abs output power</td>
<td>01.14 Output power의 절댓값입니다.</td>
</tr>
<tr>
<td>0.00 ... 32767.00 kW or hp</td>
<td>출력 전력.</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>01.66</td>
<td>Abs output power %</td>
<td>01.15 Output power % of motor nom의 절댓값입니다.</td>
</tr>
<tr>
<td>0.00 ... 300.00%</td>
<td>출력 전력.</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>01.68</td>
<td>Abs motor shaft power</td>
<td>01.17 Motor shaft power의 절댓값입니다.</td>
</tr>
<tr>
<td>0.00 ... 32767.00 kW or hp</td>
<td>기계적인 모터 출력.</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>01.70</td>
<td>Ambient</td>
<td>01.31 Ambient temperature를 확인하십시오.</td>
</tr>
<tr>
<td>temperature %</td>
<td>외부에서 들어오는 냉각된 공기에서 측정된 주변 온도를 백분율로 표시합니다. 0…100 %의 범위는 0…60 °C 또는 32…140 °F이며, 01.31 Ambient temperature를 확인하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>-200.00 ... 200.00%</td>
<td>냉각된 공기 온도.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>01.71</td>
<td>Step-up motor current</td>
<td>승압형 변압기가 사용된 경우에 변압기 2차측의 추정된 모터 전류의 실효값입니다. 이 값은 변압비 (95.40) 및 사인 필터값 (99.18 및 99.19)을 사용하여 파라미터 1.07로부터 계산됩니다.</td>
</tr>
<tr>
<td>0.00 ... 30000.00 A</td>
<td>모터 전류 추정값.</td>
<td>See par. 46.05</td>
</tr>
<tr>
<td>01.72</td>
<td>U-phase RMS current</td>
<td>U상 전류의 실효값입니다.</td>
</tr>
<tr>
<td>0.00 ... 30000.00 A</td>
<td>U상 전류 실효값.</td>
<td>See par. 46.05</td>
</tr>
<tr>
<td>01.73</td>
<td>V-phase RMS current</td>
<td>V상 전류의 실효값입니다.</td>
</tr>
<tr>
<td>0.00 ... 30000.00 A</td>
<td>V상 전류 실효값.</td>
<td>See par. 46.05</td>
</tr>
<tr>
<td>01.74</td>
<td>W-phase RMS current</td>
<td>W상 전류의 실효값입니다.</td>
</tr>
<tr>
<td>0.00 ... 30000.00 A</td>
<td>W상 전류 실효값.</td>
<td>See par. 46.05</td>
</tr>
<tr>
<td>01.102</td>
<td>Line current</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 서플라이 유닛을 통해 흐르는 선전류 (Line current)의 추정값입니다.</td>
</tr>
<tr>
<td>0.00 ... 30000.00 A</td>
<td>선전류 추정값.</td>
<td>See par. 46.05</td>
</tr>
<tr>
<td>01.104</td>
<td>Active current</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 서플라이 유닛을 통해 흐르는 유효 전류 (Active current)의 추정값입니다.</td>
</tr>
<tr>
<td>0.00 ... 30000.00 A</td>
<td>유효 전류 추정값.</td>
<td>See par. 46.05</td>
</tr>
<tr>
<td>01.106</td>
<td>Reactive current</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 서플라이 유닛을 통해 흐르는 무효 전류 (Reactive current)의 추정값입니다.</td>
</tr>
<tr>
<td>0.00 ... 30000.00 A</td>
<td>무효 전류 추정값.</td>
<td>See par. 46.05</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>01.108</td>
<td>Grid frequency</td>
<td>(95.20에서 IGBT 서플라이 유닛 제품을 허용한 경우에만 표시됨.) 전원 공급 네트워크에서 주진주파수를 추정된 주파수입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 ... 100.00 Hz 전원 주파수 주정값.</td>
</tr>
<tr>
<td>01.109</td>
<td>Grid voltage</td>
<td>(95.20에서 IGBT 서플라이 유닛 제품을 허용한 경우에만 표시됨.) 전원 공급 네트워크에서 추정된 전압입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 ... 2000.00 V 전원 전압 주정값.</td>
</tr>
<tr>
<td>01.110</td>
<td>Grid apparent power</td>
<td>(95.20에서 IGBT 서플라이 유닛 제품을 허용한 경우에만 표시됨.) 서플라이 유닛을 통해 전달된 피상 전력 (Apparent power)의 추정값입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30000.00 ... 30000.00 kVA 피상 전력 주정값.</td>
</tr>
<tr>
<td>01.112</td>
<td>Grid power</td>
<td>(95.20에서 IGBT 서플라이 유닛 제품을 허용한 경우에만 표시됨.) 서플라이 유닛을 통해 전달된 유효 전력 (Active power)의 추정값입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30000.00 ... 30000.00 kW 유효 전력 주정값.</td>
</tr>
<tr>
<td>01.114</td>
<td>Grid reactive power</td>
<td>(95.20에서 IGBT 서플라이 유닛 제품을 허용한 경우에만 표시됨.) 서플라이 유닛을 통해 전달된 무효 전력 (Reactive power)의 추정값입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-30000.00 ... 30000.00 kvar 무효 전력 주정값.</td>
</tr>
<tr>
<td>01.116</td>
<td>LSU cos φ</td>
<td>(95.20에서 IGBT 서플라이 유닛 제품을 허용한 경우에만 표시됨.) 서플라이 유닛의 입력 역률입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1.00 ... 1.00 역률.</td>
</tr>
<tr>
<td>01.164</td>
<td>LSU nominal power</td>
<td>(95.20에서 IGBT 서플라이 유닛 제품을 허용한 경우에만 표시됨.) 서플라이 유닛의 정격 전력입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...30000 kW 정격 전력.</td>
</tr>
</tbody>
</table>

03 Input references

다양한 소스로부터 입력된 기준값.
이 그룹에서 별도 표기가 없는 한 모든 파라미터는 임기 전용입니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>명함</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.01</td>
<td>Panel reference</td>
<td>제어 패널 또는 PC 톨로부터 입력된 로컬 기준값입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-100000.00 ... 100000.00 제어 패널 또는 PC 톨 기준값.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>03.02</td>
<td>Panel reference</td>
<td>제어 패널 또는 PC 톨로부터 입력된 원격 기준값입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>reference 2</td>
<td>-30000.00 ... 30000.00 제어 패널 또는 PC 톨 기준값.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>03.05</td>
<td>FB A reference 1</td>
<td>필드버스 어댑터 A로부터 입력된 기준값 1입니다. 자세한 사항은 필드버스 어댑터를 통한 필드버스 제어(페이지 55) 장장을 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-100000.00 ... 100000.00 필드버스 A의 기준값 1.</td>
<td>1 = 10</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FBeq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.06</td>
<td>FB A reference 2</td>
<td>필드버스 어댑터 A로부터 입력된 기준값 2입니다.</td>
<td>-</td>
</tr>
<tr>
<td>-100000.00 ... 100000.00</td>
<td>필드버스 A의 기준값 2.</td>
<td>1 = 10</td>
<td></td>
</tr>
<tr>
<td>03.07</td>
<td>FB B reference 1</td>
<td>필드버스 어댑터 B로부터 입력된 기준값 1입니다.</td>
<td>-</td>
</tr>
<tr>
<td>-100000.00 ... 100000.00</td>
<td>필드버스 B의 기준값 1.</td>
<td>1 = 10</td>
<td></td>
</tr>
<tr>
<td>03.08</td>
<td>FB B reference 2</td>
<td>필드버스 어댑터 B로부터 입력된 기준값 2입니다.</td>
<td>-</td>
</tr>
<tr>
<td>-100000.00 ... 100000.00</td>
<td>필드버스 B의 기준값 2.</td>
<td>1 = 10</td>
<td></td>
</tr>
<tr>
<td>03.09</td>
<td>EFB reference 1</td>
<td>임비디드 필드버스 인터페이스로부터 입력된 기준값 1입니다. 스케일링 값은 58.26 EFB ref1 type에 정의됩니다.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>-30000.00 ... 30000.00</td>
<td>스케일링된 임비디드 필드버스 인터페이스의 기준값 1입니다.</td>
<td>1 = 10</td>
<td></td>
</tr>
<tr>
<td>03.10</td>
<td>EFB reference 2</td>
<td>임비디드 필드버스 인터페이스로부터 입력된 기준값 2입니다. 스케일링 값은 58.27 EFB ref2 type에 정의됩니다.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>-30000.00 ... 30000.00</td>
<td>스케일링된 임비디드 필드버스 인터페이스의 기준값 2입니다.</td>
<td>1 = 10</td>
<td></td>
</tr>
<tr>
<td>03.11</td>
<td>DDCS controller ref 1</td>
<td>외부 컨트롤러 (DDCS)로부터 입력된 기준값 1입니다. 스케일링 값은 60.60 DDCS controller ref1 type에 정의됩니다. 내부 컨트롤러 인터페이스 (페이지 38) 점을 참고하십시오.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>-30000.00 ... 30000.00</td>
<td>스케일링된 외부 컨트롤러의 기준값 1.</td>
<td>1 = 10</td>
<td></td>
</tr>
<tr>
<td>03.12</td>
<td>DDCS controller ref 2</td>
<td>외부 컨트롤러 (DDCS)로부터 입력된 기준값 2입니다. 스케일링 값은 60.61 DDCS controller ref2 type에 정의됩니다.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>-30000.00 ... 30000.00</td>
<td>스케일링된 외부 컨트롤러의 기준값 2.</td>
<td>1 = 10</td>
<td></td>
</tr>
<tr>
<td>03.13</td>
<td>M/F or D2D ref1</td>
<td>마스터로부터 입력된 마스터/팔로워 기준값 1입니다. 스케일링 값은 60.10 M/F ref1 type에 정의됩니다. 자세한 사항은 마스터/팔로워 기능 (페이지 31) 점을 참고하십시오.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>-30000.00 ... 30000.00</td>
<td>스케일링된 마스터의 기준값 1.</td>
<td>1 = 10</td>
<td></td>
</tr>
<tr>
<td>03.14</td>
<td>M/F or D2D ref2</td>
<td>마스터로부터 입력된 마스터/팔로워 기준값 2입니다. 스케일링 값은 60.11 M/F ref2 type에 정의됩니다.</td>
<td>1 = 10</td>
</tr>
<tr>
<td>-30000.00 ... 30000.00</td>
<td>스케일링된 마스터의 기준값 2.</td>
<td>1 = 10</td>
<td></td>
</tr>
</tbody>
</table>

04 Warnings and faults

최근 발생된 경고 및 폴트 정보.
개별 경고 및 폴트 코드에 대한 설명은 고장 추적 장을 참고하십시오. 이 그룹에서 별도 표기가 없는 한 모든 파라미터는 읽기 전용입니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>유형/값</th>
<th>설명</th>
<th>Def/FBeq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.01</td>
<td>Tripping fault</td>
<td>첫 번째 폴트 코드 (현재 발생한 트립)입니다.</td>
<td>-</td>
</tr>
<tr>
<td>0000h...FFFFh</td>
<td>첫 번째 폴트.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>04.02</td>
<td>Active fault 2</td>
<td>두 번째 폴트 코드입니다.</td>
<td>-</td>
</tr>
<tr>
<td>0000h...FFFFh</td>
<td>두 번째 폴트.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>04.03</td>
<td>Active fault 3</td>
<td>세 번째 폴트 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>세 번째 폴트.</td>
<td></td>
</tr>
<tr>
<td>04.04</td>
<td>Active fault 4</td>
<td>네 번째 폴트 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>네 번째 폴트.</td>
<td></td>
</tr>
<tr>
<td>04.05</td>
<td>Active fault 5</td>
<td>다섯 번째 폴트 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>다섯 번째 폴트.</td>
<td></td>
</tr>
<tr>
<td>04.06</td>
<td>Active warning 1</td>
<td>첫 번째 경고 코드 (현재 발생한 경고)입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>첫 번째 경고.</td>
<td></td>
</tr>
<tr>
<td>04.07</td>
<td>Active warning 2</td>
<td>두 번째 경고 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>두 번째 경고.</td>
<td></td>
</tr>
<tr>
<td>04.08</td>
<td>Active warning 3</td>
<td>세 번째 경고 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>세 번째 경고.</td>
<td></td>
</tr>
<tr>
<td>04.09</td>
<td>Active warning 4</td>
<td>네 번째 경고 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>네 번째 경고.</td>
<td></td>
</tr>
<tr>
<td>04.10</td>
<td>Active warning 5</td>
<td>다섯 번째 경고 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>다섯 번째 경고.</td>
<td></td>
</tr>
<tr>
<td>04.11</td>
<td>Latest fault</td>
<td>첫 번째 저장된 폴트 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>첫 번째 저장된 폴트.</td>
<td></td>
</tr>
<tr>
<td>04.12</td>
<td>2nd latest fault</td>
<td>두 번째 저장된 폴트 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>두 번째 저장된 폴트.</td>
<td></td>
</tr>
<tr>
<td>04.13</td>
<td>3rd latest fault</td>
<td>세 번째 저장된 폴트 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>세 번째 저장된 폴트.</td>
<td></td>
</tr>
<tr>
<td>04.14</td>
<td>4th latest fault</td>
<td>네 번째 저장된 폴트 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>네 번째 저장된 폴트.</td>
<td></td>
</tr>
<tr>
<td>04.15</td>
<td>5th latest fault</td>
<td>다섯 번째 저장된 폴트 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>다섯 번째 저장된 폴트.</td>
<td></td>
</tr>
<tr>
<td>04.16</td>
<td>Latest warning</td>
<td>첫 번째 저장된 경고 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>첫 번째 저장된 경고.</td>
<td></td>
</tr>
<tr>
<td>04.17</td>
<td>2nd latest warning</td>
<td>두 번째 저장된 경고 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>두 번째 저장된 경고.</td>
<td></td>
</tr>
<tr>
<td>04.18</td>
<td>3rd latest warning</td>
<td>세 번째 저장된 경고 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>세 번째 저장된 경고.</td>
<td></td>
</tr>
<tr>
<td>04.19</td>
<td>4th latest warning</td>
<td>네 번째 저장된 경고 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>네 번째 저장된 경고.</td>
<td></td>
</tr>
<tr>
<td>04.20</td>
<td>5th latest warning</td>
<td>다섯 번째 저장된 경고 코드입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>다섯 번째 저장된 경고.</td>
<td></td>
</tr>
</tbody>
</table>
ACS800 Fault word 1

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.21</td>
<td>Fault word 1</td>
<td>ACS800과 호환 가능한 폴트 워드 1입니다. ACS800에 따라서 해당 워드의 비트가 할당됩니다. 파라미터 04.120 Fault/Warning word compatibility에서 ACS800 Standard 또는 ACS800 System control program을 선택하십시오. 각 비트는 아래 나열된 것처럼 여러 개의 ACS880 이벤트를 표시합니다. 이 파라미터는 워드 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>ACS800 표기</th>
<th>이 비트에 표시된 ACS880의 이벤트</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SHORT CIRC</td>
<td>2340</td>
</tr>
<tr>
<td>1</td>
<td>OVERCURRENT</td>
<td>2310</td>
</tr>
<tr>
<td>2</td>
<td>DC OVERVOLT</td>
<td>3210</td>
</tr>
<tr>
<td>3</td>
<td>ACS800 TEMP</td>
<td>2381, 4210, 4290, 42F1, 4310, 4380</td>
</tr>
<tr>
<td>4</td>
<td>EARTH FAULT</td>
<td>2330, 2392, 3181</td>
</tr>
<tr>
<td>5</td>
<td>THERMISTOR</td>
<td>MOTOR TEMP M 4981</td>
</tr>
<tr>
<td>6</td>
<td>MOTOR TEMP</td>
<td>MOTOR TEMP 4982</td>
</tr>
<tr>
<td>7</td>
<td>SYSTEM_FAULT</td>
<td>SYSTEM_FAULT 6481, 6487, 64A1, 64A2, 64A3, 64B1, 64E1, 6881, 6882, 6883, 6885</td>
</tr>
<tr>
<td>8</td>
<td>UNDERLOAD</td>
<td>UNDERLOAD -</td>
</tr>
<tr>
<td>9</td>
<td>OVFREQ</td>
<td>OVFREQ 7310</td>
</tr>
<tr>
<td>10</td>
<td>Reserved</td>
<td>MPROT SWITCH 9081</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
<td>CH2 COMM LOSS 7582</td>
</tr>
<tr>
<td>12</td>
<td>Reserved</td>
<td>SC (INU1) 2340 (XXYY YY01)</td>
</tr>
<tr>
<td>13</td>
<td>Reserved</td>
<td>SC (INU2) 2340 (XXYY YY02)</td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
<td>SC (INU3) 2340 (XXYY YY03)</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td>SC (INU4) 2340 (XXYY YY04)</td>
</tr>
</tbody>
</table>

0000h...FFFFh ACS800과 호환 가능한 폴트 워드 1. 1 = 1
번호 이름/값

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.22</td>
<td>Fault word 2</td>
</tr>
</tbody>
</table>

설명

ACS800과 호환 가능한 폴트 워드 2입니다. ACS800에 따라 해당 워드의 비트가 할당됩니다.

파라미터 _04.120 Fault/Warning word compatibility_에서 ACS800 Standard 또는 ACS800 System control program을 선택하십시오. 각 비트는 아래 나열된 것처럼 여러 개의 ACS800 이벤트를 표시합니다. 이 파라미터는 읽기 전용입니다.

<table>
<thead>
<tr>
<th>비트</th>
<th>ACS800 폴트 이름</th>
<th>이 비트에 표시된 ACS800의 이벤트</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>SUPPLY PHASE</td>
<td>3130</td>
</tr>
<tr>
<td>1</td>
<td>NO MOT DATA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DC UNDervOLT</td>
<td>3220</td>
</tr>
<tr>
<td>3</td>
<td>Reserved</td>
<td>4000</td>
</tr>
<tr>
<td>4</td>
<td>RUN ENABLE</td>
<td>AFEB</td>
</tr>
<tr>
<td>5</td>
<td>ENCODER ERR</td>
<td>7301, 7380, 7381, 73A0, 73A1</td>
</tr>
<tr>
<td>6</td>
<td>I/O COMM</td>
<td>7080, 7082</td>
</tr>
<tr>
<td>7</td>
<td>CTRL B TEMP</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>EXTERNAL FLT</td>
<td>9082</td>
</tr>
<tr>
<td>9</td>
<td>OVER SWFREQ</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>AI < MIN FUNC</td>
<td>80A0</td>
</tr>
<tr>
<td>11</td>
<td>PPCC LINK</td>
<td>5681, 5682, 5690, 5691, 5692, 5693, 5694, 5695</td>
</tr>
<tr>
<td>12</td>
<td>COMM MODULE</td>
<td>6681, 7510, 7520, 7581</td>
</tr>
<tr>
<td>13</td>
<td>PANEL LOSS</td>
<td>7081</td>
</tr>
<tr>
<td>14</td>
<td>MOTOR STALL</td>
<td>7121</td>
</tr>
<tr>
<td>15</td>
<td>MOTOR PHASE</td>
<td>3381</td>
</tr>
</tbody>
</table>

0000h...FFFFh ACS800과 호환 가능한 폴트 워드 2.

1 = 1
04.31 Warning word 1

AC800과 호환 가능한 경고 워드 1입니다. AC800에 따라서 해당 워드의 비트가 할당됩니다.

파라미터 [04.120 Fault/Warning word compatibility](#)에서 ACS800 Standard 또는 ACS800 System control program을 선택하십시오. 각 비트는 아래 나열된 것처럼 여러 개의 ACS880 이벤트를 표시합니다. 이 파라미터는 읽기 전용입니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.31</td>
<td>Warning word 1</td>
<td>ACS800과 호환 가능한 경고 워드 1입니다. AC800에 따라서 해당 워드의 비트가 할당됩니다. 파라미터 04.120 Fault/Warning word compatibility에서 ACS800 Standard 또는 ACS800 System control program을 선택하십시오. 각 비트는 아래 나열된 것처럼 여러 개의 ACS880 이벤트를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

ACS800 경고 이름 및 이벤트

<table>
<thead>
<tr>
<th>비트</th>
<th>ACS800 경고 이름</th>
<th>이 비트에 표시된 ACS880의 이벤트</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>START INHIBIT</td>
<td>START INHIBI</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
<td>EM STOP</td>
</tr>
<tr>
<td>2</td>
<td>THERMISTOR</td>
<td>MOTOR TEMP M</td>
</tr>
<tr>
<td>3</td>
<td>MOTOR TEMP</td>
<td>MOTOR TEMP</td>
</tr>
<tr>
<td>4</td>
<td>ACS800 TEMP</td>
<td>ACS800 TEMP</td>
</tr>
<tr>
<td>5</td>
<td>ENCODER ERR</td>
<td>ENCODER ERR</td>
</tr>
<tr>
<td>6</td>
<td>T MEAS ALM</td>
<td>T MEAS CIRC</td>
</tr>
<tr>
<td>7</td>
<td>Reserved</td>
<td>DIGITAL IO</td>
</tr>
<tr>
<td>8</td>
<td>Reserved</td>
<td>ANALOG IO</td>
</tr>
<tr>
<td>9</td>
<td>Reserved</td>
<td>EXT DIGITAL IO</td>
</tr>
<tr>
<td>10</td>
<td>Reserved</td>
<td>EXT ANALOG IO</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
<td>CH2 COMM LOSS</td>
</tr>
<tr>
<td>12</td>
<td>COMM MODULE</td>
<td>MPROT SWITCH</td>
</tr>
<tr>
<td>13</td>
<td>Reserved</td>
<td>EM STOP DEC</td>
</tr>
<tr>
<td>14</td>
<td>EARTH FAULT</td>
<td>EARTH FAULT</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td>SAFETY SWITCH</td>
</tr>
</tbody>
</table>

이 목록은 ACS880에서 ACS800과 호환 가능한 이벤트로 표시합니다.

0000h...FFFFh | ACS800과 호환 가능한 경고 워드 1. | 1 = 1
04.120 Fault/Warning word compatibility

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.32</td>
<td>Warning word 2</td>
<td>ACS800과 호환 가능한 경고 워드 2입니다. ACS800에 따라서 해당 워드의 비트가 활성화됩니다. 파라미터 04.120 Fault/Warning word compatibility에서 ACS800 Standard 또는 ACS800 System control program을 선택합니다. 각 비트는 아래 나열된 것처럼 여러 개의 ACS800 이벤트를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>ACS800 경고 이름</th>
<th>이 비트에 표시된 ACS800의 이벤트</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Reserved</td>
<td>MOTOR FAN</td>
</tr>
<tr>
<td>1</td>
<td>UNDERLOAD</td>
<td>UNDERLOAD</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
<td>INV OVERLOAD</td>
</tr>
<tr>
<td>3</td>
<td>Reserved</td>
<td>CABLE TEMP</td>
</tr>
<tr>
<td>4</td>
<td>ENCODER</td>
<td>ENCODER A<>B</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td>FAN OVERTEMP</td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>7</td>
<td>POWFAIL FILE</td>
<td>POWDOWN FILE</td>
</tr>
<tr>
<td>8</td>
<td>ALM (OS_17)</td>
<td>MOTOR STALL</td>
</tr>
<tr>
<td>9</td>
<td>Reserved</td>
<td>BATT FAILURE</td>
</tr>
<tr>
<td>10</td>
<td>AI < MIN FUNC</td>
<td>AI<MIN FUNC</td>
</tr>
<tr>
<td>11</td>
<td>Reserved</td>
<td>COMM MODULE</td>
</tr>
<tr>
<td>12</td>
<td>Reserved</td>
<td>DC UNDERVOLT</td>
</tr>
<tr>
<td>13</td>
<td>PANEL LOSS</td>
<td>PANEL LOSS</td>
</tr>
<tr>
<td>14</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td>STARTED</td>
</tr>
</tbody>
</table>

| 0000h...FFFFh | 04.40 Event word 1 | 사용자 정의된 이벤트 워드입니다. 이 워드는 파라미터 04.41…04.72에 선택한 이벤트 (경고, 경고 또는 순수 이벤트)의 상태를 표시합니다. 각각의 이벤트에 대한 선택을 필터링하기 위해 추가적인 보조 코드 (Auxiliary code)를 지정할 수 있습니다. 이 파라미터는 읽기 전용입니다. |

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User bit 0</td>
<td>1 = 파라미터 04.41 (및 04.42)에서 허용된이벤트.</td>
</tr>
<tr>
<td>1</td>
<td>User bit 1</td>
<td>1 = 파라미터 04.43 (및 04.44)에서 허용된이벤트.</td>
</tr>
<tr>
<td>15</td>
<td>User bit 15</td>
<td>1 = 파라미터 04.71 (및 04.72)에서 허용된이벤트.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000h...FFFFh</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>사용자 정의된 이벤트 워드.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>04.41</td>
<td>Event word 1 bit 0 code</td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>04.42</td>
<td>Event word 1 bit 0 aux code</td>
</tr>
<tr>
<td></td>
<td>0000 0000h ... FFFF FFFFh</td>
</tr>
<tr>
<td>04.43</td>
<td>Event word 1 bit 1 code</td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>04.44</td>
<td>Event word 1 bit 1 aux code</td>
</tr>
<tr>
<td></td>
<td>0000 0000h ... FFFF FFFFh</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td>04.71</td>
<td>Event word 1 bit 15 code</td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
</tr>
<tr>
<td>04.72</td>
<td>Event word 1 bit 15 aux code</td>
</tr>
<tr>
<td></td>
<td>0000 0000h ... FFFF FFFFh</td>
</tr>
<tr>
<td>04.120</td>
<td>Fault/Warning word compatibility</td>
</tr>
<tr>
<td>ACS800 Standard ctrl program</td>
<td>ACS800 Standard control program에 할당된 비트는 다음과 같이 ACS800 Standard control program에 해당합니다.</td>
</tr>
</tbody>
</table>
Parameters 127

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACS800 System ctrl program</td>
<td>파라미터 04.21...04.32에 할당된 비트는 다음과 같이 ACS800 System control program에 해당합니다.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04.21 Fault word 1</td>
<td>09.01 FAULT WORD 1
04.22 Fault word 2</td>
<td>09.02 FAULT WORD 2
04.31 Warning word 1</td>
</tr>
</tbody>
</table>

05 Diagnostics

- 유지 보수와 관련된 다양한 운전 시간 카운터 및 측정 데이터. 이 그룹에서 별도 표기가 없는 한 모든 파라미터는 읽기 전용입니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.01</td>
<td>On-time counter</td>
<td>운-시간 카운터입니다. 전원이 공급되면 카운터가 실행됩니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0...65535 d</td>
<td>운-시간 카운터. 1 = 1 d</td>
<td></td>
</tr>
<tr>
<td>05.02</td>
<td>Run-time counter</td>
<td>모터 운전 시간 카운터입니다. 드라이브가 모듈레이션을 시작하면 카운터가 실행됩니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0...65535 d</td>
<td>모터 운전 시간 카운터. 1 = 1 d</td>
<td></td>
</tr>
<tr>
<td>05.04</td>
<td>Fan on-time counter</td>
<td>드라이브 냉각팬의 운전 시간 카운터입니다. 드라이브에서 리셋 버튼을 3초 이상 누르면 이 카운터는 리셋됩니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0...65535 d</td>
<td>냉각팬 운전 시간 카운터. 1 = 1 d</td>
<td></td>
</tr>
<tr>
<td>05.11</td>
<td>Inverter temperature</td>
<td>추정된 드라이브 온도를 플트 한계에 대한 백분율로 표시합니다. 실제 트립 온도는 드라이브의 탑업에 따라 다소 차이가 있습니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 % = 0 °C (32 °F)
약 94 % = 경고 시작
100.0 % = 플트 한계</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000h...FFFFh</td>
<td>냉각팬 추정 온도. 1 = 1 %</td>
<td></td>
</tr>
<tr>
<td>05.22</td>
<td>Diagnostic word 3</td>
<td>세번째 진단 워드입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름/값</th>
<th>값</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...10</td>
<td>예약된 영역.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Fan command</td>
<td>1 = 드라이브 냉각팬이 공회전 속도 이상으로 회전합니다.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Fan service counter</td>
<td>1 = 드라이브 냉각팬의 서비스 카운터가 제한값에 도달했습니다.</td>
<td></td>
</tr>
<tr>
<td>13...15</td>
<td>예약된 영역.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>0000h...FFFFh</td>
<td>세번째 진단 워드.</td>
<td></td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

05.41 Main fan service counter

- 메인 냉각팬의 수명을 추정한 수명에 대한 백분율로 표시합니다. 추정치는 냉각팬의 드가, 운전 상태, 기타 운전 파라미터를 기반으로 계산됩니다. 이 카운터가 100 %에 도달한 경우에 경고 (A8C0 Fan service counter) 를 발생시킵니다. 제어 패널에서 리셋 버튼을 3초 이상 누르면 이 카운터는 리셋됩니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>값</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0...150%</td>
<td>메인 냉각팬의 수명.</td>
<td></td>
<td>1 = 1 %</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>05.42</td>
<td>Aux. fan service counter</td>
<td>보조 네강판의 수명을 추정하는 수명에 대한 백분율로 표시됩니다. 추정치는 네강판의 투터, 운전 상태, 기타 운전 파라미터를 기반으로 계산됩니다. 이 카운터가 100%에 도달한 경우에 경고 (A8C0 Fan service counter)를 발생시킵니다. 제어 패널에서 레셋 버튼을 3조 이상 누르면 이 카운터는 리셋됩니다.</td>
<td>-</td>
</tr>
<tr>
<td>0...150%</td>
<td></td>
<td>보조 네강판의 수명.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>05.111</td>
<td>Line converter temperature</td>
<td>(95.20에서 IGBT 서울라이 유닛 제어를 허용한 경우에만 표시됨.) 추정된 드라이브 온도를 폴트 한계에 대한 백분율로 표시합니다. 0.0% = 0 °C (32 °F) 약 94% = 경고 시작 100.0% = 폴트 한계</td>
<td>-</td>
</tr>
<tr>
<td>-40.0 ... 160.0%</td>
<td>서울라이 유닛 수명 온도.</td>
<td>1 = 1%</td>
<td></td>
</tr>
<tr>
<td>05.121</td>
<td>MCB closing counter</td>
<td>(95.20에서 IGBT 서울라이 유닛 제어를 허용한 경우에만 표시됨.) 서울라이 유닛에 설치된 메인 차단기(Main circuit breaker)의 닫힘 횟수를 카운트합니다.</td>
<td>-</td>
</tr>
<tr>
<td>0...4294967295</td>
<td>메인 차단기의 닫힘 횟수 카운트.</td>
<td>1 = 1</td>
<td></td>
</tr>
</tbody>
</table>

06 Control and status words

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.01</td>
<td>Main control word</td>
<td>드라이브의 메인 제어 워드입니다. 이 파라미터는 선택된 소스 (디지털 입력, 필드버스 인터페이스 및 응용 프로그램)로부터 입력된 제어 신호를 보여줍니다. 이 워드의 할당 비트는 페이지 557에 자세히 설명되어 있습니다. 그리고 이와 관련된 상태 워드 및 상태 블록도는 각각 페이지 558과 559에 나타내었습니다. Note: 비트 12…15는 추가적인 제어용 데이터로 사용될 수 있으며, 2진수 소스 선택 파라미터에 의해 신호 소스로 사용될 수도 있습니다. 이 파라미터는 일기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>0000h…FFFFh</td>
<td>메인 제어 워드.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>06.02</td>
<td>Application control word</td>
<td>응용 프로그램으로부터 수신된 드라이브의 제어 워드입니다. 이 워드의 할당 비트는 페이지 557에 자세히 설명되어 있습니다. 이 파라미터는 일기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>0000h…FFFFh</td>
<td>응용 프로그램 제어 워드.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>06.03</td>
<td>FBA A transparent control word</td>
<td>파라미터 그룹 51 FBA A settings에서 통신 프로파일을 투과형 모드 (Transparent mode)로 선택한 경우에는 PLC에서 필드버스 어댑터 A로 전송한 제어 워드입니다. 이에 대한 자세한 사항은 제어 워드 및 상태 워드 (페이지 554) 절을 참고하십시오. 이 파라미터는 일기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>00000000h ... FFFFFFFFh</td>
<td>필드버스 어댑터 A를 통해 수신된 제어 워드.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>06.04</td>
<td>FBA B transparent control word</td>
<td>파라미터 그룹 54 FBA B settings에서 통신 프로파일을 투과형 모드로 선택한 경우에 PLC에서 필드버스 어댑터 B로 전송한 제어 워드입니다. 자세한 사항은 제어 워드 및 상태 워드 (페이지 554) 절을 참고하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>00000000h…FFFDFF00h</td>
<td>필드버스 어댑터 B를 통해 수신된 제어 워드.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.05</td>
<td>EFB transparent control word</td>
<td>파라미터 58.25 Control profile에서 통신 프로파일을 투과형 모드로 선택한 경우에 PLC에서 임베디드 필드버스 인터페이스로 전송한 제어 워드입니다. 이에 대한 자세한 사항은 투과형 프로파일 (페이지 544) 절을 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>00000000h…FFFDFF00h</td>
<td>임베디드 필드버스 인터페이스에서 수신된 제어 워드.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.11</td>
<td>Main status word</td>
<td>드라이브의 메인 상태 워드. 이 워드의 할당 비트는 페이지 558에 자세히 설명되어 있습니다. 그리고 이와 관련된 제어 워드 및 상태 블록도는 각각 페이지 557과 559에 나타내었습니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000h…FFFFh</td>
<td>메인 상태 워드.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>06.16</td>
<td>Drive status word 1</td>
<td>드라이브의 상태 워드 1입니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled</td>
<td>1 = 운전 허용 (20.12) 및 시작 허용 (20.19) 신호가 모두 입력되었고 STO 기능이 해제되었습니다.</td>
</tr>
</tbody>
</table>
Notes:
* I/O 또는 로컬 제어에서 이 비트가 0으로 클리어되면 SWITCH-ON INHIBITED 상태(페이지 558)가 됩니다. *
* 이 비트는 풀트의 영향을 받지 않습니다. |
| 1 | Inhibited | 1 = 드라이브의 시작이 금지되었습니다. 금지 신호(Inhibiting signal)의 소스는 파라미터 06.18 및 06.25에서 확인할 수 있습니다. |
| 2 | DC charged | 1 = DC 회로가 충전되었습니다. DC 스위치가 닫히고 충전 스위치가 열립니다. 0 = 충전이 완료되지 않았습니다. 만약 인버터 유닛에 DC 스위치(옵션 +F286)가 설치되지 않은 경우에는 95.09의 설정을 확인하십시오. |
| 3 | Ready to start | 1 = 드라이브가 시작 명령을 수신할 준비가 되었습니다. |
| 4 | Following reference | 1 = 드라이브가 주어진 기준 소스에 따라 운전될 준비가 되었습니다. |
| 5 | Started | 1 = 드라이브가 시작되었습니다. |
| 6 | Modulating | 1 = 드라이브가 모듈레이션을 시작하였습니다. |
| 7 | Limiting | 1 = 드라이브 운전이 제한되었습니다. (속도, 토크 제한 등) |
| 8 | Local control | 1 = 드라이브가 로컬 제어 상태입니다. |
| 9 | Network ctrl | 1 = 드라이브가 네트워크 제어 상태 (페이지 14) 입니다. |
| 10 | Ext1 active | 1 = 제어 위치가 EXT1입니다. |
| 11 | Ext2 active | 1 = 제어 위치가 EXT2입니다. |
| 12 | Reserved | |
| 13 | Start request | 1 = 드라이브의 시작이 요청되었습니다. |
| 14…15 | Reserved | |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h…FFFFh</td>
<td>Drive status word 1.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>06.17</td>
<td>Drive status word 2</td>
<td>드라이브의 상태 워드 2. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Identification run done</td>
<td>1 = 모터 ID run이 완료되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Magnetized</td>
<td>1 = 모터가 자화되었습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Torque control</td>
<td>1 = 토크 제어 모드입니다.</td>
</tr>
<tr>
<td>3</td>
<td>Speed control</td>
<td>1 = 속도 제어 모드입니다.</td>
</tr>
<tr>
<td>4</td>
<td>Reserved</td>
<td>예약된 영역.</td>
</tr>
<tr>
<td>5</td>
<td>Safe reference active</td>
<td>1 = 파라미터 49.05 및 50.02와 같은 기능에 의해 안전 속도 (Safe speed)로 동작하고 있습니다.</td>
</tr>
<tr>
<td>6</td>
<td>Last speed active</td>
<td>1 = 파라미터 49.05 및 50.02와 같은 기능에 의해 마지막 속도 (Last speed)로 동작하고 있습니다.</td>
</tr>
<tr>
<td>7</td>
<td>Loss of reference</td>
<td>1 = 기준 신호가 손실되었습니다.</td>
</tr>
<tr>
<td>8</td>
<td>Emergency stop failed</td>
<td>1 = 비상 정지를 실패하였습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(파라미터 31.32 및 31.33를 확인하십시오.)</td>
</tr>
<tr>
<td>9</td>
<td>Jogging active</td>
<td>1 = 조깅 허용 신호가 온되었습니다.</td>
</tr>
<tr>
<td>10</td>
<td>Above limit</td>
<td>1 = 실제 속도, 주파수, 또는 토크가 파라미터 46.31…46.33의 설정값과 같거나 초과되었습니다. 양방향에서 동일하게 적용됩니다.</td>
</tr>
<tr>
<td>11</td>
<td>Emergency stop active</td>
<td>1 = 비상 정지 명령이 허용되었거나 드라이브가 비상 정지 명령을 받은 후에 정지하고 있습니다.</td>
</tr>
<tr>
<td>12</td>
<td>Reduced run</td>
<td>1 = 드라이브 축소 운전 기능이 허용되었습니다. (페이지 92를 확인하십시오.)</td>
</tr>
<tr>
<td>13</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Stop failed</td>
<td>1 = 정지를 실패하였습니다. (파라미터 31.37 및 31.38 참고)</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0000h…FFFH</td>
<td>드라이브의 상태 워드 2.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>06.18</td>
<td>Start inhibit status word</td>
<td>드라이브의 시작 금지 상태 워드 1입니다. 이 워드는 드라이브가 시작되지 못한 조건을 나타냅니다. 이 상태가 해제된 후에는 다시 시작 명령을 입력해야 합니다. 또한 06.25 Drive inhibit status word 2 및 06.16 Drive status word 1의 비트 1을 확인하십시오. 이 파라미터는 잦기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Not ready run</td>
<td>1 = DC 전압이 없거나 파라미터 설정이 올바르지 않아 시작이 금지되었습니다. (파라미터 그룹 95 및 99을 확인하십시오.)</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>Ctrl location changed</td>
<td>1 = 제어 위치가 변경되어 시작이 금지되었습니다.</td>
<td>a,c</td>
</tr>
<tr>
<td>2</td>
<td>SSW inhibit</td>
<td>1 = 제어 프로그램 자체에 의해 시작이 금지되었습니다.</td>
<td>a</td>
</tr>
<tr>
<td>3</td>
<td>Fault reset</td>
<td>1 = 폴트가 발생하여 시작이 금지되었습니다.</td>
<td>a,c</td>
</tr>
<tr>
<td>4</td>
<td>Lost start enable</td>
<td>1 = 시작 허용 신호가 입력되지 않아 시작이 금지되었습니다.</td>
<td>a</td>
</tr>
<tr>
<td>5</td>
<td>Lost run enable</td>
<td>1 = 운전 허용 신호가 입력되지 않아 시작이 금지되었습니다.</td>
<td>a</td>
</tr>
<tr>
<td>6</td>
<td>FSO inhibit</td>
<td>1 = FSO-xx 안전 기능 모듈에 의해 시작이 금지되었습니다.</td>
<td>b</td>
</tr>
<tr>
<td>7</td>
<td>STO</td>
<td>1 = STO 기능이 동작하여 시작이 금지되었습니다.</td>
<td>b</td>
</tr>
<tr>
<td>8</td>
<td>Current calibration ended</td>
<td>1 = 전류 보정하는 과정이 완료되어 시작이 금지되었습니다.</td>
<td>b,c</td>
</tr>
<tr>
<td>9</td>
<td>ID run ended</td>
<td>1 = 모터 ID run이 완료되어 시작이 금지되었습니다.</td>
<td>b,c</td>
</tr>
<tr>
<td>10</td>
<td>Auto phase ended</td>
<td>1 = 오토 페이지팅 과정이 완료되어 시작이 금지되었습니다.</td>
<td>b,c</td>
</tr>
<tr>
<td>11</td>
<td>Em Off1</td>
<td>1 = 비상 정지 신호 Off1에 의해 시작이 금지되었습니다.</td>
<td>b</td>
</tr>
<tr>
<td>12</td>
<td>Em Off2</td>
<td>1 = 비상 정지 신호 Off2에 의해 시작이 금지되었습니다.</td>
<td>b</td>
</tr>
<tr>
<td>13</td>
<td>Em Off3</td>
<td>1 = 비상 정지 신호 Off3에 의해 시작이 금지되었습니다.</td>
<td>b</td>
</tr>
<tr>
<td>14</td>
<td>Auto reset inhibit</td>
<td>1 = 오토 리셋 기능에 의해 시작이 금지되었습니다.</td>
<td>b</td>
</tr>
<tr>
<td>15</td>
<td>Jogging active</td>
<td>1 = 조깅 허용 신호에 의해 시작이 금지되었습니다.</td>
<td>b</td>
</tr>
</tbody>
</table>

Notes:

a. 만약 시작 금지 조건이 해제된 후에도 06.16 Drive status word 1의 비트 1이 0로 설정되어 있고 외부 제어의 시작 명령이 에지 트리거로 설정되어 있다면, 새로운 시작 명령이 입력되어야 합니다. 자세한 사항은 20.02, 20.07 및 20.19를 확인하십시오.

b. 만약 시작 금지 조건이 해제된 후에도 06.16 Drive status word 1의 비트 1이 0로 설정되어 있다면 새로운 시작 명령이 입력되어야 합니다.

c. 사용자가 시작 금지 조건을 해제할 필요가 없습니다.

<p>| 0000h...FFFFh | 드라이브의 시작 금지 상태 워드 1. | 1 = 1 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.19</td>
<td>Speed control status word</td>
<td>속도 제어 상태 워드. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

### 비트	이름	설명
0	Zero speed	1 = 드라이브가 영속도로 운전하고 있습니다. 파라미터 90.01 Motor speed for control의 젤릿값이 21.07 Zero speed delay 보다 장시간 동안 21.06 Zero speed limit 아래로 유지되었습니다.
Notes:
- 이 비트는 기계 브레이크 제어가 파라미터 44.06에 의해 허용되고 드라이브가 모듈레이션 중인 경우에는 업데이트되지 않습니다.
- 드라이브가 캠프 정지하는 동안에 정방향으로 운전 중일 때에는 [90.01] < +[21.06] 때마다 지연 카운트가 실행됩니다. 반면에 역방향으로 운전 중일 때에는 90.01 > [21.06] 때마다 지연 카운트가 실행됩니다.
| 1 | Forward | 1 = 드라이브가 영속도 제한값 이상에서 정방향으로 동작하고 있습니다. |
| 2 | Reverse | 1 = 드라이브가 영속도 제한값 이상에서 역방향으로 동작하고 있습니다. |
| 3 | Out of window | 1 = 속도 오차 원도우 기능이 동작하였습니다. (파라미터 24.41 참고) |
| 4 | Internal speed feedback | 1 = 모터 제어에서 추정된 속도 피드백을 사용하고 있습니다. 예를 들어, 파라미터 90.41 또는 90.46를 추정 속도로 선택하였거나 파라미터 90.45에서 선택된 엔코더에서 풀트가 발생한 경우입니다.
0 = 속도 피드백으로 엔코더 1 또는 엔코더 2를 사용하고 있습니다. (파라미터 90.41 및 90.46 참고) |
| 5 | Encoder 1 feedback | 1 = 모터 제어에서 엔코더 1을 피드백으로 사용하고 있습니다.
0 = 엔코더 1에서 풀트가 발생하였거나 속도 피드백 장치로 선택되지 않았습니다. (파라미터 90.41 및 90.46 참고) |
| 6 | Encoder 2 feedback | 1 = 모터 제어에서 엔코더 2를 피드백으로 사용하고 있습니다.
0 = 엔코더 2에서 풀트가 발생하였거나 속도 피드백 장치로 선택되지 않았습니다. (파라미터 90.41 및 90.46 참고) |
| 7 | Any constant speed request | 1 = 일정 속도 또는 일정 주파수 기능이 선택되었습니다. (파라미터 06.20 참고) |
| 8 | Follower speed corr min lim | 1 = 속도 제어 팔로워의 속도 보정값이 최솟값에 도달하였습니다. (파라미터 23.39…23.41 참고) |
| 9 | Follower speed corr max lim | 1 = 속도 제어 팔로워의 속도 보정값이 최댓값에 도달하였습니다. (파라미터 23.39…23.41 참고) |
| 10…15| Reserved | |

0000h...FFFFh 속도 제어 상태 워드. 1 = 1
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.20</td>
<td>Constant speed status word</td>
<td>일정 속도/주파수 상태 워드. 일정 속도 또는 일정 주파로 동작 중인 상태를 표시합니다. 또한 파라미터 06.19 Speed control status word의 비트 7을 확인하십시오. 자세한 사항은 [일정 속도/주파수 설정](페이지 43) 절을 참고하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Constant speed 1</td>
<td>1 = 일정 속도 또는 주파수 1 선택</td>
</tr>
<tr>
<td>1</td>
<td>Constant speed 2</td>
<td>1 = 일정 속도 또는 주파수 2 선택</td>
</tr>
<tr>
<td>2</td>
<td>Constant speed 3</td>
<td>1 = 일정 속도 또는 주파수 3 선택</td>
</tr>
<tr>
<td>3</td>
<td>Constant speed 4</td>
<td>1 = 일정 속도 또는 주파수 4 선택</td>
</tr>
<tr>
<td>4</td>
<td>Constant speed 5</td>
<td>1 = 일정 속도 또는 주파수 5 선택</td>
</tr>
<tr>
<td>5</td>
<td>Constant speed 6</td>
<td>1 = 일정 속도 또는 주파수 6 선택</td>
</tr>
<tr>
<td>6</td>
<td>Constant speed 7</td>
<td>1 = 일정 속도 또는 주파수 7 선택</td>
</tr>
<tr>
<td>7…15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.21</td>
<td>Drive status word 3</td>
<td>드라이브의 상태 워드. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DC hold active</td>
<td>1 = DC 홀드 기능이 동작하고 있습니다. (파라미터 21.08 참고)</td>
</tr>
<tr>
<td>1</td>
<td>Post-magnetizing active</td>
<td>1 = 사후 자화 기능이 동작하고 있습니다. (파라미터 21.08 참고)</td>
</tr>
<tr>
<td>2</td>
<td>Motor pre-heating active</td>
<td>1 = 모터 예열 기능이 동작하고 있습니다. (파라미터 21.14 참고)</td>
</tr>
<tr>
<td>3</td>
<td>Smooth start active</td>
<td>예약된 영역.</td>
</tr>
<tr>
<td>4</td>
<td>Rotor position known</td>
<td>1 = 회전자 위치가 검출되었습니다. 자세한 사항은 [오토 페이지](페이지 59)를 확인하십시오.</td>
</tr>
<tr>
<td>5…15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h…FFFFh</td>
<td>드라이브의 상태 워드 3.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.25</td>
<td>Drive inhibit status word 2</td>
<td>드라이브의 시작 금지 상태 워드 2. 이 워드는 드라이브가 시작되지 못한 조건을 나타냅니다. 이 상태가 해제된 후에는 다시 시작 명령을 입력해야 합니다. 또한 06.18 Start inhibit status word 및 06.16 Drive status word 1의 비트 1을 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Follower drive</td>
<td>1 = 팔로워에 의해 마스터의 시작이 금지되었습니다.</td>
<td>a</td>
</tr>
<tr>
<td>1</td>
<td>Application</td>
<td>1 = 응용 프로그램에 의해 시작이 금지되었습니다.</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Encoder feedback</td>
<td>1 = 엔코더 피드백 구성에 의해 시작이 금지되었습니다.</td>
<td>a</td>
</tr>
<tr>
<td>4</td>
<td>Ref source parametrization</td>
<td>1 = 기존 소스 파라미터의 충돌로 인해 시작이 금지되었습니다. 경고 A6DA Reference source parametrization을 확인하십시오. (페이지 497 참조).</td>
<td>b</td>
</tr>
<tr>
<td>5...15</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:

- 만약 시작 금지 조건이 해제된 후에도 06.16 Drive status word 1의 비트 1이 1로 세트되어 있고 외부 제어의 시작 명령이 예지 트리거로 설정되어 있다면, 새로운 시작 명령이 입력되어야 합니다. 자세한 사항은 20.02, 20.07 및 20.19를 확인하십시오.

- 만약 시작 금지 조건이 해제된 후에도 06.16 Drive status word 1의 비트 1이 1로 세트되어 있다면 새로운 시작 명령이 입력되어야 합니다.

<table>
<thead>
<tr>
<th>0000h...FFFFh</th>
<th>드라이브의 시작 금지 상태 워드 2.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.29</td>
<td>MSW bit 10 sel</td>
<td>06.11 Main status word의 비트 10으로 전송한 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td>0.</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td>1.</td>
</tr>
<tr>
<td>Above limit</td>
<td>06.17 Drive status word 2</td>
<td>06.11 Main status word의 비트 10으로 표시할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td>Other [bit]</td>
<td></td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>06.30</td>
<td>MSW bit 11 sel</td>
<td>06.11 Main status word의 비트 11에서 표시할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td>0.</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td>1.</td>
</tr>
<tr>
<td>Ext ctrl loc</td>
<td>06.01 Main control word</td>
<td>06.11 Main status word의 비트 11에서 표시할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td>Other [bit]</td>
<td></td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>06.31</td>
<td>MSW bit 12 sel</td>
<td>06.11 Main status word의 비트 12에서 표시할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td>0.</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td>1.</td>
</tr>
<tr>
<td>Ext run enable</td>
<td>06.18 Start inhibit status word</td>
<td>06.11 Main status word의 반전 비트 5. (페이지 132 참조).</td>
</tr>
<tr>
<td>Other [bit]</td>
<td></td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>06.32</td>
<td>MSW bit 13 sel</td>
<td>06.11 Main status word의 비트 13에서 표시할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>06.33</td>
<td>MSW bit 14 sel</td>
<td>06.11 Main status word의 비트 14에서 표시할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>06.36</td>
<td>LSU Status Word</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 서플라이 유닛의 상태 정보를 나타냅니다. 또한 서플라이 유닛 제어 (페이지 40), 및 파라미터 그룹 60 DDCS communication을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ready on</td>
<td>1 = 시작 금지 항목들이 제거되어 메인 차단기를 동작시킬 준비가 되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Ready run</td>
<td>1 = DC 링크가 충전되었습니다. 그러나 모듈레이션을 시작하지 않습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Ready ref</td>
<td>1 = 정상적으로 운전할 준비가 되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Tripped</td>
<td>1 = 폴트가 발생하였습니다.</td>
</tr>
<tr>
<td>4…6</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Warning</td>
<td>1 = 경고가 발생하였습니다.</td>
</tr>
<tr>
<td>8</td>
<td>Modulating</td>
<td>1 = 서플라이 유닛의 모듈레이션을 시작하였습니다.</td>
</tr>
<tr>
<td>9</td>
<td>Remote</td>
<td>1 = 외부 제어 상태입니다. (EXT1 또는 EXT2) 0 = 로컬 제어 상태입니다.</td>
</tr>
<tr>
<td>10</td>
<td>Net ok</td>
<td>1 = 공급 전원이 정상적으로 입력되었습니다.</td>
</tr>
<tr>
<td>11…12</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Charging or ready run</td>
<td>1 = 비트 1 또는 비트 14가 1로 셋트되어 있습니다.</td>
</tr>
<tr>
<td>14</td>
<td>Charging</td>
<td>1 = 충전 접촉기가 닫히었습니다.</td>
</tr>
<tr>
<td>15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

| | Supply unit status word. | 1 = 1 |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h</td>
<td>FFFFh</td>
<td>Supply unit status word.</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.39</td>
<td>Internal state machine LSU CW</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) INU-LSU (inverter unit/supply unit) 상태 메신을 통해 서플라이 유닛으로 보내지는 제어 워드입니다. 이 파라미터는 임시 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ON/OFF</td>
<td>1 = 중전을 시작합니다. 0 = 메인 접촉기를 열습니다.</td>
</tr>
<tr>
<td>1</td>
<td>OFF 2</td>
<td>0 = 비상 정지 (Off2)</td>
</tr>
<tr>
<td>2</td>
<td>OFF 3</td>
<td>0 = 비상 정지 (Off3)</td>
</tr>
<tr>
<td>3</td>
<td>START</td>
<td>1 = 모듈레이션을 시작합니다. 0 = 모듈레이션을 중단합니다.</td>
</tr>
<tr>
<td>4...6</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RESET</td>
<td>0 -> 1 = 플럿을 리셋합니다. 리셋 후에 새로운 시작 명령이 입력되어야 합니다.</td>
</tr>
<tr>
<td>8...11</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>USER BIT 0</td>
<td>파라미터 06.40 LSU CW user bit 0 selection을 확인하십시오.</td>
</tr>
<tr>
<td>13</td>
<td>USER BIT 1</td>
<td>파라미터 06.41 LSU CW user bit 1 selection을 확인하십시오.</td>
</tr>
<tr>
<td>14</td>
<td>USER BIT 2</td>
<td>파라미터 06.42 LSU CW user bit 2 selection을 확인하십시오.</td>
</tr>
<tr>
<td>15</td>
<td>USER BIT 3</td>
<td>파라미터 06.43 LSU CW user bit 3 selection을 확인하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000h...FFFFh</th>
<th>서플라이 유닛 제어 워드.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.40</td>
<td>LSU CW user bit 0 selection</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 06.39 Internal state machine LSU CW의 비트 12로 전송할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td>False</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>MCW user bit 0</td>
<td>06.01 Main control word의 비트 12 (페이지 128 참고).</td>
<td>2</td>
</tr>
<tr>
<td>MCW user bit 1</td>
<td>06.01 Main control word의 비트 13 (페이지 128 참고).</td>
<td>3</td>
</tr>
<tr>
<td>MCW user bit 2</td>
<td>06.01 Main control word의 비트 14 (페이지 128 참고).</td>
<td>4</td>
</tr>
<tr>
<td>MCW user bit 3</td>
<td>06.01 Main control word의 비트 15 (페이지 128 참고).</td>
<td>5</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>06.41</td>
<td>LSU CW user bit 1 selection</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 06.39 Internal state machine LSU CW의 비트 13으로 전송할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td>False</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>MCW user bit 0</td>
<td>06.01 Main control word의 비트 12 (페이지 128 참고).</td>
<td>2</td>
</tr>
<tr>
<td>MCW user bit 1</td>
<td>06.01 Main control word의 비트 13 (페이지 128 참고).</td>
<td>3</td>
</tr>
<tr>
<td>MCW user bit 2</td>
<td>06.01 Main control word의 비트 14 (페이지 128 참고).</td>
<td>4</td>
</tr>
<tr>
<td>MCW user bit 3</td>
<td>06.01 Main control word의 비트 15 (페이지 128 참고).</td>
<td>5</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>06.42</td>
<td>LSU CW user bit 2 selection</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 06.39 Internal state machine LSU CW의 비트 14로 전송할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td>False</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 0</td>
<td>06.01 Main control word의 비트 12 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 1</td>
<td>06.01 Main control word의 비트 13 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 2</td>
<td>06.01 Main control word의 비트 14 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 3</td>
<td>06.01 Main control word의 비트 15 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>06.43</td>
<td>LSU CW user bit 3 selection</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용할 경우에만 표시됨.) 06.39 Internal state machine LSU CW의 비트 15로 전송할 2진수 상태 소스를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 0</td>
<td>06.01 Main control word의 비트 12 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 1</td>
<td>06.01 Main control word의 비트 13 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 2</td>
<td>06.01 Main control word의 비트 14 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 3</td>
<td>06.01 Main control word의 비트 15 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>06.45</td>
<td>Follower CW user bit 0 selection</td>
<td>팔로워측 제어 라이트의 비트 12로 전송할 2진수 상태 소스를 선택합니다. (단, 비트 0...11은 06.01 Main control word에서 가져옵니다.) 차세한 사항은 마스터/팔로워 기능 (페이지 31) 절을 참고하시오.</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 0</td>
<td>06.01 Main control word의 비트 12 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 1</td>
<td>06.01 Main control word의 비트 13 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 2</td>
<td>06.01 Main control word의 비트 14 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 3</td>
<td>06.01 Main control word의 비트 15 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>06.46</td>
<td>Follower CW user bit 1 selection</td>
<td>팔로워 제어 라이트의 비트 13으로 전송할 2진수 상태 소스를 선택합니다. (단, 비트 0...11은 06.01 Main control word에서 가져옵니다.)</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 0</td>
<td>06.01 Main control word의 비트 12 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 1</td>
<td>06.01 Main control word의 비트 13 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 2</td>
<td>06.01 Main control word의 비트 14 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 3</td>
<td>06.01 Main control word의 비트 15 (페이지 128 참고).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>06.47</td>
<td>Follower CW user bit 2 selection</td>
<td>팔로워측 제어 라이트의 비트 14로 전송할 2진수 상태 소스를 선택합니다. (단, 비트 0...11은 06.01 Main control word에서 가져옵니다.)</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>MCW user bit 0</td>
<td>6.01 Main control word의 비트 12 (페이지 128 참고).</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>MCW user bit 1</td>
<td>06.01 Main control word의 비트 13 (페이지 128 참고).</td>
<td></td>
</tr>
<tr>
<td>MCW user bit 2</td>
<td>06.01 Main control word의 비트 14 (페이지 128 참고).</td>
<td></td>
</tr>
<tr>
<td>MCW user bit 3</td>
<td>06.01 Main control word의 비트 15 (페이지 128 참고).</td>
<td></td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td></td>
</tr>
</tbody>
</table>

06.48 Follower CW user bit 3 selection

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>0.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>1.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MCW user bit 0</td>
<td>06.01 Main control word의 비트 12 (페이지 128 참고).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MCW user bit 1</td>
<td>06.01 Main control word의 비트 13 (페이지 128 참고).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MCW user bit 2</td>
<td>06.01 Main control word의 비트 14 (페이지 128 참고).</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MCW user bit 3</td>
<td>06.01 Main control word의 비트 15 (페이지 128 참고).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

06.50 User status word 1

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User status bit 0</td>
<td>사용자 정의 상태 워드. 이 워드는 파라미터 06.60...06.75에서 선택된 2진수 소스의 상태를 나타냅니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td>1</td>
<td>User status bit 1</td>
<td></td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>15</td>
<td>User status bit 15</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h...FFFFh</td>
<td>사용자 정의 상태 워드.</td>
<td>1 = 1</td>
<td></td>
</tr>
</tbody>
</table>

06.60 User status word 1 bit 0 sel

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>0.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>1.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

06.61 User status word 1 bit 1 sel

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>0.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>1.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

06.62 User status word 1 bit 2 sel

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>0.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>True</td>
<td>1.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency stop failed</td>
<td>06.17 Drive status word 2의 비트 8 (페이지 131 참고).</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 06.63 | User status word 1
bit 3 sel | 06.50 User status word 1의 비트 3에서 표시할 2진수 상태 소스를 선택합니다. | Magnetized |
| | False | 0. | 0 |
| | True | 1. | 1 |
| | Magnetized | 06.17 Drive status word 2의 비트 1 (페이지 131 참고). | 2 |
| | Other [bit] | 기타 소스 선택. | - |
| 06.64 | User status word 1
bit 4 sel | 06.50 User status word 1의 비트 4에서 표시할 2진수 상태 소스를 선택합니다. | Run disable |
| | False | 0. | 0 |
| | True | 1. | 1 |
| | Run disable | 06.18 Start inhibit status의 비트 5 (페이지 132 참고). | 2 |
| | Other [bit] | 기타 소스 선택. | - |
| 06.65 | User status word 1
bit 5 sel | 06.50 User status word 1의 비트 5에서 표시할 2진수 상태 소스를 선택합니다. | False |
| | False | 0. | 0 |
| | True | 1. | 1 |
| | Other [bit] | 기타 소스 선택. | - |
| 06.66 | User status word 1
bit 6 sel | 06.50 User status word 1의 비트 6에서 표시할 2진수 상태 소스를 선택합니다. | False |
| | False | 0. | 0 |
| | True | 1. | 1 |
| | Other [bit] | 기타 소스 선택. | - |
| 06.67 | User status word 1
bit 7 sel | 06.50 User status word 1의 비트 7에서 표시할 2진수 상태 소스를 선택합니다. | Identification run done |
| | False | 0. | 0 |
| | True | 1. | 1 |
| | Identification run done | 06.17 Drive status word 2의 비트 0 (페이지 131 참고). | 2 |
| | Other [bit] | 기타 소스 선택. | - |
| 06.68 | User status word 1
bit 8 sel | 06.50 User status word 1의 비트 8에서 표시할 2진수 상태 소스를 선택합니다. | Start inhibition |
| | False | 0. | 0 |
| | True | 1. | 1 |
| | Start inhibition | 06.18 Start inhibit status word의 비트 7 (페이지 132 참고). | 2 |
| | Other [bit] | Source selection (see Terms and abbreviations on page 112). | - |
| 06.69 | User status word 1
bit 9 sel | 06.50 User status word 1의 비트 9에서 표시할 2진수 상태 소스를 선택합니다. | Limiting |
| | False | 0. | 0 |
| | True | 1. | 1 |
| | Limiting | 06.16 Drive status word 1의 비트 7 (페이지 130 참고). | 2 |
| | Other [bit] | 기타 소스 선택. | - |
| 06.70 | User status word 1
bit 10 sel | 06.50 User status word 1의 비트 10에서 표시할 2진수 상태 소스를 선택합니다. | Torque control |
<p>| | False | 0. | 0 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>Torque control</td>
<td>06.17 Drive status word 2의 비트 2 (페이지 131 참고).</td>
</tr>
<tr>
<td>Other [bit]</td>
<td></td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>06.71 User status word 1 bit 11 sel</td>
<td>06.50 User status word 1의 비트 11에서 표시할 2진수 상태 소스를 선택합니다.</td>
<td>Zero speed</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Zero speed</td>
<td>06.19 Speed control status word의 비트 0 (페이지 133 참고).</td>
<td>2</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>06.72 User status word 1 bit 12 sel</td>
<td>06.50 User status word 1의 비트 12에서 표시할 2진수 상태 소스를 선택합니다.</td>
<td>Internal speed feedback</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Internal speed feedback</td>
<td>06.19 Speed control status word의 비트 4 (페이지 133 참고).</td>
<td>2</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>06.73 User status word 1 bit 13 sel</td>
<td>06.50 User status word 1의 비트 13에서 표시할 2진수 상태 소스를 선택합니다.</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>06.74 User status word 1 bit 14 sel</td>
<td>06.50 User status word 1의 비트 14에서 표시할 2진수 상태 소스를 선택합니다.</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>06.75 User status word 1 bit 15 sel</td>
<td>06.50 User status word 1의 비트 15에서 표시할 2진수 상태 소스를 선택합니다.</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>True</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>06.100 User control word 1</td>
<td>사용자 정의 제어 워드 1입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User control word 1 bit 0</td>
<td>사용자 정의 비트.</td>
</tr>
<tr>
<td>1</td>
<td>User control word 1 bit 1</td>
<td>사용자 정의 비트.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>User control word 1 bit 15</td>
<td>사용자 정의 비트.</td>
</tr>
</tbody>
</table>

0000h…FFFFh 사용자 정의 제어 워드 1. 1 = 1
06.101 User control word 2

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>User control word 2 bit 0</td>
<td>사용자 정의 비트.</td>
</tr>
<tr>
<td>1</td>
<td>User control word 2 bit 1</td>
<td>사용자 정의 비트.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>User control word 2 bit 15</td>
<td>사용자 정의 비트.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>주소</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h...FFFFh</td>
<td>사용자 정의 제어 워드 2.</td>
</tr>
</tbody>
</table>

06.116 LSU drive status word 1

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enabled</td>
<td>1 = 운전 허용 및 시작 허용 신호가 입력되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Inhibited</td>
<td>1 = 드라이브의 시작이 금지되었습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Operation allowed</td>
<td>1 = 드라이브를 운전할 준비가 되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Ready to start</td>
<td>1 = 드라이브가 시작 명령을 받을 준비가 되었습니다.</td>
</tr>
<tr>
<td>4</td>
<td>Running</td>
<td>1 = 드라이브가 기존 소스에 따라 운전할 준비가 되었습니다.</td>
</tr>
<tr>
<td>5</td>
<td>Started</td>
<td>1 = 드라이브가 시작되었습니다.</td>
</tr>
<tr>
<td>6</td>
<td>Modulating</td>
<td>1 = 드라이브가 모듈레이션을 시작하였습니다.</td>
</tr>
<tr>
<td>7</td>
<td>Limiting</td>
<td>1 = 운전이 제한되었습니다. (속도 또는 토크 제한 등)</td>
</tr>
<tr>
<td>8</td>
<td>Local control</td>
<td>1 = 드라이브가 로컬 제어 상태입니다.</td>
</tr>
<tr>
<td>9</td>
<td>Network control</td>
<td>1 = 드라이브가 네트워크 제어 상태입니다.</td>
</tr>
<tr>
<td>10</td>
<td>Ext1 active</td>
<td>1 = 제어 위치가 Ext1 입니다.</td>
</tr>
<tr>
<td>11</td>
<td>Ext2 active</td>
<td>1 = 제어 위치가 Ext2 입니다.</td>
</tr>
<tr>
<td>12</td>
<td>Charging relay</td>
<td>1 = 충전 패러미터가 정해져 있습니다.</td>
</tr>
<tr>
<td>13</td>
<td>MCB relay</td>
<td>1 = 메인 차단기가 정해져 있습니다.</td>
</tr>
<tr>
<td>14...15</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>주소</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h...FFFFh</td>
<td>드라이브의 상태 워드 1.</td>
</tr>
</tbody>
</table>
비트 이름
0 운전 준비가 되지 않아 시작이 금지되었습니다.
1 제어 위치가 변경되어 시작이 금지되었습니다.
2 제어 프로그램 자체에 의해 시작이 금지되었습니다.
3 폴트가 발생하여 시작이 금지되었습니다.
4 시작 허용 신호가 입력되지 않아 시작이 금지되었습니다.
5 운전 허용 신호가 입력되지 않아 시작이 금지되었습니다.
6…8 예약된 영역.
9 충전과 부하에 의해 시작이 금지되었습니다.
10…11 예약된 영역.
12 비상 정지 신호 Off2에 의해 시작이 금지되었습니다.
13 비상 정지 신호 Off3에 의해 시작이 금지되었습니다.
14 오토 리셋 기능에 의해 시작이 금지되었습니다.
15 예약된 영역.

0000h…FFFFh 서플라이 유닛의 시작 금지 상태 워드. 1 = 1

07 System info

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.118</td>
<td>LSU start inhibit status word</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 서플라이 유닛의 시작 금지 상태 워드입니다. 이 워드는 서플라이 유닛이 시작되지 못한 것을 나타냅니다. 또한 서플라이 유닛 제어 (페이지 40), 및 파라미터 그룹 60 DDCS communication을 참고하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.03</td>
<td>Drive rating id</td>
<td>드라이브/인버터 유닛의 타입.</td>
<td>-</td>
</tr>
<tr>
<td>07.04</td>
<td>Firmware name</td>
<td>폼웨어 이름. 포맷 형식은 AINFX이고, 여기서 X는 제어 유닛의 타입입니다. (2 = BCU-x2, 6 = ZCU-12/14).</td>
<td>-</td>
</tr>
<tr>
<td>07.05</td>
<td>Firmware version</td>
<td>폼웨어 버전 번호. 포맷 형식은 A.BB.C.D이고, 여기서 A = 주요 버전, B = 마이너 버전, C = 패치 버전 (예: 폼웨어 변경 코드), D = 0입니다.</td>
<td>-</td>
</tr>
<tr>
<td>07.06</td>
<td>Loading package name</td>
<td>폼웨어 로딩 패키지(Loading package) 이름. 포맷 형식은 AINLX이고, 여기서 X 제어 유닛의 타입입니다. (2 = BCU-x2, 6 = ZCU-12/14).</td>
<td>-</td>
</tr>
<tr>
<td>07.07</td>
<td>Loading package version</td>
<td>폼웨어 로딩 패키지의 버전 번호. 포맷 형식은 파라미터 07.05를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>07.08</td>
<td>Bootloader version</td>
<td>폼웨어 부트로더(Bootloader)의 버전 번호.</td>
<td>-</td>
</tr>
<tr>
<td>07.11</td>
<td>Cpu usage</td>
<td>마이크로프로세서(Microprocessor)의 사용률.</td>
<td>-</td>
</tr>
<tr>
<td>0…100%</td>
<td></td>
<td>마이크로프로세서 사용률.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>07.13</td>
<td>PU logic version number</td>
<td>파워 유닛 로직의 버전 번호. 16진수 FFFF는 병렬 연결된 파워 유닛에서 버전 번호가 다른 것을 나타냅니다. 제어 패널에서 드라이브 정보를 확인하십시오.</td>
<td>-</td>
</tr>
</tbody>
</table>
Application environment status 1

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.21</td>
<td>Application environment status 1</td>
<td>(-N8010 [응용 프로그램] 라이선스를 보유한 경우에만 표시됨.) 실행중인 응용 프로그램의 테스크 상태 (Task status)를 표시합니다. 자세한 사항은 Drive (IEC 61131-3) application programming manual (3AUA0000127808 [English])을 참고하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Pre task</td>
<td>1 = 프리 테스크로 동작합니다. (응용 프로그램 시작시 한 번만 실행)</td>
</tr>
<tr>
<td>1</td>
<td>Appl task1</td>
<td>1 = 테스크 1로 동작합니다. (1…100 ms 제어 주기)</td>
</tr>
<tr>
<td>2</td>
<td>Appl task2</td>
<td>1 = 테스크 2로 동작합니다. (10…100 ms 제어 주기)</td>
</tr>
<tr>
<td>3</td>
<td>Appl task3</td>
<td>1 = 테스크 3으로 동작합니다. (100…1000 ms 제어 주기)</td>
</tr>
<tr>
<td>4…14</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Task monitoring</td>
<td>1 = 테스크 감시 동작을 하용합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.22</td>
<td>Application environment status 2</td>
<td>(-N8010 [응용 프로그램] 라이선스를 보유한 경우에만 표시됨.) 실행중인 응용 프로그램의 오프닝 상태 (Opening status)를 표시합니다. 자세한 사항은 Drive (IEC 61131-3) application programming manual (3AUA0000127808 [English])을 참고하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Opening1</td>
<td>응용 프로그램에서 오프닝 1의 상태.</td>
</tr>
<tr>
<td>1</td>
<td>Opening2</td>
<td>응용 프로그램에서 오프닝 2의 상태.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>Opening16</td>
<td>응용 프로그램에서 오프닝 16의 상태.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.23</td>
<td>Application name</td>
<td>(-N8010 [응용 프로그램] 라이선스를 보유한 경우에만 표시됨.) 프로그래밍 툴을 통해 응용 프로그램에서 작성한 프로젝트 이름의 처음 5자리 아스키 (ASCII) 코드. 전체 이름은 제어 패널 또는 Drive composer PC 툴의 System info에서 확인할 수 있습니다. N/A = 이름 없음.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.24</td>
<td>Application version</td>
<td>(-N8010 [응용 프로그램] 라이선스를 보유한 경우에만 표시됨.) 프로그래밍 툴을 통해 응용 프로그램에서 작성한 버전 번호. 제어 패널 또는 Drive composer PC 툴의 System info에서 확인할 수 있습니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.25</td>
<td>Customization package name</td>
<td>주문 개발 패키지 (Customization package)에서 작성한 이름의 처음 5자리 아스키 (ASCII) 코드. 전체 이름은 제어 패널 또는 Drive composer PC 툴의 System info에서 확인할 수 있습니다. N/A = 이름 없음.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.26</td>
<td>Customization package version</td>
<td>주문 개발 패키지에서 작성한 버전 번호. 제어 패널 또는 Drive composer PC 툴의 System info에서 확인할 수 있습니다. N/A = 이름 없음.</td>
</tr>
</tbody>
</table>
Parameters 145

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.30</td>
<td>Adaptive program status</td>
<td>아답티브 프로그램의 상태를 나타냅니다. 자세한 사항은 아답티브 프로그램 (페이지 27) 절을 참고하십시오.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Initialized</td>
<td>1 = 아답티브 프로그램이 초기화되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Editing</td>
<td>1 = 아답티브 프로그램을 작성하고 있습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Edit done</td>
<td>1 = 아답티브 프로그램 작성 완료하였습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Running</td>
<td>1 = 아답티브 프로그램이 동작하고 있습니다.</td>
</tr>
<tr>
<td>4...13</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>State changing</td>
<td>예약된 영역.</td>
</tr>
<tr>
<td>15</td>
<td>Faulted</td>
<td>1 = 아답티브 프로그램에서 울트가 발생하였습니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000h...FFFFh</th>
<th>아답티브 프로그램 상태.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.40</td>
<td>IEC application Cpu usage peak</td>
<td>(+N8010) [응용 프로그램] 라이선스를 보유한 경우에만 표시됨. 현재 응용 프로그램에서 사용한 마이크로프로세서의 최대 이용률을 표시하며, 응용 프로그램에 의한 CPU 로드를 조사하기 위해 사용될 수 있습니다. 이 값은 내부 할당량에 대한 백분율입니다. 재어 패널에서 리셋 버튼을 3초 이상 누르면 이 값은 리셋됩니다.</td>
</tr>
<tr>
<td>0.0 ... 100.0%</td>
<td>응용 프로그램에 의한 마이크로프로세서의 최대 이용률.</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>07.41</td>
<td>IEC application Cpu load average</td>
<td>(+N8010) [응용 프로그램] 라이선스를 보유한 경우에만 표시됨. 현재 응용 프로그램에서 사용한 마이크로프로세서의 평균 이용률을 표시합니다. 이 값은 내부 할당량에 대한 백분율입니다.</td>
</tr>
<tr>
<td>0.0 ... 100.0%</td>
<td>응용 프로그램에 의한 마이크로프로세서의 평균 이용률.</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>07.106</td>
<td>LSU loading package name</td>
<td>(95.20)에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨. 서플라이 유닛 패워어의 로딩 패키지 이름.</td>
</tr>
<tr>
<td>07.107</td>
<td>LSU loading package version</td>
<td>(95.20)에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨. 서플라이 유닛 패워어의 로딩 패키지 버전 번호.</td>
</tr>
</tbody>
</table>

10 Standard DI, RO

<table>
<thead>
<tr>
<th>10.01</th>
<th>DI status</th>
<th>디지털 입력 및 릴레이 출력 구성.</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>디지털 입력 DIIL 및 DI6...DI1의 전기적인 입력 상태를 표시합니다. 디지털 입력에 대한 한시 동작 및 한시 복귀 시간은 무시합니다. 이것은 필터링 시간은 10.51 DI filter time에 설정할 수 있습니다. 여기서 비트 0...5는 DI1...DI6이고 비트 15는 DI1의 입력 상태를 나타냅니다. 예를 들어, 100000000010011b인 경우에 DIIL=DI5=DI2=DI1=1이고 DI3=DI4=DI6=0입니다. 이 패러미터는 읽기 전용입니다.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 0000h...FFFFh | 디지털 입력 상태. | 1 = 1 | - |
10.02 DI delayed status

디지털 입력 DIIL 및 DI6...DI1의 입력 지연 상태를 표시합니다. 이 워드는 디지털 입력에 대한 시간 지연 이후에 업데이트됩니다. 여기서 비트 0...5는 DI1...DI6, 비트 15는 DIIL의 지연된 입력 상태를 나타냅니다. 이 파라미터는 읽기 전용입니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h...FFFFh</td>
<td>디지털 입력 지연 상태.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

10.03 DI force selection

이 파라미터는 시험을 목적으로 사용할 수 있으며, 전기적인 입력 상태는 모두 무효가 됩니다. 여기서 해당 비트를 1로 세트할 때마다 무효 비트가 정해지며, 파라미터 10.04 DI force data에서 각 디지털 입력에 대한 강제 신호를 입력할 수 있습니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h</td>
<td>디지털 입력 의무 상태.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

10.04 DI force data

파라미터 10.03 DI force selection에서 해당 의무 비트를 선택하면 이 파라미터에서 디지털 입력을 강제 동작시킬 수 있습니다. 여기서 비트 0은 DI1의 강제 입력값이고 비트 15는 DIIL의 강제 입력값입니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h</td>
<td>디지털 강제 입력값.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

10.05 DI1 ON delay

디지털 입력 DI1에 대한 한시 동작 시간을 정의합니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 s</td>
<td>DI1 한시 동작 시간.</td>
<td>10 = 1</td>
</tr>
</tbody>
</table>

![Diagram](#)

\[t_{On} = 10.05 \text{ DI1 ON delay} \]
\[t_{Off} = 10.06 \text{ DI1 OFF delay} \]

*전기적인 디지털 입력 상태, 10.01 DI status에 표시됩니다.
**10.02 DI delayed status에 표시됩니다.*

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 s</td>
<td>DI1 한시 복귀 시간.</td>
<td>10 = 1</td>
</tr>
</tbody>
</table>

10.06 DI1 OFF delay

디지털 입력 DI1에 대한 한시 복귀 시간을 정의합니다. 파라미터 10.05 DI1 ON delay를 참고하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 s</td>
<td>DI1 한시 복귀 시간.</td>
<td>10 = 1</td>
</tr>
</tbody>
</table>
Parameters 147

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/ FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.07</td>
<td>DI2 ON delay</td>
<td>디지털 입력 DI2에 대한 한시 동작 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*DI 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>**DI 지연 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 3000.0 s DI2 한시 동작 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.08</td>
<td>DI2 OFF delay</td>
<td>디지털 입력 DI2에 대한 한시 복귀 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 10.07 DI2 ON delay를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 3000.0 s DI2 한시 복귀 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.09</td>
<td>DI3 ON delay</td>
<td>디지털 입력 DI3에 대한 한시 동작 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*DI 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>**DI 지연 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 3000.0 s DI3 한시 동작 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.10</td>
<td>DI3 OFF delay</td>
<td>디지털 입력 DI3에 대한 한시 복귀 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 10.09 DI3 ON delay를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 3000.0 s DI3 한시 복귀 시간.</td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

$P = 10.07 \ DI2 \ ON \ delay$

$F_{on} = 10.08 \ DI2 \ OFF \ delay$

*전기적인 디지털 입력 상태. 10.01 DI status에 표시됩니다.

**10.02 DI delayed status에 표시됩니다.

$P = 10.09 \ DI3 \ ON \ delay$

$F_{on} = 10.10 \ DI3 \ OFF \ delay$

*전기적인 디지털 입력 상태. 10.01 DI status에 표시됩니다.

**10.02 DI delayed status에 표시됩니다.
148 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.11</td>
<td>DI4 ON delay</td>
<td>디지털 입력 DI4에 대한 한시 동작 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*DI 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>**DI 지연 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{on} = 10.11$ DI4 ON delay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{off} = 10.12$ DI4 OFF delay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*전기적인 디지털 입력 상태. 10.01 DI status에 표시됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>**10.02 DI delayed status에 표시됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 3000.0 s DI4 한시 동작 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.12</td>
<td>DI4 OFF delay</td>
<td>디지털 입력 DI4에 대한 한시 복귀 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 10.11 DI4 ON delay를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 3000.0 s DI4 한시 복귀 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.13</td>
<td>DI5 ON delay</td>
<td>디지털 입력 DI5에 대한 한시 동작 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*DI 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>**DI 지연 상태</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{on} = 10.13$ DI5 ON delay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t_{off} = 10.14$ DI5 OFF delay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*전기적인 디지털 입력 상태. 10.01 DI status에 표시됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>**10.02 DI delayed status에 표시됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 3000.0 s DI5 한시 동작 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.14</td>
<td>DI5 OFF delay</td>
<td>디지털 입력 DI5에 대한 한시 복귀 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 10.13 DI5 ON delay를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 3000.0 s DI5 한시 복귀 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>10.15</td>
<td>DI6 ON delay</td>
<td>디지털 입력 DI6에 대한 한시 동작 시간을 정의합니다.</td>
<td></td>
</tr>
<tr>
<td>0.0 ... 3000.0 s</td>
<td>DI6 한시 동작 시간</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>10.16</td>
<td>DI6 OFF delay</td>
<td>디지털 입력 DI6에 대한 한시 복귀 시간을 정의합니다. 파라미터 10.15 DI6 ON delay를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>0.0 ... 3000.0 s</td>
<td>DI6 한시 복귀 시간</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>10.21</td>
<td>RO status</td>
<td>릴레이 출력 RO8...RO1의 출력 상태를 표시합니다. 예를 들어, 000000001b인 경우에 RO1=1이고 RO2...RO8=0입니다.</td>
<td></td>
</tr>
<tr>
<td>0000h...FFFFh</td>
<td>릴레이 출력 상태</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>10.24</td>
<td>RO1 source</td>
<td>릴레이 출력 RO1에 연결할 드라이브의 신호를 선택합니다.</td>
<td></td>
</tr>
</tbody>
</table>

DI 상태

<table>
<thead>
<tr>
<th>Time</th>
<th>fOn</th>
<th>fOff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

DI 지연 상태

<table>
<thead>
<tr>
<th>Time</th>
<th>fOn</th>
<th>fOff</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\text{On} = 10.15 \text{ DI} \text{ ON delay} \)
\(\text{Off} = 10.16 \text{ DI} \text{ OFF delay} \)

*전기적인 지연의 상태: 10.01 DI status에 표시됩니다.
**10.02 DI delayed status에 표시됩니다.

<table>
<thead>
<tr>
<th>Not energized</th>
<th>출력 차단.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energized</td>
<td>출력 동작.</td>
</tr>
<tr>
<td>Ready run</td>
<td>06.11 Main status word의 비트 1 (페이지 129 참고).</td>
</tr>
<tr>
<td>Enabled</td>
<td>06.16 Drive status word 1의 비트 0 (페이지 130 참고).</td>
</tr>
<tr>
<td>Started</td>
<td>06.16 Drive status word 1의 비트 5 (페이지 130 참고).</td>
</tr>
<tr>
<td>Magnetized</td>
<td>06.17 Drive status word 2의 비트 1 (페이지 131 참고).</td>
</tr>
<tr>
<td>Running</td>
<td>06.16 Drive status word 1의 비트 6 (페이지 130 참고).</td>
</tr>
<tr>
<td>Ready ref</td>
<td>06.11 Main status word의 비트 2 (페이지 129 참고).</td>
</tr>
<tr>
<td>At setpoint</td>
<td>06.11 Main status word의 비트 8 (페이지 129 참고).</td>
</tr>
<tr>
<td>Reverse</td>
<td>06.19 Speed control status word의 비트 2 (페이지 133 참고).</td>
</tr>
<tr>
<td>Zero speed</td>
<td>06.19 Speed control status word의 비트 0 (페이지 133 참고).</td>
</tr>
<tr>
<td>Above limit</td>
<td>06.17 Drive status word 2의 비트 10 (페이지 131 참고).</td>
</tr>
<tr>
<td>Warning</td>
<td>06.11 Main status word의 비트 7 (페이지 129 참고).</td>
</tr>
<tr>
<td>Fault</td>
<td>06.11 Main status word의 비트 3 (페이지 129 참고).</td>
</tr>
<tr>
<td>Fault (-1)</td>
<td>06.11 Main status word의 반전 비트 3 (페이지 129 참고).</td>
</tr>
<tr>
<td>Open brake command</td>
<td>44.01 Brake control status의 비트 0 (페이지 317 참고).</td>
</tr>
<tr>
<td>Ext2 active</td>
<td>06.16 Drive status word 1의 비트 11 (페이지 130 참고).</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remote control</td>
<td>06.11 Main status word의 비트 9 (페이지 129 참고).</td>
</tr>
<tr>
<td></td>
<td>Supervision 1</td>
<td>32.01 Supervision status의 비트 0 (페이지 273 참고).</td>
</tr>
<tr>
<td></td>
<td>Supervision 2</td>
<td>32.01 Supervision status의 비트 1 (페이지 273 참고).</td>
</tr>
<tr>
<td></td>
<td>Supervision 3</td>
<td>32.01 Supervision status의 비트 2 (페이지 273 참고).</td>
</tr>
<tr>
<td></td>
<td>RO/DIO control word bit0</td>
<td>10.99 RO/DIO control word의 비트 0 (페이지 152 참고).</td>
</tr>
<tr>
<td></td>
<td>RO/DIO control word bit1</td>
<td>10.99 RO/DIO control word의 비트 1 (페이지 152 참고).</td>
</tr>
<tr>
<td></td>
<td>RO/DIO control word bit2</td>
<td>10.99 RO/DIO control word의 비트 2 (페이지 152 참고).</td>
</tr>
<tr>
<td></td>
<td>RO/DIO control word bit8</td>
<td>10.99 RO/DIO control word의 비트 8 (페이지 152 참고).</td>
</tr>
<tr>
<td></td>
<td>RO/DIO control word bit9</td>
<td>10.99 RO/DIO control word의 비트 9 (페이지 152 참고).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
</tbody>
</table>

10.25 RO1 ON delay

<table>
<thead>
<tr>
<th>선택된 소스 상태</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO 상태</td>
</tr>
</tbody>
</table>

시간을 정의합니다. 0.0 s

- 0.0 ... 3000.0 s RO1 한시 동작 시간. 10 = 1 s

10.26 RO1 OFF delay

디지털 입력 RO1에 대한 한시 복귀 시간을 정의합니다. 파라미터 10.25 RO1 ON delay를 참고하십시오. 0.0 s

- 0.0 ... 3000.0 s RO1 한시 복귀 시간. 10 = 1 s

10.27 RO2 source

밀레 이 출력 RO2에 연결할 드라이브의 신호를 선택합니다. 자세한 사항은 10.24 RO1 source를 참고하십시오. Running (95.20 b3)
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def / FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.28</td>
<td>RO2 ON delay</td>
<td>릴레이 출력 RO2에 대한 한시 동작 시간을 정의합니다.</td>
<td>0.0 s (95.20 b3)</td>
</tr>
</tbody>
</table>

선택된 소스 상태

RO 상태

\[t_{On} \quad t_{Off} \quad t_{On} \quad t_{Off} \quad t_{On} \quad t_{Off} \]

\[t_{On} = 10.28 \text{ RO2 ON delay} \]
\[t_{Off} = 10.29 \text{ RO2 OFF delay} \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ... 3000.0 s</td>
<td>RO2 한시 동작 시간.</td>
<td></td>
<td>10 = 1 s</td>
<td></td>
</tr>
</tbody>
</table>

| 10.29 | RO2 OFF delay | 디지털 입력 RO2에 대한 한시 복귀 시간을 정의합니다. 파라미터 10.28 RO2 ON delay를 참고하십시오. | 0.0 s (95.20 b3) |

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ... 3000.0 s</td>
<td>RO2 한시 복귀 시간.</td>
<td></td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

| 10.30 | RO3 source | 릴레이 출력 RO3에 연결할 드라이브의 신호를 선택합니다. 자세한 사항은 10.24 RO1 source를 참고하십시오. | Fault (-1) |

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ... 3000.0 s</td>
<td>RO3 한시 동작 시간.</td>
<td></td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

| 10.31 | RO3 ON delay | 릴레이 출력 RO3에 대한 한시 동작 시간을 정의합니다. | 0.0 s |

선택된 소스 상태

RO 상태

\[t_{On} \quad t_{Off} \quad t_{On} \quad t_{Off} \quad t_{On} \quad t_{Off} \]

\[t_{On} = 10.31 \text{ RO3 ON delay} \]
\[t_{Off} = 10.32 \text{ RO3 OFF delay} \]

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ... 3000.0 s</td>
<td>RO3 한시 동작 시간.</td>
<td></td>
<td>10 = 1 s</td>
<td></td>
</tr>
</tbody>
</table>

| 10.32 | RO3 OFF delay | 디지털 입력 RO3에 대한 한시 복귀 시간을 정의합니다. 파라미터 10.31 RO3 ON delay를 참고하십시오. | 0.0 s |

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ... 3000.0 s</td>
<td>RO3 한시 복귀 시간.</td>
<td></td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

| 10.51 | DI filter time | 파라미터 10.01 DI status를 위한 필터링 시간을 설정합니다. | 10.0 ms |

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 ... 100.0 ms</td>
<td>10.01의 필터링 시간.</td>
<td></td>
<td>10 = 1 ms</td>
</tr>
</tbody>
</table>
11 Standard DI, FI, FO

디지털 입/출력 및 주파수 입/출력 구성.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.99</td>
<td>RO/DIO control word</td>
<td>필레이 출력 및 디지털 입/출력 제어를 위한 저장 파라미터입니다. 예를 들어, 엠배디드 필드버스 인터페이스를 통해 이 파라미터를 제어할 수 있습니다. 즉, 모드바스 데이터 I/O(Modbus data I/O) 파라미터 (58.101…58.124)에 RO/DIO control word를 설정하고, 아래의 해당 비트에 필레이 출력 및 디지털 입/출력을 제어하기 위한 제어 워드를 전송하십시오. 그리고 원하는 출력 소스 선택 파라미터에서 이 워드의 적절한 비트를 선택해서 사용하십시오.</td>
<td>0000h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>RO1</td>
<td>필레이 출력 RO1…RO3의 소스 (파라미터 10.24, 10.27 및 10.30 참고).</td>
</tr>
<tr>
<td>1</td>
<td>RO2</td>
<td>디지털 입/출력 DIO1…DIO2의 소스 (파라미터 11.06 및 11.10 참고).</td>
</tr>
<tr>
<td>2</td>
<td>RO3</td>
<td></td>
</tr>
<tr>
<td>3…7</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>DIO1</td>
<td>디지털 입/출력 DIO1…DIO2의 소스 (파라미터 11.06 및 11.10 참고).</td>
</tr>
<tr>
<td>9</td>
<td>DIO2</td>
<td></td>
</tr>
<tr>
<td>10…15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

0000h…FFFFh RO/DIO 제어 워드.

1 = 1

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.01</td>
<td>DIO status</td>
<td>디지털 입/출력 DIO2와 DIO1의 상태 표시함. 여기서는 한시 동작 및 한시 복귀 시간은 무시됩니다. 이것이 입력 모드일 때, 필터링 시간은 10.51 DI filter time에 설정할 수 있습니다. 예를 들어, 0010인 경우에 DIO2=1이고 DIO1=0입니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

0000b…0011b 디지털 입/출력 상태.

1 = 1

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.02</td>
<td>DIO delayed status</td>
<td>디지털 입/출력 DIO2와 DIO1의 지연 상태를 표시합니다. 이 워드는 시간 지연 이후에 업데이트됩니다. 예를 들어, 0010인 경우에 DIO2=1이고 DIO1=0입니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

0000b…0011b 디지털 입/출력 지연 상태.

1 = 1

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.05</td>
<td>DIO1 function</td>
<td>DIO1을 디지털 입력 또는 출력, 또는 주파수 입력으로 사용할 것인지 선택합니다.</td>
<td>Output</td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td>디지털 출력.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>디지털 입력.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>주파수 입력.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.06</td>
<td>DIO1 output source</td>
<td>파라미터 11.05 DIO1 function을 디지털 출력으로 설정한 경우에 디지털 입/출력 DIO1에 연결할 드라이브의 신호를 선택합니다.</td>
<td>Ready run</td>
</tr>
<tr>
<td></td>
<td>Not energized</td>
<td>출력 차단.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Energized</td>
<td>출력 동작.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ready run 06.11 Main status word의 비트 1 (페이지 129 참고).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Enabled 06.16 Drive status word 1의 비트 0 (페이지 130 참고).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Started 06.16 Drive status word 1의 비트 5 (페이지 130 참고).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetized 06.17 Drive status word 2의 비트 1 (페이지 131 참고).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Running 06.16 Drive status word 1의 비트 6 (페이지 130 참고).</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>06.11</td>
<td>Main status word</td>
<td>0.11 Main status word의 비트 2 (페이지 129 참고).</td>
<td>8</td>
</tr>
<tr>
<td>06.11</td>
<td>Main status word</td>
<td>0.11 Main status word의 비트 8 (페이지 129 참고).</td>
<td>9</td>
</tr>
<tr>
<td>06.19</td>
<td>Speed control status word</td>
<td>0.19 Speed control status word의 비트 2 (페이지 133 참고).</td>
<td>10</td>
</tr>
<tr>
<td>06.19</td>
<td>Speed control status word</td>
<td>0.19 Speed control status word의 비트 0 (페이지 133 참고).</td>
<td>11</td>
</tr>
<tr>
<td>06.17</td>
<td>Drive status word</td>
<td>0.17 Drive status word의 비트 10 (페이지 131 참고).</td>
<td>12</td>
</tr>
<tr>
<td>06.11</td>
<td>Main status word</td>
<td>0.11 Main status word의 비트 7 (페이지 129 참고).</td>
<td>13</td>
</tr>
<tr>
<td>06.11</td>
<td>Main status word</td>
<td>0.11 Main status word의 비트 3 (페이지 129 참고).</td>
<td>14</td>
</tr>
<tr>
<td>06.11</td>
<td>Main status word</td>
<td>0.11 Main status word의 비트 1 (페이지 129 참고).</td>
<td>15</td>
</tr>
<tr>
<td>06.11</td>
<td>Main status word</td>
<td>0.11 Main status word의 비트 0 (페이지 129 참고).</td>
<td>16</td>
</tr>
<tr>
<td>11.07</td>
<td>DIO1 ON delay</td>
<td>11.07 DIO1 ON delay에 대한 한시 동작 시간을 정의합니다. 이것은 출력 또는 입력 모드로 설정한 경우에 모두 적용됩니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td>11.08</td>
<td>DIO1 OFF delay</td>
<td>11.08 DIO1 OFF delay에 대한 한시 복귀 시간을 정의합니다. 이는 출력 또는 입력 모드로 설정한 경우에 모두 적용됩니다.</td>
<td>0.0 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.07</td>
<td>DIO1 ON delay</td>
<td>11.07 DIO1 ON delay에 대한 한시 동작 시간을 정의합니다. 이것은 출력 또는 입력 모드로 설정한 경우에 모두 적용됩니다.</td>
</tr>
<tr>
<td>11.08</td>
<td>DIO1 OFF delay</td>
<td>11.08 DIO1 OFF delay에 대한 한시 복귀 시간을 정의합니다. 이는 출력 또는 입력 모드로 설정한 경우에 모두 적용됩니다.</td>
</tr>
</tbody>
</table>

** 0.0 ... 3000.0 s DIO1 한시 동작 시간. 10 = 1 s

** 11.07 DIO1 ON delay에 대한 한시 동작 시간을 정의합니다.

** 11.08 DIO1 OFF delay에 대한 한시 복귀 시간을 정의합니다.

** 11.07 DIO1 ON delay

** 11.08 DIO1 OFF delay

* 전기적인 입력 상태(입력 모드) 또는 선택 소스 상태(출력 모드) 11.01 DIO status에 표시합니다.

** 11.02 DIO delayed status에 표시됩니다.
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.09</td>
<td>DIO2 function</td>
<td>DIO2를 디지털 출력 또는 입력, 또는 주파수 출력으로 사용할 것인지 선택합니다.</td>
<td>Output</td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td>디지털 출력.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>디지털 입력.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>주파수 출력.</td>
<td>2</td>
</tr>
<tr>
<td>11.10</td>
<td>DIO2 output source</td>
<td>파라미터 11.09 DIO2 function을 디지털 출력으로 설정한 경우에 디지털 입력/ 출력 DIO1에 연결할 드라이브의 신호를 선택합니다. 자세한 사항은 11.06 DIO output source를 참고하십시오.</td>
<td>Running</td>
</tr>
<tr>
<td>11.11</td>
<td>DIO2 ON delay</td>
<td>디지털 입력/ 출력 DIO2에 대한 한시 동작 시간을 정의합니다. 이것은 출력 또는 입력 모드로 설정한 경우에 모두 적용됩니다.</td>
<td>0.0 s</td>
</tr>
</tbody>
</table>

* DIO 상태

** DIO 관련 상태

\[t_{on} = 11.11 \text{ DIO2 ON delay} \]
\[t_{off} = 11.12 \text{ DIO2 OFF delay} \]

*전기적인 입력 상태(입력 모드) 또는 선택 소스 상태(출력 모드). 11.01 DIO status에 표시됩니다.

** 11.02 DIO delayed status에 표시됩니다.

<table>
<thead>
<tr>
<th>시간</th>
<th>0.0 ... 3000.0 s</th>
<th>DIO2 한시 동작 시간.</th>
<th>10 = 1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.12 DIO2 OFF delay</td>
<td>디지털 입력/ 출력 DIO2에 대한 한시 복귀 시간을 정의합니다. 이것은 출력 또는 입력 모드로 설정한 경우에 모두 적용됩니다.</td>
<td>0.0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 ... 3000.0 s</td>
<td>DIO2 한시 복귀 시간.</td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.38</td>
<td>Freq in 1 actual value</td>
<td>DIO1를 주파수 입력으로 설정한 경우에 스케일링되지 않은 주파수 입력값 1을 표시합니다. 파라미터 11.42 Freq in 1 min을 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>스케일링되지 않은 주파수 입력값 1.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.39</td>
<td>Freq in 1 scaled</td>
<td>DIO1를 주파수 입력으로 설정한 경우에 스케일링된 주파수 입력값 1을 표시합니다. 파라미터 11.42 Freq in 1 min을 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>스케일링된 주파수 입력값 1.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>11.42</td>
<td>Freq in 1 min</td>
<td>주파수 입력 1에서 실제로 도달하는 주파수의 최솟값을 정의합니다. 입력 주파수 신호(11.38 Freq in 1 actual value)는 다음 그림과 같이 파라미터 11.42 Freq in 1 min에 의해 내부 신호(11.39 Freq in 1 scaled)로 스케일링됩니다.</td>
<td>0 Hz</td>
</tr>
</tbody>
</table>

![주파수 입력 1의 실제 주파수 (DIO1).](image)

<table>
<thead>
<tr>
<th>0 ... 16000 Hz</th>
<th>주파수 입력 1의 최소 주파수 (DIO1).</th>
<th>1 = 1 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.43</td>
<td>Freq in 1 max</td>
<td>주파수 입력 1에서 실제로 도달하는 주파수의 최댓값을 정의합니다. 파라미터 11.42 Freq in 1 min을 참고하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0 ... 16000 Hz</th>
<th>주파수 입력 1의 최대 주파수 (DIO1).</th>
<th>1 = 1 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.44</td>
<td>Freq in 1 at scaled min</td>
<td>파라미터 11.42 Freq in 1 min에 정의된 최소 주파수에 해당하는 값을 정의합니다. 파라미터 11.42 Freq in 1 min의 그림을 참고하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-32768.000 ... 32767.000</th>
<th>주파수 입력 1의 최소 주파수에 해당하는 값.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.45</td>
<td>Freq in 1 at scaled max</td>
<td>파라미터 11.43 Freq in 1 max에 정의된 최대 주파수에 해당하는 값을 정의합니다. 파라미터 11.42 Freq in 1 min의 블록도를 참고하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-32768.000 ... 32767.000</th>
<th>주파수 입력 1의 최대 주파수에 해당하는 값.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.54</td>
<td>Freq out 1 actual value</td>
<td>스케일링된 주파수 출력값 1을 표시합니다. 파라미터 11.58 Freq out 1 src min을 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0 ... 16000 Hz</th>
<th>주파수 출력값 1.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.55</td>
<td>Freq out 1 source</td>
<td>주파수 출력 1에 연결할 드라이브의 신호를 선택합니다. Motor speed used</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zero</th>
<th>출력 없음.</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor speed used</td>
<td>01.01 Motor speed used (페이지 115).</td>
<td>1</td>
</tr>
<tr>
<td>Output frequency</td>
<td>01.06 Output frequency (페이지 115).</td>
<td>3</td>
</tr>
<tr>
<td>Motor current</td>
<td>01.07 Motor current (페이지 115).</td>
<td>4</td>
</tr>
<tr>
<td>Motor torque</td>
<td>01.10 Motor torque (페이지 115).</td>
<td>6</td>
</tr>
<tr>
<td>DC voltage</td>
<td>01.11 DC voltage (페이지 115).</td>
<td>7</td>
</tr>
<tr>
<td>Power inu out</td>
<td>01.14 Output power (페이지 116).</td>
<td>8</td>
</tr>
</tbody>
</table>
156 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.58</td>
<td>Freq out 1 src min</td>
<td>주파수 출력 1의 최솟값에 해당하는 신호의 실제값을 정의합니다. 여기서 신호 소스는 11.55 Freq out 1 source에서 선택하고 주파수의 최솟값은 11.60 Freq out 1 at src min에 설정하며, 11.54 Freq out 1 actual value에서 스케일링 값을 확인할 수 있습니다.</td>
<td>0.000</td>
</tr>
<tr>
<td>-32768.000 ... 32767.000</td>
<td>주파수 출력 1의 최솟값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>11.59</td>
<td>Freq out 1 src max</td>
<td>주파수 출력 1의 최댓값에 해당하는 신호의 실제값을 정의합니다. 여기서 최대 주파수는 파라미터 11.61 Freq out 1 at src max에 설정하고 이 신호의 실제값은 11.55 Freq out 1 source에서 선택한 소스를 11.54 Freq out 1 actual value에서 확인할 수 있습니다.</td>
<td>1500.000; 1800.000 (95.20 b0)</td>
</tr>
<tr>
<td>-32768.000 ... 32767.000</td>
<td>주파수 출력 2의 최댓값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>11.60</td>
<td>Freq out 1 at src min</td>
<td>주파수 출력 1의 최솟값을 정의합니다. 파라미터 11.58 Freq out 1 src min의 그림을 참고하십시오.</td>
<td>0 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>주파수 출력 1의 최소 주파수 (DIO2).</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.61</td>
<td>Freq out 1 at src max</td>
<td>주파수 출력 1의 최댓값을 정의합니다. 파라미터 11.58 Freq out 1 src min의 그림을 참고하십시오.</td>
<td>16000 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>주파수 출력 1의 최대 주파수 (DIO2).</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.81</td>
<td>DIO filter time</td>
<td>파라미터 11.01 DIO status를 위한 필터링 시간을 설정합니다. 이 필터링 시간은 DIO를 입력 모드로 설정한 경우에만 적용됩니다.</td>
<td>10.0 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 11.01의 필터링 시간.</td>
<td>10 = 1 ms</td>
</tr>
</tbody>
</table>

12 Standard AI

표준 아날로그 입력 구성을 나타냅니다.

12.01	AI tune	아날로그 입력 튜닝 기능. 아날로그 신호를 입력단자에 연결하고 실제 아날로그 신호의 최솟값 및 최댓값에 따라 적절하게 튜닝하십시오.	
	No action	튜닝 없음.	0
	AI1 min tune	현재 아날로그 AI1의 입력값은 파라미터 12.17 AI1 min에 최솟값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	1
	AI1 max tune	현재 아날로그 AI1의 입력값은 파라미터 12.18 AI1 max에 최댓값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	2
	AI2 min tune	현재 아날로그 AI2의 입력값은 파라미터 12.27 AI2 min에 최솟값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	3
	AI2 max tune	현재 아날로그 AI2의 입력값은 파라미터 12.28 AI2 max에 최댓값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	4
12.02	AI supervision function	아날로그 입력 신호가 설정된 하한값 및 상한값을 벗어날 경우에 드라이브가 어떻게 반응할지 선택합니다. 이 값은 AI 신호의 세부 매개변수 12.04 AI supervision selection에 설정되어야 합니다.	
		동작을 제어하는 AI 모드로 선택할 수 있습니다. 위의 설정과 함께 사용되며 AI 신호가 제어 모드로 전환될 경우도 있습니다. 이 값은 AI 신호의 세부 매개변수 12.05 AI supervision force에 설정되어야 합니다.	
		Note: 이 값은 고정된 값이며, 22.11, 22.12, 22.15, 22.17, 23.42, 24.11, 24.12, 24.16, 24.25, 28.11, 28.12, 30.21, 30.22, 40.16, 40.17, 40.50, 41.16, 41.17, 41.50, 44.09에서 입력 소스로 사용하고 있다.	
		선택한 모드로 전환할 경우에만 동작합니다.	
	No action	동작 없음.	0
	Fault	80A0 AI supervision 트립 발생.	1
	Warning	80A0 AI supervision 경고 발생.	2
	Last speed	드라이브는 80A0 AI supervision 경고를 발생하고 기준값은 현재 운전 중인 기준 속도 또는 주파수로 고정됩니다. 기준 속도/주파수는 850 ms의 저역 통과 필터를 거친 실제 속도를 기반으로 결정됩니다.	3

WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.
12.04 AI supervision selection

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AI1 < MIN</td>
<td>1 = AI1 입력이 설정된 최솟값보다 작은 경우에 감시 기능이 동작합니다.</td>
</tr>
<tr>
<td>1</td>
<td>AI1 > MAX</td>
<td>1 = AI1 입력이 설정된 최댓값보다 큰 경우에 감시 기능이 동작합니다.</td>
</tr>
<tr>
<td>2</td>
<td>AI2 < MIN</td>
<td>1 = AI2 입력이 설정된 최솟값보다 작은 경우에 감시 기능이 동작합니다.</td>
</tr>
<tr>
<td>3</td>
<td>AI2 > MAX</td>
<td>1 = AI2 입력이 설정된 최댓값보다 큰 경우에 감시 기능이 동작합니다.</td>
</tr>
<tr>
<td>4...15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

12.05 AI supervision force

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AI1 Ext1</td>
<td>1 = 제어 위치가 EXT1 인 경우에 AI1의 감사 기능을 허용합니다.</td>
</tr>
<tr>
<td>1</td>
<td>AI1 Ext2</td>
<td>1 = 제어 위치가 EXT2 인 경우에 AI1의 감사 기능을 허용합니다.</td>
</tr>
<tr>
<td>2</td>
<td>AI1 Local</td>
<td>1 = 제어 위치가 로컬인 경우에 AI1의 감사 기능을 허용합니다.</td>
</tr>
<tr>
<td>3</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AI2 Ext1</td>
<td>1 = 제어 위치가 EXT1 인 경우에 AI2의 감사 기능을 허용합니다.</td>
</tr>
<tr>
<td>5</td>
<td>AI2 Ext2</td>
<td>1 = 제어 위치가 EXT2 인 경우에 AI2의 감사 기능을 허용합니다.</td>
</tr>
<tr>
<td>6</td>
<td>AI2 Local</td>
<td>1 = 제어 위치가 로컬인 경우에 AI2의 감사 기능을 허용합니다.</td>
</tr>
<tr>
<td>7...15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

12.11 AI1 actual value

-22.000 ... 22.000 mA or V

AI1의 아날로그 입력값.

12.12 AI1 scaled value

-32768.000 ... 32767.000

AI1의 스케일링 값을 표시합니다. 파라미터 12.19 AI1 scaled at AI1 min 및 12.20 AI1 scaled at AI1 max를 확인하시십시오. 이 파라미터는 원기 전용입니다.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.15</td>
<td>All1 unit selection</td>
<td>아날로그 입력 AI1의 입력 소스에 대한 단위를 선택합니다. Note: 이 설정은 드라이브 제어 유닛의 점퍼 설정과 같아야 합니다. 여기서 점퍼 설정의 변경 사항을 확인하려면 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
<td>V</td>
</tr>
<tr>
<td>V</td>
<td>전압 입력.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>mA</td>
<td>전류 입력.</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>12.16</td>
<td>All1 filter time</td>
<td>아날로그 입력 AI1에 대한 필터 시간을 정의합니다. Note: 이 신호는 이미 하드웨어적으로 약 0.25 ms 시정수로 필터링되어 있으며, 이 값은 소프트웨어에서 변경할 수 없습니다.</td>
<td>0.100 s</td>
</tr>
<tr>
<td>T</td>
<td>필터 시간.</td>
<td></td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>0.000 … 30.000 s</td>
<td>필터 시간.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.17</td>
<td>All1 min</td>
<td>아날로그 입력 AI1의 최솟값을 정의합니다. 실제 현장에서 아날로그 신호를 최솟값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 12.01 AI tune을 이용하십시오.</td>
<td>0.000 mA or V</td>
</tr>
<tr>
<td>-22.000 … 22.000 mA or V</td>
<td>아날로그 입력 AI1의 최솟값.</td>
<td></td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>12.18</td>
<td>All1 max</td>
<td>아날로그 입력 AI1의 최댓값을 정의합니다. 실제 현장에서 아날로그 신호를 최댓값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 12.01 AI tune을 이용하십시오.</td>
<td>20.000 mA or 10.000 V</td>
</tr>
<tr>
<td>-22.000 … 22.000 mA or V</td>
<td>아날로그 입력 AI1의 최댓값.</td>
<td></td>
<td>1000 = 1 mA or V</td>
</tr>
</tbody>
</table>

\[O = I \times \left(1 - e^{-\frac{t}{T}}\right) \]

\[I = \text{스텝 입력} \]
\[O = \text{필터 출력} \]
\[t = \text{시간} \]
\[T = \text{필터 시간} \]
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.19</td>
<td>AI1 scaled at AI1 min</td>
<td>파라미터 12.17 AI1 min에 설정된 아날로그 입력 AI1의 최솟값에 해당하는 신호의 실제값을 정의합니다. 여기서 12.19 및 12.20에 극성을 설정하면 효과적으로 스케일링 값을 반전시킬 수 있습니다.</td>
</tr>
<tr>
<td>12.20</td>
<td>AI1 scaled at AI1 max</td>
<td>파라미터 12.18 AI1 max에 설정된 아날로그 입력 AI1의 최댓값에 해당하는 신호의 실제값을 정의합니다. 파라미터 12.19 AI1 scaled at AI1 min의 그림을 참고하십시오.</td>
</tr>
<tr>
<td>12.21</td>
<td>AI2 actual value</td>
<td>아날로그 입력 AI2의 값은 mA 또는 V로 표시합니다. (단, 하드웨어 설정이 전류 또는 전압으로 설정되어 있는지 여부에 따라 다름.) 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td>12.22</td>
<td>AI2 scaled value</td>
<td>아날로그 입력 AI2의 스케일링 값을 표시합니다. 파라미터 12.29 AI2 scaled at AI2 min 및 12.30 AI2 scaled at AI2 max를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td>12.25</td>
<td>AI2 unit selection</td>
<td>아날로그 입력 AI2의 입력 소스에 대한 단위를 선택합니다. Note: 이 설정은 드라이브 제어 유닛의 점퍼 설정과 같아야 합니다. 여기서 점퍼 설정의 변경 사항을 확인하려면 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
</tr>
<tr>
<td>12.26</td>
<td>AI2 filter time</td>
<td>아날로그 입력 AI2에 대한 필터 시정수를 정의합니다. 자세한 사항은 파라미터 12.16 AI1 filter time을 참고하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.17</td>
<td>AI1 filter time</td>
<td>필터 시정수.</td>
</tr>
<tr>
<td>12.18</td>
<td>AI1 max</td>
<td>AI1의 최댓값에 해당하는 신호의 실제값.</td>
</tr>
<tr>
<td>12.19</td>
<td>AI1 min</td>
<td>AI1의 최솟값에 해당하는 실질값.</td>
</tr>
<tr>
<td>12.20</td>
<td>AI2 max</td>
<td>AI2의 최댓값에 해당하는 실질값.</td>
</tr>
<tr>
<td>12.21</td>
<td>AI2 min</td>
<td>AI2의 최솟값에 해당하는 실질값.</td>
</tr>
<tr>
<td>12.22</td>
<td>AI2 actual</td>
<td>AI2의 아날로그 입력값.</td>
</tr>
<tr>
<td>12.23</td>
<td>AI2 scaled value</td>
<td>AI2의 스케일링 값을 표시합니다.</td>
</tr>
<tr>
<td>12.24</td>
<td>AI2 unit selection</td>
<td>AI2의 입력 단위 설정.</td>
</tr>
<tr>
<td>12.25</td>
<td>AI2 filter time</td>
<td>AI2에 대한 필터 시정수 설정.</td>
</tr>
</tbody>
</table>

Note: 이 설정은 드라이브 제어 유닛의 점퍼 설정과 같아야 합니다. 여기서 점퍼 설정의 변경 사항을 확인하려면 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.27</td>
<td>Al2 min</td>
<td>아날로그 입력 Al2의 최솟값을 정의합니다. 실제 현장에서 아날로그 신호를 최솟값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 12.01 Al tune을 이용하십시오.</td>
<td>0.000 mA or V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-22.000 ... 22.000 mA 또는 V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>12.28</td>
<td>Al2 max</td>
<td>아날로그 입력 Al2의 최댓값을 정의합니다. 실제 현장에서 아날로그 신호를 최댓값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 12.01 Al tune을 이용하십시오.</td>
<td>20.000 mA or 10.000 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-22.000 ... 22.000 mA 또는 V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>12.29</td>
<td>Al2 scaled at Al2 min</td>
<td>파라미터 12.27 Al2 min에 설정된 아날로그 입력 Al2의 최솟값에 해당하는 신호의 실제값을 정의합니다. 여기서 12.29 및 12.30에 극성을 설정하면 효과적으로 스케일링 값을 반전시킬 수 있습니다.</td>
<td>0.000</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
Al_{scaled} (12.22) & = Al_{in} (12.21) \\
12.27 & < Al_{scaled} < 12.30 \\
12.29 & = Al_{scaled} = 12.28 \\
& \text{값은 } 12.29 \text{ Al2 scaled at Al2 min의 그림을 참고하십시오.}
\end{align*}
\]

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.30</td>
<td>Al2 scaled at Al2 max</td>
<td>파라미터 12.28 Al2 max에 설정된 아날로그 입력 Al2의 최댓값에 해당하는 신호의 실제값을 정의합니다. 파라미터 12.29 Al2 scaled at Al2 min의 그림을 참고하십시오.</td>
<td>100.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-32768.000 ... 32767.000</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

13 Standard AO

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13.11</td>
<td>AO1 actual value</td>
<td>아날로그 출력 AO1의 mA 출력값을 표시합니다. 이 파라미터는 임시 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 22.000 mA</td>
<td>AO1의 아날로그 출력값</td>
</tr>
<tr>
<td>13.12</td>
<td>AO1 source</td>
<td>아날로그 출력 AO1에 연결된 드라이브의 신호를 선택합니다. 또는 출력을 여자 모드(Excitation mode)로 설정하여 일정한 전류를 온도 센서에 공급합니다.</td>
<td>Motor speed used</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td></td>
<td>출력 없음.</td>
<td>0</td>
</tr>
<tr>
<td>Motor speed used</td>
<td></td>
<td>01.01 Motor speed used (페이지 115).</td>
<td>1</td>
</tr>
<tr>
<td>Output frequency</td>
<td></td>
<td>01.06 Output frequency (페이지 115).</td>
<td>3</td>
</tr>
<tr>
<td>Motor current</td>
<td></td>
<td>01.07 Motor current (페이지 115).</td>
<td>4</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Motor torque</td>
<td>01.10 Motor torque (페이지 115).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DC voltage</td>
<td>01.11 DC voltage (페이지 115).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Power in/out</td>
<td>01.14 Output power (페이지 116).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Speed ref ramp in</td>
<td>23.01 Speed ref ramp input (페이지 218).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Speed ref ramp out</td>
<td>23.02 Speed ref ramp output (페이지 218).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Speed ref used</td>
<td>24.01 Used speed reference (페이지 224).</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Torq ref used</td>
<td>26.02 Torque reference used (페이지 240).</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Freq ref used</td>
<td>28.02 Frequency ref ramp output (페이지 246).</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Process PID out</td>
<td>40.01 Process PID output actual (페이지 301).</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Process PID fbk</td>
<td>40.02 Process PID feedback actual (페이지 301).</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Process PID act</td>
<td>40.03 Process PID setpoint actual (페이지 301).</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Process PID dev</td>
<td>40.04 Process PID deviation actual (페이지 301).</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Force Pt100 excitation</td>
<td>출력은 1...3개의 Pt100 센서에 여자 전류를 공급합니다. 자세한 사항은 모터 열 보호 (페이지 80) 절을 참고하십시오.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Force KTY84 excitation</td>
<td>출력은 KTY84 센서에 여자 전류를 공급합니다. 자세한 사항은 모터 열 보호 (페이지 80) 절을 참고하십시오.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Force PTC excitation</td>
<td>출력은 1...3개의 PTC 센서에 여자 전류를 공급합니다. 자세한 사항은 모터 열 보호 (페이지 80) 절을 참고하십시오.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Force Pt1000 excitation</td>
<td>출력은 1...3개의 Pt1000 센서에 여자 전류를 공급합니다. 자세한 사항은 모터 열 보호 (페이지 80) 절을 참고하십시오.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>AO1 data storage</td>
<td>13.91 AO1 data storage (페이지 165).</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>AO2 data storage</td>
<td>13.92 AO2 data storage (페이지 165).</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>13.16</td>
<td>AO1 filter time</td>
<td>아날로그 출력 AO1의 필터 시정수를 정의합니다.</td>
<td>0.100 s</td>
</tr>
</tbody>
</table>

![필터링 과정](attachment:filter_curve.png)

\[O = I \times (1 - e^{-t/T})\]

\(I\) = 스틱 입력 \\
\(O\) = 필터 출력 \\
\(t\) = 시간 \\
\(T\) = 필터 시정수

0.000 ... 30.000 s 필터 시정수. 1000 = 1 s
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.17</td>
<td>AO1 source min</td>
<td>아날로그 출력 AO1의 최솟값에 해당하는 실제값을 정의합니다. 여기서 신호 소스는 13.12 AO1 source에서 선택하고 아날로그 출력 최솟값은 파라미터 13.19 AO1 out at AO1 src min에 설정합니다.</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 13.17에 최댓값을 설정하고 13.18에 최솟값을 설정하면 아날로그 출력을 반전시킬 수 있습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-32788.0 ... 32787.0</td>
<td>아날로그 출력 AO1의 최솟값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>13.18</td>
<td>AO1 source max</td>
<td>아날로그 출력 AO1의 최댓값에 해당하는 실제값을 정의합니다. 여기서 신호 소스는 13.12 AO1 source에서 선택하고 아날로그 출력 최댓값은 파라미터 13.20 AO1 out at AO1 src max에 설정합니다.</td>
<td>1500.0; 1800.0 (95.20 b0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-32788.0 ... 32787.0</td>
<td>아날로그 출력 AO1의 최댓값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>13.19</td>
<td>AO1 out at AO1 src min</td>
<td>아날로그 출력 AO1의 최솟값을 정의합니다. 파라미터 13.17 AO1 source min의 그림을 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000 ... 22.000 mA</td>
<td>아날로그 출력 AO1의 최솟값.</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>13.20</td>
<td>AO1 out at AO1 src max</td>
<td>아날로그 출력 AO1의 최댓값을 정의합니다. 파라미터 13.17 AO1 source min의 그림을 참고하십시오.</td>
<td>20.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000 ... 22.000 mA</td>
<td>아날로그 출력 AO1의 최댓값.</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>13.21</td>
<td>AO2 actual value</td>
<td>아날로그 출력 AO2의 mA 출력값을 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>13.22</td>
<td>AO2 source</td>
<td>아날로그 출력 AO2의 값을 설정할 드라이브의 신호를 선택합니다. 또는 출력을 전원을 모드(Excitation mode)로 설정하여 일정한 전류를 온도 센서에 공급합니다. 신호 선택에 관한 자세한 사항은 13.12 AO1 source를 참고하시오.</td>
<td>Motor current</td>
</tr>
<tr>
<td>13.26</td>
<td>AO2 filter time</td>
<td>아날로그 출력 AO1의 필터 시간을 정의합니다. 자세한 사항은 13.16 AO1 filter time을 참고하십시오.</td>
<td>0.100 s</td>
</tr>
<tr>
<td>13.27</td>
<td>AO2 source min</td>
<td>아날로그 출력 AO2의 최솟값에 해당하는 실제값을 정의합니다. 여기서 신호 소스는 13.22 AO2 source에서 선택하고 아날로그 출력 최솟값은 파라미터 13.29 AO2 out at AO2 src min에 설정합니다.</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.27에 최댓값을 설정하고 13.28에 최솟값을 설정하면 아날로그 출력을 반전시킬 수 있습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 13.27에 최댓값을 설정하고 13.28에 최솟값을 설정하면 아날로그 출력을 반전시킬 수 있습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.27에 최댓값을 설정하고 13.28에 최솟값을 설정하면 아날로그 출력을 반전시킬 수 있습니다.</td>
<td></td>
</tr>
<tr>
<td>-32768.0 ... 32767.0</td>
<td></td>
<td>아날로그 출력 AO2의 최솟값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/Value</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>13.28</td>
<td>AO2 source max</td>
<td>아날로그 출력 AO2의 최댓값에 해당하는 실제값을 정의합니다. 여기서 신호 소스는 13.22 AO2 source에서 선택하고 아날로그 출력 최댓값은 파라미터 13.30 AO2 out at AO2 src max에 설정합니다.</td>
<td>100.0</td>
</tr>
<tr>
<td>-32768.0 ... 32767.0</td>
<td></td>
<td>아날로그 출력 AO2의 최댓값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>13.29</td>
<td>AO2 out at AO2 src min</td>
<td>아날로그 출력 AO2의 최솟값을 정의합니다. 파라미터 13.27 AO2 source min의 그룹을 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>0.000 ... 22.000 mA</td>
<td></td>
<td>아날로그 출력 AO2의 최솟값.</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>13.30</td>
<td>AO2 out at AO2 src max</td>
<td>아날로그 출력 AO2의 최댓값을 정의합니다. 파라미터 13.27 AO2 source min의 그룹을 참고하십시오.</td>
<td>20.000 mA</td>
</tr>
<tr>
<td>0.000 ... 22.000 mA</td>
<td></td>
<td>아날로그 출력 AO2의 최댓값.</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>13.91</td>
<td>AO1 data storage</td>
<td>아날로그 출력 AO1을 제어하기 위한 저장 파라미터입니다. 파라미터 13.12 AO1 source를 AO1 data storage으로 선택하고 입력 데이터 값의 대상으로 이 파라미터를 설정합니다. 예를 들어, 임베디드 필드버스 인터페이스를 사용하여 제어할 경우에는 데이터 I/O (58.101...58.124)에 AO1 data storage를 설정하고 원하는 출력 데이터를 전송하십시오.</td>
<td>0.00</td>
</tr>
<tr>
<td>-327.68 ... 327.67</td>
<td></td>
<td>아날로그 출력 AO1의 저장 파라미터.</td>
<td>100 = 1</td>
</tr>
<tr>
<td>13.92</td>
<td>AO2 data storage</td>
<td>아날로그 출력 AO2를 제어하기 위한 저장 파라미터입니다. 파라미터 13.22 AO2 source를 AO2 data storage으로 선택하고 입력 데이터 값의 대상으로 이 파라미터를 설정합니다. 예를 들어, 임베디드 필드버스 인터페이스를 사용하여 제어할 경우에는 데이터 I/O (58.101...58.124)에 AO2 data storage를 설정하고 원하는 출력 데이터를 전송하십시오.</td>
<td>0.00</td>
</tr>
<tr>
<td>-327.68 ... 327.67</td>
<td></td>
<td>아날로그 출력 AO2의 저장 파라미터.</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>

14 I/O extension module 1

I/O 확장 모듈 1의 구성. 이에 대한 자세한 사항은 프로그래밍 가능한 확장 I/O (페이지 29) 절을 참고하십시오. **Note:** 파라미터 그룹의 내용은 선택된 I/O 확장 모듈 타입에 따라 다릅니다.

<table>
<thead>
<tr>
<th>14.01 Module 1 type</th>
<th>I/O 확장 모듈 1의 타입 설정.</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>모듈 없음.</td>
<td>0</td>
</tr>
<tr>
<td>FIO-01</td>
<td>FIO-01 모듈.</td>
<td>1</td>
</tr>
<tr>
<td>FIO-11</td>
<td>FIO-11 모듈.</td>
<td>2</td>
</tr>
<tr>
<td>FDIO-01</td>
<td>FDIO-01 모듈.</td>
<td>3</td>
</tr>
<tr>
<td>FAIO-01</td>
<td>FAIO-01 모듈.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14.02 Module 1 location</th>
<th>I/O 확장 모듈이 설치된 드라이브 제어 유닛의 슬롯을 선택하거나 FEA-03 확장 어댑터에서 슬롯의 노드 ID를 설정합니다.</th>
<th>Slot 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 1</td>
<td>슬롯 1에 설치.</td>
<td>1</td>
</tr>
<tr>
<td>Slot 2</td>
<td>슬롯 2에 설치.</td>
<td>2</td>
</tr>
<tr>
<td>Slot 3</td>
<td>슬롯 3에 설치.</td>
<td>3</td>
</tr>
<tr>
<td>4...254</td>
<td>FEA-03 확장 어댑터 슬롯의 노드 ID 설정.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>14.03</td>
<td>Module 1 status</td>
<td>I/O 확장 모듈 1의 상태를 표시합니다.</td>
</tr>
<tr>
<td></td>
<td>No option</td>
<td>솔롯에 모듈이 없음.</td>
</tr>
<tr>
<td></td>
<td>No communication</td>
<td>모듈이 검출되었지만, 통신할 수 없음.</td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td>모듈 타입을 알 수 없음.</td>
</tr>
<tr>
<td></td>
<td>FIO-01</td>
<td>FIO-01 모듈 검출.</td>
</tr>
<tr>
<td></td>
<td>FIO-11</td>
<td>FIO-11 모듈 검출.</td>
</tr>
<tr>
<td></td>
<td>FAIO-01</td>
<td>FAIO-01 모듈 검출.</td>
</tr>
</tbody>
</table>

14.05 DI status (14.01 Module 1 type = F Dio-01인 경우에 표시됨.)
확장 모듈의 디지털 입력 상태를 표시합니다. 디지털 입력에 대한 한시 동작 및 한시 복귀 시간은 무시됩니다. 이것이 필터링 시간은 DI filter time에 설정할 수 있습니다.

Note: 이 파라미터의 허용 범위 수는 확장 모듈의 디지털 입력/출력 개수에 따라 다릅니다. 예를 들어, 0101b인 경우에 DI1=DI3=1이고 나머지는 0입니다. 이 파라미터는 임시 전용입니다.

0000b…1111b 디지털 입력 상태. 1 = 1

14.05 DIO status (14.01 Module 1 type = F Dio-01 또는 FIO-11인 경우에 표시됨.)
확장 모듈의 디지털 입력/출력 상태를 표시합니다. 디지털 입력에 대한 한시 동작 및 한시 복귀 시간은 무시됩니다. 이것이 입력 모드일 때, 필터링 시간은 DI filter time에 설정할 수 있습니다.

Note: 이 파라미터의 허용 범위 수는 확장 모듈의 디지털 입력/출력 개수에 따라 다릅니다. 예를 들어, 1001b인 경우에 DIO1=DIO4=1이고 나머지 0입니다. 이 파라미터는 임시 전용입니다.

0000b…1111b 디지털 입력/출력 상태. 1 = 1

14.06 DI delayed status (14.01 Module 1 type = F Dio-01인 경우에 표시됨.)
확장 모듈의 디지털 입력 지연 상태를 표시합니다. 이 워드는 디지털 입력에 대한 시간 지연 이후에 업데이트됩니다.

Note: 이 파라미터의 허용 범위 수는 확장 모듈의 디지털 입력/출력 개수에 따라 다릅니다. 예를 들어, 0101b인 경우에 DI1=DI3=1이고 나머지는 0입니다. 이 파라미터는 임시 전용입니다.

0000b…1111b 디지털 입력 지연 상태. 1 = 1

14.06 DIO delayed status (14.01 Module 1 type = FIO-01 또는 FIO-11인 경우에 표시됨.)
확장 모듈의 디지털 입력/출력 지연 상태를 표시합니다. 이 워드는 시간 지연 이후에 업데이트됩니다.

Note: 이 파라미터의 허용 범위 수는 확장 모듈의 디지털 입력/출력 개수에 따라 다릅니다. 예를 들어, 1001b인 경우에 DIO1=DIO4=1이고 나머지는 0입니다. 이 파라미터는 임시 전용입니다.

0000b…1111b 디지털 입력/출력 지연 상태. 1 = 1
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.08</td>
<td>DI filter time</td>
<td>(14.01 Module 1 type = FDO-01인 경우에 표시됨.) 파라미터 14.05 DI status을 위한 필터링 시간을 설정합니다.</td>
<td>10.0 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8 ... 100.0 ms 14.05의 필터링 시간.</td>
<td>10 = 1 ms</td>
</tr>
<tr>
<td>14.08</td>
<td>DIO filter time</td>
<td>(14.01 Module 1 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 14.05 DIO status를 위한 필터링 시간을 설정합니다. 이 필터링 시간은 DIO를 입력 모드로 설정한 경우에만 적용됩니다.</td>
<td>10.0 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8 ... 100.0 ms 14.05의 필터링 시간.</td>
<td>10 = 1 ms</td>
</tr>
<tr>
<td>14.09</td>
<td>DIO1 function</td>
<td>(14.01 Module 1 type = FIO-01 또는 FIO-11인 경우에 표시됨.) DIO1을 디지털 입력 또는 출력, 또는 주파수 입력으로 사용할 것인지 선택합니다.</td>
<td>Input</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output 디지털 출력.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Input 디지털 입력.</td>
<td>1</td>
</tr>
<tr>
<td>14.11</td>
<td>DIO1 output source</td>
<td>(14.01 Module 1 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.09 DIO1 function을 디지털 출력으로 설정한 경우에 디지털 입/출력 DIO1에 연결할 드라이브의 신호를 선택합니다.</td>
<td>Not energized</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not energized 출력 차단.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energized 출력 동작.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ready run 06.11 Main status word의 비트 1 (페이지 129 참고).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enabled 06.16 Drive status word 1의 비트 0 (페이지 130 참고).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Started 06.16 Drive status word 1의 비트 5 (페이지 130 참고).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Magnetized 06.17 Drive status word 2의 비트 1 (페이지 131 참고).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Running 06.16 Drive status word 1의 비트 6 (페이지 130 참고).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ready ref 06.11 Main status word의 비트 2 (페이지 129 참고).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At setpoint 06.11 Main status word의 비트 8 (페이지 129 참고).</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reverse 06.19 Speed control status word의 비트 2 (페이지 133 참고).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zero speed 06.19 Speed control status word의 비트 0 (페이지 133 참고).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Above limit 06.17 Drive status word 2의 비트 10 (페이지 131 참고).</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning 06.11 Main status word의 비트 7 (페이지 129 참고).</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fault 06.11 Main status word의 비트 3 (페이지 129 참고).</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fault (-1) 06.11 Main status word의 반전 비트 3 (페이지 129 참고).</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Open brake command 44.01 Brake control status의 비트 0 (페이지 317 참고).</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ex2 active 06.16 Drive status word 1의 비트 11 (페이지 130 참고).</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Remote control 06.11 Main status word의 비트 9 (페이지 129 참고).</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervision 1 32.01 Supervision status의 비트 0 (페이지 273 참고).</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervision 2 32.01 Supervision status의 비트 1 (페이지 273 참고).</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervision 3 32.01 Supervision status의 비트 2 (페이지 273 참고).</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO/DIO control word bit0 10.99 RO/DIO control word의 비트 0 (페이지 152 참고).</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO/DIO control word bit1 10.99 RO/DIO control word의 비트 1 (페이지 152 참고).</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RO/DIO control word bit2 10.99 RO/DIO control word의 비트 2 (페이지 152 참고).</td>
<td>42</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO/DIO control word bit8</td>
<td>RO/DIO control word bit8의 비트 8 (페이지 152 참고).</td>
<td></td>
<td>43</td>
</tr>
<tr>
<td>RO/DIO control word bit9</td>
<td>RO/DIO control word bit9의 비트 9 (페이지 152 참고).</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>14.12 D11 ON delay</td>
<td>(14.01 Module 1 type = FDIO-01인 경우에 표시됨.) 디지털 입력 D11에 대한 한시 동작 시간을 정의합니다.</td>
<td>0.00 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*D1 상태</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**D1 지연 상태</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tOn = 14.12 D11 ON delay, tOff = 14.13 D11 OFF delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*전기적인 디지털 입력 상태: 14.05 DI status에 표시됩니다. **14.06 DI delayed status에 표시됩니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 ... 3000.00 s D11 한시 동작 시간.</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>14.12 DIO1 ON delay</td>
<td>(14.01 Module 1 type = FI0-01 또는 FI0-11인 경우에 표시됨.) 디지털 입/출력 DIO1에 대한 한시 동작 시간을 정의합니다.</td>
<td>0.00 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*DIO 상태</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>**DIO 지연 상태</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tOn = 14.12 DIO1 ON delay, tOff = 14.13 DIO1 OFF delay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>* 전기적인 입력 상태(입력 모드) 또는 선택 소스 상태(출력 모드), 14.05 DIO status에 표시됩니다. **14.06 DIO delayed status에 표시됩니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 ... 3000.00 s DIO1 한시 동작 시간.</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>14.13 D11 OFF delay</td>
<td>(14.01 Module 1 type = FDIO-01인 경우에 표시됨.) 디지털 입력 D11에 대한 한시 복귀 시간을 정의합니다. 파라미터 14.12 D11 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 ... 3000.00 s D11 한시 복귀 시간.</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>14.13 DIO1 OFF delay</td>
<td>(14.01 Module 1 type = FI0-01 또는 FI0-11인 경우에 표시됨.) 디지털 입/출력 DIO1에 대한 한시 복귀 시간을 정의합니다. 파라미터 14.12 DIO1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 ... 3000.00 s DIO1 한시 복귀 시간.</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>14.14 DIO2 function</td>
<td>(14.01 Module 1 type = FI0-01 또는 FI0-11인 경우에 표시됨.) DIO2를 디지털 입력 또는 출력, 또는 주파수 입력으로 사용할 것인지 선택합니다.</td>
<td>Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td>디지털 출력.</td>
<td>0</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>디지털 입력.</td>
<td>1</td>
</tr>
<tr>
<td>14.16</td>
<td>DIO2 output source</td>
<td>(14.01 Module 1 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.14 DIO2 function을 디지털 출력으로 설정한 경우에 디지털 입력/출력 DIO2에 연결할 드라이브의 신호를 선택합니다. 자세한 사항은 14.11 DIO1 output source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>14.17</td>
<td>DIO2 ON delay</td>
<td>(14.01 Module 1 type = FDIO-01인 경우에 표시됨.) 디지털 입력 DIO2에 대한 한시 동작 시간을 정의합니다. 자세한 사항은 14.12 DIO1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2 한시 동작 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>14.17</td>
<td>DIO2 ON delay</td>
<td>(14.01 Module 1 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 디지털 입력/출력 DIO2에 대한 한시 동작 시간을 정의합니다. 자세한 사항은 14.12 DIO1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2 한시 동작 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>14.18</td>
<td>DIO2 OFF delay</td>
<td>(14.01 Module 1 type = FDIO-01인 경우에 표시됨.) 디지털 입력 DIO2에 대한 한시 복귀 시간을 정의합니다. 파라미터 14.12 DIO1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2 한시 복귀 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>14.18</td>
<td>DIO2 OFF delay</td>
<td>(14.01 Module 1 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 디지털 입력/출력 DIO2에 대한 한시 복귀 시간을 정의합니다. 파라미터 14.12 DIO1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2 한시 복귀 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>14.19</td>
<td>DIO3 function</td>
<td>(14.01 Module 1 type = FIO-01인 경우에 표시됨.) DIO3를 디지털 입력 또는 출력, 또는 주파수 입력으로 사용할 것인지 선택합니다.</td>
<td>Input</td>
</tr>
<tr>
<td></td>
<td>Output</td>
<td>디지털 출력.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Input</td>
<td>디지털 입력.</td>
<td>1</td>
</tr>
<tr>
<td>14.19</td>
<td>AI supervision function</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 신호가 설정된 하한값 및 상한값을 벗어날 경우에 드라이브가 어떻게 반응할지 선택합니다. 파라미터 14.20 AI supervision selection에 실제로 감시할 아날로그 입력 및 감시 조건을 선택한 경우에만 동작합니다.</td>
<td>No action</td>
</tr>
<tr>
<td></td>
<td>No action</td>
<td>동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>80A0 AI supervision 트립 발생.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>80A0 AI supervision 경고 발생.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Last speed</td>
<td>드라이브는 80A0 AI supervision 경고를 발생하고 기준값은 현재 운전 중인 기준 속도 또는 주파수로 고정됩니다. 기준 속도/주파수는 850 ms의 저속 동과 필터를 거친 실제 속도를 기반으로 결정됩니다. WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Speed ref safe</td>
<td>드라이브는 80A0 AI supervision 경고를 발생하고 파라미터 22.41 Speed ref safe 또는 주파수 모드에서 28.41 Frequency ref safe에 설정한 기준값으로 운전합니다. 기준값은 현재 운전 중인 기준 속도 또는 주파수로 고정됩니다. WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
<td>4</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.20</td>
<td>AI supervision selection</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력의 감시 조건을 선택합니다. 자세한 사항은 14.19 AI supervision function을 확인하십시오. Note: 이 파라미터의 허용 비트 수는 확장 모듈의 아날로그 입력 개수에 따라 다릅니다.</td>
<td>0000 0000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AI1 < MIN</td>
<td>1 = AI1이 설정된 최댓값보다 작은 경우에 감지 가능성이 동작합니다.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>1</td>
<td>AI1 > MAX</td>
<td>1 = AI1이 설정된 최댓값보다 큰 경우에 감지 가능성이 동작합니다.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>AI2 < MIN</td>
<td>1 = AI2이 설정된 최댓값보다 작은 경우에 감지 가능성이 동작합니다.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AI2 > MAX</td>
<td>1 = AI2이 설정된 최댓값보다 큰 경우에 감지 가능성이 동작합니다.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>AI3 < MIN</td>
<td>1 = AI3이 설정된 최댓값보다 작은 경우에 감지 가능성이 동작합니다. (FIO-11)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AI3 > MAX</td>
<td>1 = AI3이 설정된 최댓값보다 큰 경우에 감지 가능성이 동작합니다. (FIO-11)</td>
<td></td>
</tr>
<tr>
<td>6...15</td>
<td>Reserved</td>
<td>아날로그 입력 감시 조건.</td>
<td></td>
</tr>
</tbody>
</table>

| 0000 0000b ... 0011 1111b | 아날로그 입력 감시 조건. | |

| 14.21 | DIO3 output source | (14.01 Module 1 type = FIO-01인 경우에 표시됨.) 파라미터 14.19 DIO3 function을 디지털 출력으로 설정한 경우에 디지털 입력/ 출력 DIO3에 연결될 드라이브의 신호를 선택합니다. 자세한 사항은 14.11 DIO1 output source를 참고하십시오. | Not energized |

| 14.21 | AI tune | (14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 튜닝 기능. 아날로그 신호를 입력단자에 연결하고 실제 아날로그 신호의 최솟값 및 최댓값에 따라 적절하게 튜닝하십시오. | No action |

No action	튜닝 없음.	0
A11 min tune	현재 아날로그 AI1의 입력값은 파라미터 14.33 A11 min에 최솟값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	1
A11 max tune	현재 아날로그 AI1의 입력값은 파라미터 14.34 A11 max에 최댓값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	2
A12 min tune	현재 아날로그 AI2의 입력값은 파라미터 14.48 A12 min에 최솟값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	3
A12 max tune	현재 아날로그 AI2의 입력값은 파라미터 14.49 A12 max에 최댓값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	4
A13 min tune	(14.01 Module 1 type = FIO-11인 경우에 표시됨.) 현재 아날로그 AI3의 입력값은 파라미터 14.63 A13 min에 최솟값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	5
A13 max tune	(14.01 Module 1 type = FIO-11인 경우에 표시됨.) 현재 아날로그 AI3의 입력값은 파라미터 14.64 A13 max에 최댓값으로 설정됩니다. 이 값은 No action으로 자동 복귀합니다.	6

| 14.22 | DI3 ON delay | (14.01 Module 1 type = FDIO-01인 경우에 표시됨.) 디지털 입력 D13에 대한 한시 동작 시간을 정의합니다. 자세한 사항은 14.12 DI1 ON delay를 참고하십시오. | 0.00 s |

| 0.00 ... 3000.00 s | DI3 한시 동작 시간. | 10 = 1 s |
DIO3 ON delay

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.22</td>
<td>DIO3 ON delay</td>
<td>(14.01 Module 1 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 디지털 입력 DIO3에 대한 한시 동작 시간을 정의합니다. 자세한 사항은 14.12 D11 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
</tbody>
</table>

| 0.00 ... 3000.00 s | DIO3 한시 동작 시간. | 10 = 1 s |

AI force selection

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.22</td>
<td>AI force selection</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 이 파라미터는 시험을 목적으로 사용할 수 있으며, 현재의 아날로그 입력값은 무응효가 됩니다. 여기서 해당 비트 1로 세트할 때마다 정해진 파라미터에 강제로 아날로그 값을 입력할 수 있습니다.</td>
<td>0000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AI1</td>
<td>1 = 14.28 Al1 force data에 AI1의 값을 강제로 입력합니다.</td>
</tr>
<tr>
<td>1</td>
<td>AI2</td>
<td>1 = 14.43 AI2 force data에 AI2의 값을 강제로 입력합니다.</td>
</tr>
<tr>
<td>2</td>
<td>AI3</td>
<td>1 = 14.58 AI3 force data에 AI3의 값을 강제로 입력합니다. (FIO-11).</td>
</tr>
<tr>
<td>3…15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

| 0000b...0111b | 아날로그 강제 입력 선택. | 1 = 1 |

D13 OFF delay

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.23</td>
<td>D13 OFF delay</td>
<td>(14.01 Module 1 type = FDOI-01인 경우에 표시됨.) 디지털 입력 D13에 대한 한시 복귀 시간을 정의합니다. 자세한 사항은 14.12 D11 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
</tbody>
</table>

| 0.00 ... 3000.00 s | D13 한시 복귀 시간. | 10 = 1 s |

DIO3 OFF delay

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.23</td>
<td>DIO3 OFF delay</td>
<td>(14.01 Module 1 type = FIO-01인 경우에 표시됨.) 디지털 입력 DIO3에 대한 한시 복귀 시간을 정의합니다. 자세한 사항은 14.12 D11 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
</tbody>
</table>

| 0.00 ... 3000.00 s | DIO3 한시 복귀 시간. | 10 = 1 s |

DIO4 function

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.24</td>
<td>DIO4 function</td>
<td>(14.01 Module 1 type = FIO-01인 경우에 표시됨.) DIO4를 디지털 입력 또는 출력, 또는 주파수 입력으로 사용할 것인지 선택합니다.</td>
<td>Input</td>
</tr>
</tbody>
</table>

Output: 디지털 출력.

Input: 디지털 입력.

DIO4 output source

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
</table>

AI1 actual value

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.26</td>
<td>AI1 actual value</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 AI1의 값을 mA 또는 V로 표시합니다. (단, 하드웨어 설정이 전류 또는 전압으로 설정되어 있는지 여부에 따라 다름.) 이 파라미터는 임시 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

-22.000 ... 22.000 mA or V AI1의 아날로그 입력값.

1000 = 1 mA or V

DIO4 ON delay

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.27</td>
<td>DIO4 ON delay</td>
<td>(14.01 Module 1 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 디지털 입력 DIO4에 대한 한시 동작 시간을 정의합니다. 자세한 사항은 14.12 D11 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
</tbody>
</table>

<p>| 0.00 ... 3000.00 s | DIO4 한시 동작 시간. | 10 = 1 s |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.27</td>
<td>AI1 scaled value</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 AI1의 스케일링 값을 표시합니다. 파라미터 14.35 AI1 scaled at AI1 min 및 14.36 AI1 scaled at AI1 max를 확인하십시오.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-3276.8000 ... 3276.7000</td>
<td>아날로그 입력 AI1의 스케일링 값을.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.28</td>
<td>DIO4 OFF delay</td>
<td>(14.01 Module 1 type = FIO-01인 경우에 표시됨.) 디지털 입력 D4에 대한 한시 복귀 시간을 정의합니다. 자세한 사항은 14.12 DI1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 3000.00</td>
<td>D44 한시 복귀 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>14.28</td>
<td>AI1 force selection</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 실제 아날로그 신호를 읽어 들이는 대신에 강제로 값을 입력합니다. 자세한 사항은 14.22 AI force selection을 확인하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td>-22.000 ... 22.000 mA or V</td>
<td>아날로그 입력 AI1의 강제 입력값.</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>14.29</td>
<td>AI1 HW switch position</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) I/O 확장 모듈에서 전류/전압 선택 스위치의 위치를 나타냅니다. Note: 이 스위치의 설정은 파라미터 14.30 AI1 unit selection에서 선택한 단위와 일치해야 합니다. 여기서 스위치 설정의 변경 사항을 확인하려면 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>전압 입력.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>mA</td>
<td>전류 입력.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>14.30</td>
<td>AI1 unit selection</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 AI1의 입력 소스에 대한 단위를 선택합니다. Note: 이 설정은 I/O 확장 모듈의 스위치 설정과 일치해야 합니다. 이에 대한 스위치 설정은 파라미터 14.29 AI1 HW switch position에 보였습니다. 여기서 스위치 설정의 변경 사항을 확인하려면 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
<td>mA</td>
</tr>
<tr>
<td>V</td>
<td>전압 입력.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>mA</td>
<td>전류 입력.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>14.31</td>
<td>RO status</td>
<td>(14.01 Module 1 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) I/O 확장 모듈 일레이의 출력 상태를 표시합니다. 예를 들어, 0001b인 경우에 RO1=1이고 RO2=0입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0000b...1111b</td>
<td>필레이 출력 상태.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.31</td>
<td>AI1 filter gain</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 AI1의 하드웨어적인 필터링 시간을 선택합니다. 또한 파라미터 14.32 AI1 filter time을 참고하십시오.</td>
<td>1 ms</td>
</tr>
<tr>
<td>No filtering</td>
<td>필터링 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>125 μs</td>
<td>125 μs 필터링.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>250 μs</td>
<td>250 μs 필터링.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>500 μs</td>
<td>500 μs 필터링.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1 ms</td>
<td>1 ms 필터링.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2 ms</td>
<td>2 ms 필터링.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>4</td>
<td>ms</td>
<td>4 ms 필터링.</td>
<td>6</td>
</tr>
<tr>
<td>7.9375</td>
<td>ms</td>
<td>7.9375 ms 필터링.</td>
<td>7</td>
</tr>
<tr>
<td>14.32</td>
<td>A11 filter time</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 A11의 필터 시간을 정의합니다.</td>
<td>0.100 s</td>
</tr>
</tbody>
</table>

		필터링이 없는 경우	필터링된 경우

\[O = I \times (1 - e^{-t/T}) \]

\[I = \text{스텝 입력} \]

\[O = \text{필터 출력} \]

\[t = \text{시간} \]

\[T = \text{필터 시간} \]

Note: 이 신호는 하드웨어적으로도 필터링됩니다. 자세한 사항은 파라미터 14.31 A11 filter gain을 참고하십시오.

8.000 ... 30.000 s	필터 시간을.	1000 = 1 s	
14.33	A11 min	(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 A11의 최솟값을 정의합니다. 실질 현장에서 아날로그 신호를 최솟값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 14.21 AI tune을 이용하십시오.	0.000 mA or V
14.34	RO1 source	(14.01 Module 1 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 필레이 출력 RO1에 연결할 드라이브의 신호를 선택합니다. 자세한 사항은 14.11 DIO1 output source를 참고하십시오.	Not energized
14.34	A11 max	(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 A11의 최댓값을 정의합니다. 실질 현장에서 아날로그 신호를 최댓값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 14.21 AI tune을 이용하십시오.	10.000 mA or V
-22.000 ... 22.000 mA or V	아날로그 입력 A11의 최댓값.	1000 = 1 mA or V	

<p>| -22.000 ... 22.000 mA or V | 아날로그 입력 A11의 최댓값. | 1000 = 1 mA or V |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.35</td>
<td>RO1 ON delay</td>
<td>(14.01 Module 1 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 릴레이 출력 RO1에 대한 한시 동작 시간을 정의합니다.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>14.35</td>
<td>A11 scaled at A11 min</td>
<td>(14.01 Module 1 type = FIO-01 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.33 A11 min에 설정된 아날로그 입력 A1의 최솟값에 해당하는 신호의 실제값을 정의합니다.</td>
<td>0.000</td>
</tr>
<tr>
<td>14.36</td>
<td>RO1 OFF delay</td>
<td>(14.01 Module 1 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 릴레이 출력 RO1에 대한 한시 복귀 시간을 정의합니다. 파라미터는 14.35 RO1 ON delay를 참고하시십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>14.36</td>
<td>A11 scaled at A11 max</td>
<td>(14.01 Module 1 type = FIO-01 또는 FAIO-01인 경우에 표시됨.) 14.34 A11 max에 설정된 아날로그 입력 A1의 최댓값에 해당하는 신호의 실제값을 정의합니다. 파라미터 14.35 A11 scaled at A11 min의 그림을 참고하시십시오.</td>
<td>100.000</td>
</tr>
<tr>
<td>14.37</td>
<td>RO2 source</td>
<td>(14.01 Module 1 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 릴레이 출력 RO2에 연결할 드라이브의 신호를 선택합니다. 자세한 사항은 14.11 DIO1 output source를 참고하시십시오.</td>
<td>Not energized</td>
</tr>
</tbody>
</table>

![Diagram](image-url)
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.38</td>
<td>RO2 ON delay</td>
<td>(14.01 Module 1 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 릴레이 출력 RO2에 대한 한시 동작 시간을 정의합니다. 파라미터를 14.35 RO1 ON delay 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 3000.00 s</td>
<td>RO2 한시 동작 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>14.39</td>
<td>RO2 OFF delay</td>
<td>(14.01 Module 1 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 릴레이 출력 RO2에 대한 한시 복귀 시간을 정의합니다. 파라미터를 14.35 RO1 ON delay 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 3000.00 s</td>
<td>RO2 한시 복귀 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>14.41</td>
<td>AI2 actual value</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 AI2의 값을 mA 또는 V로 표시합니다. (단, 하드웨어 설정이 전류 또는 전압으로 설정되어 있는지 여부에 따라 다름.) 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-22.000 ... 22.000 mA or V</td>
<td>AI2의 아날로그 입력값.</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>14.42</td>
<td>AI2 scaled value</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 AI2의 스케일링 값을 표시합니다. 파라미터 14.50 AI2 scaled at AI2 min 및 14.51 AI2 scaled at AI2 max를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-32768.000 ... 32767.000</td>
<td>아날로그 입력 AI2의 스케일링 값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.43</td>
<td>AI2 force data</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 실제 아날로그 신호를 읽어 들이는 대신에 강제로 값을 입력합니다. 자세한 사항은 14.22 AI force selection을 확인하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td>-22.000 ... 22.000 mA or V</td>
<td>아날로그 입력 AI2의 강제 입력값.</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>14.44</td>
<td>AI2 HW switch position</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) I/O 확장 모듈에서 전류/전압 선택 스위치의 위치를 나타냅니다. Note: 이 스위치의 설정은 파라미터 14.45 AI2 unit selection에서 선택한 단위에 일치해야 합니다. 여기서 스위치 설정의 변경 사항을 확인하려면 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>V</td>
<td>전압 입력.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>mA</td>
<td>전류 입력.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>14.45</td>
<td>AI2 unit selection</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 AI2의 입력 소스에 대한 단위를 선택합니다. Note: 이 설정은 I/O 확장 모듈의 스위치 설정과 일치해야 합니다. 이에 대한 스위치 설정은 파라미터 14.44 AI2 HW switch position에 보였습니다. 여기서 스위치 설정의 변경 사항을 확인하려면 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
<td>mA</td>
</tr>
<tr>
<td>V</td>
<td>전압 입력.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>mA</td>
<td>전류 입력.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>14.46</td>
<td>AI2 filter gain</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 입력 AI2의 하드웨어적인 필터링 시간을 선택합니다. 또한 파라미터 14.47 AI2 filter time을 참고하십시오.</td>
<td>1 ms</td>
</tr>
<tr>
<td>No filtering</td>
<td>필터링 없음.</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
14.47 AI2 filter time

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 us</td>
<td>125μs 필터링.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>250 us</td>
<td>250μs 필터링.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>500 us</td>
<td>500μs 필터링.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1 ms</td>
<td>1ms 필터링.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2 ms</td>
<td>2ms 필터링.</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4 ms</td>
<td>4ms 필터링.</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7.9375 ms</td>
<td>7.9375ms 필터링.</td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)
아날로그 입력 AI2의 필터 시간을 정의합니다.

![필터링 시간 그래프](image)

\[O = I \times (1 - e^{-t/T}) \]

\(I \) = 스텝 입력
\(O \) = 필터 출력
\(t \) = 시간
\(T \) = 필터 시간

Note: 이 신호는 하드웨어적으로도 필터링됩니다. 자세한 사항은 파라미터 14.46 AI2 filter gain을 참고하십시오.

<table>
<thead>
<tr>
<th>시간</th>
<th>필터 시간</th>
<th>0.100 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 ... 30.000 s</td>
<td>필터 시간</td>
<td>1000 = 1 s</td>
</tr>
</tbody>
</table>

14.48 AI2 min

(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)
아날로그 입력 AI2의 최솟값을 정의합니다. 실제 현장에서 아날로그 신호를 최솟값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 14.21 Al tune을 이용하십시오.

<table>
<thead>
<tr>
<th>값</th>
<th>0.000 mA or V</th>
</tr>
</thead>
<tbody>
<tr>
<td>-22.000 ... 22.000 mA or V</td>
<td>아날로그 입력 AI2의 최솟값.</td>
</tr>
<tr>
<td>1000 = 1 mA or V</td>
<td></td>
</tr>
</tbody>
</table>

14.49 AI2 max

(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)
아날로그 입력 AI2의 최댓값을 정의합니다. 실제 현장에서 아날로그 신호를 최댓값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 14.21 Al tune을 이용하십시오.

<table>
<thead>
<tr>
<th>값</th>
<th>10.000 mA or V</th>
</tr>
</thead>
<tbody>
<tr>
<td>-22.000 ... 22.000 mA or V</td>
<td>아날로그 입력 AI2의 최댓값.</td>
</tr>
<tr>
<td>1000 = 1 mA or V</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| 14.50 | AI2 scaled at AI2 min | (14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.48 AI2 min 에 설정된 아날로그 입력 AI2의 최솟값에 해당하는 신호의 실제값을 정의합니다.
\[A_{I2}^{scaled} (14.42) \]
\[A_{I_{in}} (14.41) \]
\[14.51 \]
\[14.48 \]
\[14.49 \]
\[14.50 \]
\[0.000 \]
-32768.000 … 32767.000 | 아날로그 입력 AI2의 최솟값에 해당하는 실제값. | 1 = 1 |
| 14.51 | AI2 scaled at AI2 max | (14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)
14.49 AI2 max 에 설정된 아날로그 입력 AI2의 최댓값에 해당하는 신호의 실제값을 정의합니다.
파라미터 14.50 AI2 scaled at AI1 min의 그림을 참고하십시오.
-32768.000 … 32767.000 | 아날로그 입력 AI2의 최댓값에 해당하는 실제값. | 1 = 1 |
| 14.56 | AI3 actual value | (14.01 Module 1 type = FIO-11인 경우에 표시됨.)
아날로그 입력 AI3의 값을 mA 또는 V로 표시합니다. (단, 하드웨어 설정이 전류 또는 전압으로 설정되어 있는지 여부에 따라 다름.) 이 파라미터는 입력값 전용입니다.
-22.000 … 22.000 mA or V | AI3의 아날로그 입력값. | 1000 = 1 mA or V |
| 14.57 | AI3 scaled value | (14.01 Module 1 type = FIO-11인 경우에 표시됨.)
아날로그 입력 AI3의 스케일링 값을 표시합니다. 파라미터 14.63 AI3 scaled at AI3 min 및 14.66 AI3 scaled at AI3 max 를 확인하십시오.
-32768.000 … 32767.000 | 아날로그 입력 AI3의 스케일링 값. | 1 = 1 |
| 14.58 | AI3 force data | (14.01 Module 1 type = FIO-11인 경우에 표시됨.)
実제 아날로그 신호를 읽을 때는 대신에 강제로 값을 입력합니다.
자세한 사항은 14.22 AI force selection을 확인하십시오.
-22.000 … 22.000 mA or V | 아날로그 입력 AI3의 강제 입력값. | 1000 = 1 mA or V |
| 14.59 | AI3 HW switch position | (14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)
I/O 확장 모듈에서 전류/전압 선택 스위치의 위치를 나타냅니다.
Note: 이 스위치의 설정은 파라미터 14.60 AI3 unit selection에서 선택한 단위와 일치해야 합니다. 여기서 스위치 설정의 변경 사항을 확인하려면 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.
V | 전압 입력. | 2 |
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>전류 입력.</td>
<td>10</td>
</tr>
</tbody>
</table>

14.60 **AI3 unit selection** *(14.01 Module 1 type = FIO-11인 경우에 표시됨.)*
아날로그 입력 AI3의 입력 소스에 대한 단위를 선택합니다.
Note: 이 설정은 I/O 확장 모듈의 스위치 설정과 일치해야 합니다. 이에 대한 스위치 설정은 파라미터 14.59 AI3 HW switch position을 보았습니다. 여기서 스위치 설정의 변경 사항을 확인하려면 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>전압 입력.</td>
<td>2</td>
</tr>
<tr>
<td>mA</td>
<td>전류 입력.</td>
<td>10</td>
</tr>
</tbody>
</table>

14.61 **AI3 filter gain** *(14.01 Module 1 type = FIO-11인 경우에 표시됨.)*
아날로그 입력 AI3의 하드웨어적인 필터링 시간을 선택합니다. 또한 파라미터 14.62 AI3 filter time을 참고하십시오.

<table>
<thead>
<tr>
<th>설정</th>
<th>메모</th>
</tr>
</thead>
<tbody>
<tr>
<td>No filtering</td>
<td>필터링 없음.</td>
</tr>
<tr>
<td>125 us</td>
<td>125 μs 필터링.</td>
</tr>
<tr>
<td>250 us</td>
<td>250 μs 필터링.</td>
</tr>
<tr>
<td>500 us</td>
<td>500 μs 필터링.</td>
</tr>
<tr>
<td>1 ms</td>
<td>1 ms 필터링.</td>
</tr>
<tr>
<td>2 ms</td>
<td>2 ms 필터링.</td>
</tr>
<tr>
<td>4 ms</td>
<td>4 ms 필터링.</td>
</tr>
<tr>
<td>7.9375 ms</td>
<td>7.9375 ms 필터링.</td>
</tr>
</tbody>
</table>

14.62 **AI3 filter time** *(14.01 Module 1 type = FIO-11인 경우에 표시됨.)*
아날로그 입력 AI3의 필터 시정수를 정의합니다.

\[
O = I \times (1 - e^{-\frac{t}{T}})
\]

I = 스트립 입력

O = 필터 출력

t = 시간

T = 필터 시정수

Note: 이 신호는 하드웨어적으로도 필터링됩니다. 자세한 사항은 파라미터 14.61 AI3 filter gain을 참고하십시오.

<table>
<thead>
<tr>
<th>설정</th>
<th>메모</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 ... 30.000 s</td>
<td>필터 시정수.</td>
</tr>
<tr>
<td>1000 = 1 s</td>
<td></td>
</tr>
</tbody>
</table>
번호 | 이름/값 | 설명 | Def FbEq16
---|---|---|---
14.63 | A13 min | (14.01 Module 1 type = FIO-11인 경우에 표시됨.) 아날로그 입력 A13의 최솟값을 정의합니다. 실제 현장에서 아날로그 신호를 최솟값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 14.21 AI tune을 이용하십시오. | 0.000 mА or V
-22.000 ... 22.000 mA or V | 아날로그 입력 A13의 최솟값. | 1000 = 1 mА or V
14.64 | A13 max | (14.01 Module 1 type = FIO-11인 경우에 표시됨.) 아날로그 입력 A13의 최댓값을 정의합니다. 실제 현장에서 아날로그 신호를 최댓값으로 입력하고 드라이브에 표시된 값으로 설정하거나 파라미터 14.21 AI tune을 이용하십시오. | 10.000 mА or V
-22.000 ... 22.000 mA or V | 아날로그 입력 A13의 최댓값. | 1000 = 1 mА or V
14.65 | A13 scaled at A13 min | (14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.63 A13 min에 설정된 아날로그 입력 A13의 최솟값에 해당하는 신호의 실제값을 정의합니다. | 0.000

-32768.000 ... 32767.000 | 아날로그 입력 A12의 최솟값에 해당하는 실제값. | 1 = 1
14.66 | A13 scaled at A13 max | (14.01 Module 1 type = FIO-11인 경우에 표시됨.) 14.64 A13 max에 설정된 아날로그 입력 A13의 최댓값에 해당하는 신호의 실제값을 정의합니다. 파라미터 14.65 A13 scaled at A13 min의 그림을 참고하십시오. | 100.000
-32768.000 ... 32767.000 | 아날로그 입력 A13의 최댓값에 해당하는 실제값. | 1 = 1
14.71 | AO force selection | (14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 이 파라미터는 시험을 목적으로 사용할 수 있으며, 현재의 아날로그 출력값은 모든 무효가 됩니다. 여기서 해당 비트를 1로 세트할 때마다 정해진 파라미터에 강제로 아날로그 값을 출력할 수 있습니다. | 00b

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>AO1</td>
<td>1 = 14.78 AO1 force data에 값을 입력하여 AO1을 강제로 출력합니다.</td>
</tr>
<tr>
<td>1</td>
<td>AO2</td>
<td>1 = 14.88 AO2 force data에 값을 입력하여 AO2를 강제로 출력합니다. (FAIO-01)</td>
</tr>
<tr>
<td>3...15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 00b...11b | 아날로그 강제 출력 선택. | 1 = 1 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.76</td>
<td>AO1 actual value</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1의 mA 출력값을 표시합니다. 이 파라미터는 월기 영점입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 22.000 mA AO1의 아날로그 출력값.</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.77</td>
<td>AO1 source</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1에 연결할 드라이브의 신호를 선택합니다. 또는 출력을 여자 모드(Excitation mode)로 설정하여 일정한 전류를 온도 센서에 공급합니다.</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zero 출력 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Motor speed used</td>
<td>01.01 Motor speed used (페이지 115).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Output frequency</td>
<td>01.06 Output frequency (페이지 115).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Motor current</td>
<td>01.07 Motor current (페이지 115).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Motor torque</td>
<td>01.10 Motor torque (페이지 115).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DC voltage</td>
<td>01.11 DC voltage (페이지 115).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Power in out</td>
<td>01.14 Output power (페이지 116).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Speed ref ramp in</td>
<td>23.01 Speed ref ramp input (페이지 218).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Speed ref ramp out</td>
<td>23.02 Speed ref ramp output (페이지 218).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Speed ref used</td>
<td>24.01 Used speed reference (페이지 224).</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Torq ref used</td>
<td>26.02 Torque reference used (페이지 240).</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Freq ref used</td>
<td>28.02 Frequency ref ramp output (페이지 246).</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Process PID out</td>
<td>40.01 Process PID output actual (페이지 301).</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Process PID fbk</td>
<td>40.02 Process PID feedback actual (페이지 301).</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Process PID act</td>
<td>40.03 Process PID setpoint actual (페이지 301).</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Process PID dev</td>
<td>40.04 Process PID deviation actual (페이지 301).</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Force Pt100 excitation</td>
<td>출력은 1...3개의 Pt100 센서에 여자 전류를 공급합니다. 자세한 사항은 모터 입력 보호 (페이지 80) 절을 참고하십시오.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Force KTY84 excitation</td>
<td>출력은 KTY84 센서에 여자 전류를 공급합니다. 자세한 사항은 모터 입력 보호 (페이지 80) 절을 참고하십시오.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Force PTC excitation</td>
<td>출력은 1...3개의 PTC 센서에 여자 전류를 공급합니다. 자세한 사항은 모터 입력 보호 (페이지 80) 절을 참고하십시오.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Force Pt1000 excitation</td>
<td>출력은 1...3개의 Pt1000 센서에 여자 전류를 공급합니다. 자세한 사항은 모터 입력 보호 (페이지 80) 절을 참고하십시오.</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>AO1 data storage</td>
<td>13.91 AO1 data storage (페이지 165).</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>AO2 data storage</td>
<td>13.92 AO2 data storage (페이지 165).</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>14.78</td>
<td>AO1 force data</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 실제 아날로그 신호를 출력하는 대신에 강체로 값을 출력합니다. 자세한 사항은 14.71 AO force selection을 확인하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 22.000 mA 아날로그 입력 AO1의 강체 출력값.</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>14.79</td>
<td>AO1 filter time</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1의 필터 시정수를 정의합니다.</td>
<td>0.100 s</td>
</tr>
</tbody>
</table>

![Filtering diagram](image)

\[O = I \times (1 - e^{-T/t}) \]

\[I = \text{스텝 입력} \]
\[O = \text{필터 출력} \]
\[t = \text{시간} \]
\[T = \text{필터 시정수} \]

| 0.000 ... 30.000 s | 필터 시정수, | 1000 = 1 s |
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.80</td>
<td>AO1 source min</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1의 최솟값에 해당하는 실제값을 정의합니다. 여기서 신호 소스는 14.77 AO1 source에서 선택하고 아날로그 출력 최솟값은 파라미터 14.82 AO1 out at AO1 src min에 설정합니다.</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 출력 AO1의 최솟값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1의 최댓값에 해당하는 실제값을 정의합니다. 여기서 신호 소스는 14.77 AO1 source에서 선택하고 아날로그 출력 최댓값은 파라미터 14.83 AO1 out at AO1 src max에 설정합니다.</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 출력 AO1의 최댓값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1의 최댓값을 정의합니다. 파라미터 14.80 AO1 source min의 그림을 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 출력 AO1의 최솟값.</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1의 최댓값을 정의합니다. 파라미터 14.80 AO1 source min의 그림을 참고하십시오.</td>
<td>10.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 출력 AO1의 최댓값.</td>
<td>1000 = 1 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>-32768.0 ... 32767.0</td>
<td>아날로그 출력 AO1의 최솟값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>14.81</td>
<td>AO1 source max</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1의 최댓값에 해당하는 실제값을 정의합니다. 여기서 신호 소스는 14.77 AO1 source에서 선택하고 아날로그 출력 최댓값은 파라미터 14.83 AO1 out at AO1 src max에 설정합니다.</td>
<td>100.0</td>
</tr>
<tr>
<td>-32768.0 ... 32767.0</td>
<td>아날로그 출력 AO1의 최댓값에 해당하는 신호의 실제값.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>14.82</td>
<td>AO1 out at AO1 src min</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1의 최솟값을 정의합니다. 파라미터 14.80 AO1 source min의 그림을 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>0.000 ... 22.000 mA</td>
<td>아날로그 출력 AO1의 최솟값.</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>14.83</td>
<td>AO1 out at AO1 src max</td>
<td>(14.01 Module 1 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 아날로그 출력 AO1의 최댓값을 정의합니다. 파라미터 14.80 AO1 source min의 그림을 참고하십시오.</td>
<td>10.000 mA</td>
</tr>
<tr>
<td>0.000 ... 22.000 mA</td>
<td>아날로그 출력 AO1의 최댓값.</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>14.86</td>
<td>AO2 actual value</td>
<td>(14.01 Module 1 type = FAIO-01인 경우에 표시됨.) 아날로그 출력 AO2의 mA 출력값을 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 22.000 mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.87</td>
<td>AO2 source</td>
<td>(14.01 Module 1 type = FAIO-01인 경우에 표시됨.) 아날로그 출력 AO2에 연결할 드라이브의 신호를 선택합니다. 또는 출력을 여자 모드(Excitation mode)로 설정하여 일정한 전류를 온도 센서에 공급합니다. 자세한 사항은 파라미터 14.77 AO1 source를 참고하십시오.</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 22.000 mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.88</td>
<td>AO2 force data</td>
<td>(14.01 Module 1 type = FAIO-01인 경우에 표시됨.) 실제 아날로그 신호를 출력하는 대신에 강제로 값을 출력합니다. 자세한 사항은 14.71 AO force selection을 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 30.000 s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>14.90</td>
<td>AO2 source min</td>
<td>(14.01 Module 1 type = FAIO-01인 경우에 표시됨.) 아날로그 출력 AO2의 최솟값에 해당하는 실제값을 정의합니다. 여기서 신호 소스는 14.87 AO2 source에서 선택하고 아날로그 출력 최솟값은 파라미터 14.92 AO2 out at AO2 src min에서 설정합니다.</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-32768.0 ... 32767.0</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>14.91</td>
<td>AO2 source max</td>
<td>(14.01 Module 1 type = FAIO-01인 경우에 표시됨.) 야날로그 출력 AO2의 최댓값에 해당하는 실제값을 정의합니다. 여기서 신흥 소스는 14.87 AO2 source에서 선택하고 야날로그 출력 최댓값은 파라미터 14.93 AO2 out at AO2 src max에 설정합니다.</td>
<td>100.0</td>
</tr>
<tr>
<td>-32768.0 ... 32767.0</td>
<td></td>
<td>야날로그 출력 AO2의 최댓값에 해당하는 신흥의 실제값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.92</td>
<td>AO2 out at AO2 src min</td>
<td>(14.01 Module 1 type = FAIO-01인 경우에 표시됨.) 야날로그 출력 AO2의 최솟값을 정의합니다. 파라미터 14.90 AO2 source min의 값을 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>0.000 ... 22.000 mA</td>
<td></td>
<td>야날로그 출력 AO2의 최솟값.</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.93</td>
<td>AO2 out at AO2 src max</td>
<td>(14.01 Module 1 type = FAIO-01인 경우에 표시됨.) 야날로그 출력 AO2의 최댓값을 정의합니다. 파라미터 14.90 AO2 source min의 값을 참고하십시오.</td>
<td>10.000 mA</td>
</tr>
<tr>
<td>0.000 ... 22.000 mA</td>
<td></td>
<td>야날로그 출력 AO2의 최댓값.</td>
<td>1000 = 1 mA</td>
</tr>
</tbody>
</table>

15 I/O extension module 2

I/O 확장 모듈 2의 구성. 이에 대한 자세한 사항은 프로그래밍 가능한 확장 I/O(페이지 29) 절을 참고하십시오. **Note:** 파라미터 그룹의 내용은 선택된 I/O 확장 모듈 타입에 따라 다릅니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.01</td>
<td>Module 2 type</td>
<td>파라미터 14.01 Module 1 type을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>15.02</td>
<td>Module 2 location</td>
<td>파라미터 14.02 Module 1 location을 참고하십시오.</td>
<td>Slot 1</td>
</tr>
<tr>
<td>15.03</td>
<td>Module 2 status</td>
<td>파라미터 14.03 Module 1 status를 참고하십시오.</td>
<td>No option</td>
</tr>
<tr>
<td>15.05</td>
<td>DI status</td>
<td>(15.01 Module 2 type = FDIO-01인 경우에 표시됨.) 파라미터 14.05 DI status를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.05</td>
<td>DIO status</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.05 DIO status를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.06</td>
<td>DI delayed status</td>
<td>(15.01 Module 2 type = FDIO-01인 경우에 표시됨.) 파라미터 14.06 DI delayed status를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.06</td>
<td>DIO delayed status</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.06 DIO delayed status를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.08</td>
<td>DI filter time</td>
<td>(15.01 Module 2 type = FDIO-01인 경우에 표시됨.) 파라미터 14.08 DI filter time을 참고하십시오.</td>
<td>10.0 ms</td>
</tr>
<tr>
<td>15.08</td>
<td>DIO filter time</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.08 DIO filter time을 참고하십시오.</td>
<td>10.0 ms</td>
</tr>
<tr>
<td>15.09</td>
<td>DIO1 function</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.09 DIO1 function을 참고하십시오.</td>
<td>Input</td>
</tr>
<tr>
<td>15.11</td>
<td>DIO1 output source</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.11 DIO1 output source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>15.12</td>
<td>DI1 ON delay</td>
<td>(15.01 Module 2 type = FDIO-01인 경우에 표시됨.) 파라미터 14.12 DI1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.12</td>
<td>DIO1 ON delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터를 14.12 DIO1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.13</td>
<td>DI1 OFF delay</td>
<td>(15.01 Module 2 type = FDIO-01인 경우에 표시됨.) 파라미터 14.13 DI1 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.13</td>
<td>DIO1 OFF delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.13 DIO1 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>15.14</td>
<td>DIO2 function</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.14 DIO2 function을 참고하십시오.</td>
<td>Input</td>
</tr>
<tr>
<td>15.16</td>
<td>DIO2 output source</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.16 DIO2 output source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>15.17</td>
<td>DIO2 ON delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.17 DIO2 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.17</td>
<td>DIO2 ON delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.17 DIO2 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.18</td>
<td>DIO2 OFF delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.18 DIO2 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.18</td>
<td>DIO2 OFF delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.18 DIO2 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.19</td>
<td>DIO3 function</td>
<td>(15.01 Module 2 type = FIO-01인 경우에 표시됨.) 파라미터 14.19 DIO3 function을 참고하십시오.</td>
<td>Input</td>
</tr>
<tr>
<td>15.19</td>
<td>AI supervision function</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.19 AI supervision function을 참고하십시오.</td>
<td>No action</td>
</tr>
<tr>
<td>15.20</td>
<td>AI supervision selection</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.20 AI supervision selection을 참고하십시오.</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>15.21</td>
<td>DIO3 output source</td>
<td>(15.01 Module 2 type = FIO-01인 경우에 표시됨.) 파라미터 14.21 DIO3 output source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>15.21</td>
<td>AI tune</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.21 AI tune을 참고하십시오.</td>
<td>No action</td>
</tr>
<tr>
<td>15.22</td>
<td>DIO3 ON delay</td>
<td>(15.01 Module 2 type = FDIO-01인 경우에 표시됨.) 파라미터 14.22 DIO3 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.22</td>
<td>DIO3 ON delay</td>
<td>(15.01 Module 2 type = FIO-01인 경우에 표시됨.) 파라미터 14.22 DIO3 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.22</td>
<td>AI force selection</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.22 AI force selection을 참고하십시오.</td>
<td>0000b</td>
</tr>
<tr>
<td>15.23</td>
<td>DIO3 OFF delay</td>
<td>(15.01 Module 2 type = FDIO-01인 경우에 표시됨.) 파라미터 14.23 DIO3 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.24</td>
<td>DIO4 function</td>
<td>(15.01 Module 2 type = FIO-01인 경우에 표시됨.) 파라미터 14.24 DIO4 function을 참고하십시오.</td>
<td>Input</td>
</tr>
<tr>
<td>15.25</td>
<td>DIO4 output source</td>
<td>(15.01 Module 2 type = FIO-01인 경우에 표시됨.) 파라미터 14.26 DIO4 output source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>15.25</td>
<td>AI1 actual value</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.26 AI1 actual value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.27</td>
<td>DIO4 ON delay</td>
<td>(15.01 Module 2 type = FIO-01인 경우에 표시됨.) 파라미터 14.27 DIO4 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.27</td>
<td>AI1 scaled value</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.27 AI1 scaled value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.28</td>
<td>DIO4 OFF delay</td>
<td>(15.01 Module 2 type = FIO-01인 경우에 표시됨.) 파라미터 14.28 DIO4 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.28</td>
<td>AI1 force data</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.28 AI1 force data를 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>15.29</td>
<td>A11 HW switch position</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.29 A11 HW switch position을 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.30</td>
<td>A11 unit selection</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.30 A11 unit selection을 참고하십시오.</td>
<td>mA</td>
</tr>
<tr>
<td>15.31</td>
<td>RO status</td>
<td>(15.01 Module 2 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 파라미터 14.31 RO status를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.31</td>
<td>A11 filter gain</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.31 A11 filter gain을 참고하십시오.</td>
<td>1 ms</td>
</tr>
<tr>
<td>15.32</td>
<td>A11 filter time</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.32 A11 filter time을 참고하십시오.</td>
<td>0.100 s</td>
</tr>
<tr>
<td>15.33</td>
<td>A11 min</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.33 A11 min을 참고하십시오.</td>
<td>0.000 mA or V</td>
</tr>
<tr>
<td>15.34</td>
<td>RO1 source</td>
<td>(15.01 Module 2 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 파라미터 14.34 RO1 source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>15.34</td>
<td>A11 max</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.34 A11 max을 참고하십시오.</td>
<td>10.000 mA or V</td>
</tr>
<tr>
<td>15.35</td>
<td>RO1 ON delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 파라미터 14.35 RO1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.35</td>
<td>A11 scaled at A11 min</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.35 A11 scaled at A11 min을 참고하십시오.</td>
<td>0.000</td>
</tr>
<tr>
<td>15.36</td>
<td>RO1 OFF delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 파라미터 14.36 RO1 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.36</td>
<td>A11 scaled at A11 max</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.36 A11 scaled at A11 max을 참고하십시오.</td>
<td>100.000</td>
</tr>
<tr>
<td>15.37</td>
<td>RO2 source</td>
<td>(15.01 Module 2 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 파라미터 14.37 RO2 source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>15.38</td>
<td>RO2 ON delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 파라미터 14.38 RO2 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.39</td>
<td>RO2 OFF delay</td>
<td>(15.01 Module 2 type = FIO-01 또는 FDIO-01인 경우에 표시됨.) 파라미터 14.39 RO2 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>15.41</td>
<td>A12 actual value</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.41 A12 actual value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.42</td>
<td>A12 scaled value</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.42 A12 scaled value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.43</td>
<td>A12 force data</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.43 A12 force data를 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>15.44</td>
<td>A12 HW switch position</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.44 A12 HW switch position을 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.45</td>
<td>A12 unit selection</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.45 A12 unit selection을 참고하십시오.</td>
<td>mA</td>
</tr>
<tr>
<td>15.46</td>
<td>A12 filter gain</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.46 A12 filter gain을 참고하십시오.</td>
<td>1 ms</td>
</tr>
<tr>
<td>15.47</td>
<td>A12 filter time</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.47 A12 filter time을 참고하십시오.</td>
<td>0.100 s</td>
</tr>
<tr>
<td>15.48</td>
<td>A12 min</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.48 A12 min을 참고하십시오.</td>
<td>0.000 mA or V</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>15.49</td>
<td>A12 max</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>10.000 mA or V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.49 A12 max를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.50</td>
<td>A12 scaled at A12 min</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.50 A12 scaled at A12 min을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.51</td>
<td>A12 scaled at A12 max</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>100.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.51 A12 scaled at A12 max를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.56</td>
<td>A13 actual value</td>
<td>(15.01 Module 2 type = FIO-11 인 경우에 표시됨.)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.56 A13 actual value를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.57</td>
<td>A13 scaled value</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.57 A13 scaled value를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.58</td>
<td>A13 force data</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.58 A13 force data를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.59</td>
<td>A13 HW switch position</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.59 A13 HW switch position을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.60</td>
<td>A13 unit selection</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.60 A13 unit selection을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.61</td>
<td>A13 filter gain</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>1 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.61 A13 filter gain을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.62</td>
<td>A13 filter time</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>0.100 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.62 A13 filter time을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.63</td>
<td>A13 min</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>0.000 mA or V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.63 A13 min을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.64</td>
<td>A13 max</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>10.000 mA or V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.64 A13 max를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.65</td>
<td>A13 scaled at A13 min</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.65 A13 scaled at A13 min을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.66</td>
<td>A13 scaled at A13 max</td>
<td>(15.01 Module 2 type = FIO-11인 경우에 표시됨.)</td>
<td>100.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.66 A13 scaled at A13 max을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.71</td>
<td>AO force selection</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>00b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.71 AO force selection을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.76</td>
<td>AO1 actual value</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.76 AO1 actual value를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.77</td>
<td>AO1 source</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.77 AO1 source를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.78</td>
<td>AO1 force data</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.78 AO1 force data를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.79</td>
<td>AO1 filter time</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>0.100 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.79 AO1 filter time을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.80</td>
<td>AO1 source min</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.80 AO1 source min을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.81</td>
<td>AO1 source max</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>100.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.81 AO1 source max를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.82</td>
<td>AO1 out at AO1 src min</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>0.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.82 AO1 out at AO1 src min을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>15.83</td>
<td>AO1 out at AO1 src max</td>
<td>(15.01 Module 2 type = FIO-11 또는 FAIO-01인 경우에 표시됨.)</td>
<td>10.000 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 14.83 AO1 out at AO1 src max를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>15.86</td>
<td>AO2 actual value</td>
<td>(15.01 Module 2 type = FAIO-01인 경우에 표시됨.) 파라미터 14.86 AO2 actual value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>15.87</td>
<td>AO2 source</td>
<td>(15.01 Module 2 type = FAIO-01인 경우에 표시됨.) 파라미터 14.87 AO2 source를 참고하십시오.</td>
<td>Zero</td>
</tr>
<tr>
<td>15.88</td>
<td>AO2 force data</td>
<td>(15.01 Module 2 type = FAIO-01인 경우에 표시됨.) 파라미터 14.88 AO2 force data를 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>15.89</td>
<td>AO2 filter time</td>
<td>(15.01 Module 2 type = FAIO-01인 경우에 표시됨.) 파라미터 14.89 AO2 filter time를 참고하십시오.</td>
<td>0.100 s</td>
</tr>
<tr>
<td>15.90</td>
<td>AO2 source min</td>
<td>(15.01 Module 2 type = FAIO-01인 경우에 표시됨.) 파라미터 14.90 AO2 source min를 참고하십시오.</td>
<td>0.0</td>
</tr>
<tr>
<td>15.91</td>
<td>AO2 source max</td>
<td>(15.01 Module 2 type = FAIO-01인 경우에 표시됨.) 파라미터 14.91 AO2 source max를 참고하십시오.</td>
<td>100.0</td>
</tr>
<tr>
<td>15.92</td>
<td>AO2 out at AO2 src min</td>
<td>(15.01 Module 2 type = FAIO-01인 경우에 표시됨.) 파라미터 14.92 AO2 out at AO2 src min를 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>15.93</td>
<td>AO2 out at AO2 src max</td>
<td>(15.01 Module 2 type = FAIO-01인 경우에 표시됨.) 파라미터 14.93 AO2 out at AO2 src max를 참고하십시오.</td>
<td>10.000 mA</td>
</tr>
</tbody>
</table>

16 I/O extension module 3

I/O 확장 모듈 3의 구성. 이에 대한 자세한 사항은 [프로그래밍 가능한 확장 I/O (페이지 29)](https://example.com) 절을 참고하십시오. **Note:** 파라미터 그룹의 내용은 선택된 I/O 확장 모듈 타입에 따라 다릅니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.01</td>
<td>Module 3 type</td>
<td>파라미터 14.01 Module 1 type를 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>16.02</td>
<td>Module 3 location</td>
<td>파라미터 14.02 Module 1 location를 참고하십시오.</td>
<td>Slot 1</td>
</tr>
<tr>
<td>16.03</td>
<td>Module 3 status</td>
<td>파라미터 14.03 Module 1 status를 참고하십시오.</td>
<td>No option</td>
</tr>
<tr>
<td>16.05</td>
<td>DI status</td>
<td>(16.01 Module 3 type = FDIO-01인 경우에 표시됨.) 파라미터 14.05 DI status를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.06</td>
<td>DI delayed status</td>
<td>(16.01 Module 3 type = FDIO-01인 경우에 표시됨.) 파라미터 14.06 DI delayed status를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.07</td>
<td>DIO delayed status</td>
<td>(16.01 Module 3 type = FDIO-01 or FIO-11인 경우에 표시됨.) 파라미터 14.06 DIO delayed status를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.08</td>
<td>DI filter time</td>
<td>(16.01 Module 3 type = FDIO-01인 경우에 표시됨.) 파라미터 14.08 DI filter time를 참고하십시오.</td>
<td>10.0 ms</td>
</tr>
<tr>
<td>16.09</td>
<td>DIO filter time</td>
<td>(16.01 Module 3 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.08 DIO filter time를 참고하십시오.</td>
<td>10.0 ms</td>
</tr>
<tr>
<td>16.10</td>
<td>DIO1 function</td>
<td>(16.01 Module 3 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.09 DIO1 function을 참고하십시오.</td>
<td>Input</td>
</tr>
<tr>
<td>16.11</td>
<td>DIO1 output source</td>
<td>(16.01 Module 3 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.10 DIO1 output source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>16.12</td>
<td>DI1 ON delay</td>
<td>(16.01 Module 3 type = FDIO-01인 경우에 표시됨.) 파라미터 14.12 DI1 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>16.13</td>
<td>DI1 OFF delay</td>
<td>(16.01 Module 3 type = FDIO-01인 경우에 표시됨.) 파라미터 14.13 DI1 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>16.13</td>
<td>DIO1 OFF delay</td>
<td>(16.01 Module 3 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.13 DIO1 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>16.14</td>
<td>DIO2 function</td>
<td>(16.01 Module 3 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.14 DIO2 function을 참고하십시오.</td>
<td>Input</td>
</tr>
<tr>
<td>16.16</td>
<td>DIO2 output source</td>
<td>(16.01 Module 3 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.16 DIO2 output source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>16.17</td>
<td>D12 ON delay</td>
<td>(16.01 Module 3 type = FDIO-01인 경우에 표시됨.) 파라미터 14.17 D12 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>16.17</td>
<td>D12 OFF delay</td>
<td>(16.01 Module 3 type = FDIO-01인 경우에 표시됨.) 파라미터 14.18 D12 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>16.18</td>
<td>DIO2 OFF delay</td>
<td>(16.01 Module 3 type = FIO-01 또는 FIO-11인 경우에 표시됨.) 파라미터 14.18 DIO2 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>16.19</td>
<td>DIO3 function</td>
<td>(16.01 Module 3 type = FIO-01인 경우에 표시됨.) 파라미터 14.19 DIO3 function을 참고하십시오.</td>
<td>Input</td>
</tr>
<tr>
<td>16.19</td>
<td>AI supervision function</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.19 AI supervision function을 참고하십시오.</td>
<td>No action</td>
</tr>
<tr>
<td>16.20</td>
<td>AI supervision selection</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.20 AI supervision selection을 참고하십시오.</td>
<td>0000 0000b</td>
</tr>
<tr>
<td>16.21</td>
<td>DIO3 output source</td>
<td>(16.01 Module 3 type = FIO-01인 경우에 표시됨.) 파라미터 14.21 DIO3 output source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>16.21</td>
<td>AI tune</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.21 AI tune을 참고하십시오.</td>
<td>No action</td>
</tr>
<tr>
<td>16.22</td>
<td>D13 ON delay</td>
<td>(16.01 Module 3 type = FDIO-01인 경우에 표시됨.) 파라미터 14.22 D13 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>16.22</td>
<td>D13 OFF delay</td>
<td>(16.01 Module 3 type = FDIO-01인 경우에 표시됨.) 파라미터 14.23 D13 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>16.23</td>
<td>DIO4 function</td>
<td>(16.01 Module 3 type = FIO-01인 경우에 표시됨.) 파라미터 14.24 DIO4 function을 참고하십시오.</td>
<td>Input</td>
</tr>
<tr>
<td>16.24</td>
<td>DIO4 output source</td>
<td>(16.01 Module 3 type = FIO-01인 경우에 표시됨.) 파라미터 14.26 DIO4 output source를 참고하십시오.</td>
<td>Not energized</td>
</tr>
<tr>
<td>16.26</td>
<td>A11 actual value</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.28 A11 actual value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.27</td>
<td>DIO4 ON delay</td>
<td>(16.01 Module 3 type = FIO-01인 경우에 표시됨.) 파라미터 14.27 DIO4 ON delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td>16.27</td>
<td>A11 scaled value</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.27 A11 scaled value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.28</td>
<td>DIO4 OFF delay</td>
<td>(16.01 Module 3 type = FIO-01인 경우에 표시됨.) 파라미터 14.28 DIO4 OFF delay를 참고하십시오.</td>
<td>0.00 s</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>설명</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.47</td>
<td>AI2 filter time</td>
<td>1000 ms</td>
</tr>
<tr>
<td>16.46</td>
<td>AI2 filter gain</td>
<td>0 mA</td>
</tr>
<tr>
<td>16.45</td>
<td>AI2 unit selection</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.44</td>
<td>AI2 position</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.43</td>
<td>AI2 force data</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.42</td>
<td>AI2 scaled value</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.41</td>
<td>AI2 actual value</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.39</td>
<td>ROC OFF delay</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.38</td>
<td>ROI OFF delay</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.37</td>
<td>ROC source</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.36</td>
<td>All filter time</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.35</td>
<td>All force data</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.34</td>
<td>All scaled at AI1</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.33</td>
<td>All actual at AI1</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.32</td>
<td>AI1 force data</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.31</td>
<td>AI1 scaled at AI1</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.30</td>
<td>AI1 actual at AI1</td>
<td>0.000 s</td>
</tr>
<tr>
<td>16.29</td>
<td>AI1 unit selection</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.28</td>
<td>AI1 position</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.27</td>
<td>AI1 force gain</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.26</td>
<td>AI1 unit selection</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.25</td>
<td>AI1 position</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.24</td>
<td>AI1 force data</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.23</td>
<td>AI1 scaled value</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.22</td>
<td>AI1 actual value</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.21</td>
<td>ROC OFF delay</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.20</td>
<td>ROI OFF delay</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.19</td>
<td>ROC source</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.18</td>
<td>All filter time</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.17</td>
<td>All force data</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.16</td>
<td>All scaled at AI1</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.15</td>
<td>All actual at AI1</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.14</td>
<td>AI1 force data</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.13</td>
<td>AI1 scaled at AI1</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.12</td>
<td>AI1 actual at AI1</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.11</td>
<td>AI1 unit selection</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.10</td>
<td>AI1 position</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.09</td>
<td>AI1 force gain</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.08</td>
<td>AI1 unit selection</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.07</td>
<td>Module 3 type = FIO11 또는 FAIO11(영문에 표시됨)</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.06</td>
<td>Module 3 type = FIO11 또는 FAIO11(영문에 표시됨)</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.05</td>
<td>Module 3 type = FIO11 또는 FAIO11(영문에 표시됨)</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.04</td>
<td>Module 3 type = FIO11 또는 FAIO11(영문에 표시됨)</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.03</td>
<td>Module 3 type = FIO11 또는 FAIO11(영문에 표시됨)</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.02</td>
<td>Module 3 type = FIO11 또는 FAIO11(영문에 표시됨)</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.01</td>
<td>Module 3 type = FIO11 또는 FAIO11(영문에 표시됨)</td>
<td>0.000 mA</td>
</tr>
</tbody>
</table>

###ış

1. 파라미터 14.47 AI2 filter time 값은 고하십시오.
2. 파라미터 14.46 AI2 filter gain 값은 0.000 mA입니다.
3. 파라미터 14.45 AI2 unit selection 값은 0.000 mA입니다.
4. 파라미터 14.44 AI2 position 값은 0.000 s입니다.
5. 파라미터 14.43 AI2 force data 값은 0.000 s입니다.
6. 파라미터 14.42 AI2 scaled value 값은 0.000 s입니다.
7. 파라미터 14.41 AI2 actual value 값은 0.000 s입니다.
8. 파라미터 14.39 ROC OFF delay 값은 0.000 s입니다.
9. 파라미터 14.38 ROI OFF delay 값은 0.000 s입니다.
10. 파라미터 14.37 ROC source 값은 0.000 s입니다.
11. 파라미터 14.36 All filter time 값은 0.000 s입니다.
12. 파라미터 14.35 All force data 값은 0.000 s입니다.
13. 파라미터 14.34 All scaled at AI1 값은 0.000 s입니다.
14. 파라미터 14.33 All actual at AI1 값은 0.000 s입니다.
15. 파라미터 14.32 AI1 force data 값은 0.000 s입니다.
16. 파라미터 14.31 AI1 scaled at AI1 값은 0.000 s입니다.
17. 파라미터 14.30 AI1 actual at AI1 값은 0.000 s입니다.
18. 파라미터 14.29 AI1 position 값은 0.000 mA입니다.
19. 파라미터 14.28 AI1 force gain 값은 0.000 mA입니다.
20. 파라미터 14.27 AI1 unit selection 값은 0.000 mA입니다.
21. 파라미터 14.26 AI1 position 값은 0.000 mA입니다.
22. 파라미터 14.25 AI1 force data 값은 0.000 mA입니다.
23. 파라미터 14.24 AI1 scaled value 값은 0.000 mA입니다.
24. 파라미터 14.23 AI1 actual value 값은 0.000 mA입니다.
25. 파라미터 14.22 ROC OFF delay 값은 0.000 mA입니다.
26. 파라미터 14.21 ROI OFF delay 값은 0.000 mA입니다.
27. 파라미터 14.20 ROC source 값은 0.000 mA입니다.
28. 파라미터 14.19 All filter time 값은 0.000 mA입니다.
29. 파라미터 14.18 All force data 값은 0.000 mA입니다.
30. 파라미터 14.17 All scaled at AI1 값은 0.000 mA입니다.
31. 파라미터 14.16 All actual at AI1 값은 0.000 mA입니다.
32. 파라미터 14.15 AI1 force data 값은 0.000 mA입니다.
33. 파라미터 14.14 AI1 scaled at AI1 값은 0.000 mA입니다.
34. 파라미터 14.13 AI1 actual at AI1 값은 0.000 mA입니다.
35. 파라미터 14.12 AI1 unit selection 값은 0.000 mA입니다.
36. 파라미터 14.11 AI1 position 값은 0.000 mA입니다.
37. 파라미터 14.10 AI1 force gain 값은 0.000 mA입니다.
38. 파라미터 14.09 AI1 unit selection 값은 0.000 mA입니다.
39. 파라미터 14.08 Module 3 type = FIO11 또는 FAIO11(영문에 표시됨) 값은 0.000 mA입니다.
40. 파라미터 14.07 Module 3 type = FIO11 또는 FAIO11(영문에 표시됨) 값은 0.000 mA입니다.
41. 파라미터 14.06 Module 3 type = FIO11 또는 FAIO11(영문에 표시됨) 값은 0.000 mA입니다.
42. 파라미터 14.05 Module 3 type = FIO11 또는 FAIO11(영문에 표시됨) 값은 0.000 mA입니다.
43. 파라미터 14.04 Module 3 type = FIO11 또는 FAIO11(영문에 표시됨) 값은 0.000 mA입니다.
44. 파라미터 14.03 Module 3 type = FIO11 또는 FAIO11(영문에 표시됨) 값은 0.000 mA입니다.
45. 파라미터 14.02 Module 3 type = FIO11 또는 FAIO11(영문에 표시됨) 값은 0.000 mA입니다.
46. 파라미터 14.01 Module 3 type = FIO11 또는 FAIO11(영문에 표시됨) 값은 0.000 mA입니다.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.48</td>
<td>A12 min</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.48 A12 min를 참고하십시오.</td>
<td>0.000 mA or V</td>
</tr>
<tr>
<td>16.49</td>
<td>A12 max</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.49 A12 max를 참고하십시오.</td>
<td>10.000 mA or V</td>
</tr>
<tr>
<td>16.50</td>
<td>A12 scaled at A12 min</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.50 A12 scaled at A12 min를 참고하십시오.</td>
<td>0.000</td>
</tr>
<tr>
<td>16.51</td>
<td>A12 scaled at A12 max</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.51 A12 scaled at A12 max를 참고하십시오.</td>
<td>100.000</td>
</tr>
<tr>
<td>16.56</td>
<td>A13 actual value</td>
<td>(16.01 Module 3 type = FIO-11 인 경우에 표시됨.) 파라미터 14.56 A13 actual value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.57</td>
<td>A13 scaled value</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.57 A13 scaled value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.58</td>
<td>A13 force data</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.58 A13 force data를 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.59</td>
<td>A13 HW switch position</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.59 A13 HW switch position를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.60</td>
<td>A13 unit selection</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.60 A13 unit selection를 참고하십시오.</td>
<td>mA</td>
</tr>
<tr>
<td>16.61</td>
<td>A13 filter gain</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.61 A13 filter gain을 참고하십시오.</td>
<td>1 ms</td>
</tr>
<tr>
<td>16.62</td>
<td>A13 filter time</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.62 A13 filter time을 참고하십시오.</td>
<td>0.100 s</td>
</tr>
<tr>
<td>16.63</td>
<td>A13 min</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.63 A13 min을 참고하십시오.</td>
<td>0.000 mA or V</td>
</tr>
<tr>
<td>16.64</td>
<td>A13 max</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.64 A13 max를 참고하십시오.</td>
<td>10.000 mA or V</td>
</tr>
<tr>
<td>16.65</td>
<td>A13 scaled at A13 min</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.65 A13 scaled at A13 min를 참고하십시오.</td>
<td>0.000</td>
</tr>
<tr>
<td>16.66</td>
<td>A13 scaled at A13 max</td>
<td>(16.01 Module 3 type = FIO-11인 경우에 표시됨.) 파라미터 14.66 A13 scaled at A13 max를 참고하십시오.</td>
<td>100.000</td>
</tr>
<tr>
<td>16.71</td>
<td>AO force selection</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.71 AO force selection을 참고하십시오.</td>
<td>00b</td>
</tr>
<tr>
<td>16.76</td>
<td>AO1 actual value</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.76 AO1 actual value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.77</td>
<td>AO1 source</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.77 AO1 source를 참고하십시오.</td>
<td>Zero</td>
</tr>
<tr>
<td>16.78</td>
<td>AO1 force data</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.78 AO1 force data를 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.79</td>
<td>AO1 filter time</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.79 AO1 filter time를 참고하십시오.</td>
<td>0.100 s</td>
</tr>
<tr>
<td>16.80</td>
<td>AO1 source min</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.80 AO1 source min을 참고하십시오.</td>
<td>0.0</td>
</tr>
<tr>
<td>16.81</td>
<td>AO1 source max</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.81 AO1 source max를 참고하십시오.</td>
<td>100.0</td>
</tr>
<tr>
<td>16.82</td>
<td>AO1 out at AO1 src min</td>
<td>(16.01 Module 3 type = FIO-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.82 AO1 out at AO1 src min을 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
</tbody>
</table>
19 Operation mode

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.83</td>
<td>AO1 out at AO1 src max</td>
<td>(16.01 Module 3 type = F10-11 또는 FAIO-01인 경우에 표시됨.) 파라미터 14.83 AO1 out at AO1 src max를 참고하십시오.</td>
<td>10.000 mA</td>
</tr>
<tr>
<td>16.86</td>
<td>AO2 actual value</td>
<td>(16.01 Module 3 type = FAIO-01인 경우에 표시됨.) 파라미터 14.86 AO2 actual value를 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td>16.87</td>
<td>AO2 source</td>
<td>(16.01 Module 3 type = FAIO-01인 경우에 표시됨.) 파라미터 14.87 AO2 source를 참고하십시오.</td>
<td>Zero</td>
</tr>
<tr>
<td>16.88</td>
<td>AO2 force data</td>
<td>(16.01 Module 3 type = FAIO-01인 경우에 표시됨.) 파라미터 14.88 AO2 force data를 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.89</td>
<td>AO2 filter time</td>
<td>(16.01 Module 3 type = FAIO-01인 경우에 표시됨.) 파라미터 14.89 AO2 filter time를 참고하십시오.</td>
<td>0.100 s</td>
</tr>
<tr>
<td>16.90</td>
<td>AO2 source min</td>
<td>(16.01 Module 3 type = FAIO-01인 경우에 표시됨.) 파라미터 14.90 AO2 source min을 참고하십시오.</td>
<td>0.0</td>
</tr>
<tr>
<td>16.91</td>
<td>AO2 source max</td>
<td>(16.01 Module 3 type = FAIO-01인 경우에 표시됨.) 파라미터 14.91 AO2 source max를 참고하십시오.</td>
<td>100.0</td>
</tr>
<tr>
<td>16.92</td>
<td>AO2 out at AO2 src min</td>
<td>(16.01 Module 3 type = FAIO-01인 경우에 표시됨.) 파라미터 14.92 AO2 out at AO2 src min을 참고하십시오.</td>
<td>0.000 mA</td>
</tr>
<tr>
<td>16.93</td>
<td>AO2 out at AO2 src max</td>
<td>(16.01 Module 3 type = FAIO-01인 경우에 표시됨.) 파라미터 14.93 AO2 out at AO2 src max를 참고하십시오.</td>
<td>10.000 mA</td>
</tr>
</tbody>
</table>

19.01 Actual operation mode

Zero	모드 없음.	1
Speed	DTC에서 속도 제어 모드.	2
Torque	DTC에서 토크 제어 모드.	3
Min	속도 제어기의 출력(25.01 Torque reference speed control)과 기준 토크(26.74 Torque ref ramp out)를 비교하여 작은 값을 출력.	4
Max	속도 제어기의 출력(25.01 Torque reference speed control)과 기준 토크(26.74 Torque ref ramp out)를 비교하여 큰 값을 출력.	5
Add	속도 제어기의 출력과 기준 토크를 더함.	6
Scalar (Hz)	스칼라 제어에서 주파수 제어 모드.	10
Scalar (rpm)	스칼라 제어에서 속도 제어 모드.	11
Forced magn.	모터 자화 모드.	20

19.11 Ext1/Ext2 selection

외부 제어 위치 EXT1과 EXT2를 전환하는 소스를 선택합니다.

- EXT1 0 = EXT1, 1 = EXT2

<p>| EXT1 | EXT1을 영구적으로 선택. | 0 |
| EXT2 | EXT2을 영구적으로 선택. | 1 |
| FBA A MCW bit 11 | 필드버스 인터페이스 A에서 수신된 제어 워드의 비트 11. | 2 |
| DI1 | 디지털 입력 DI1 (10.02 DI delayed status, 비트 0). | 3 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI2</td>
<td>디지털 입력 DI2</td>
<td>(10.02 DI delayed status, 비트 1).</td>
<td>4</td>
</tr>
<tr>
<td>DI3</td>
<td>디지털 입력 DI3</td>
<td>(10.02 DI delayed status, 비트 2).</td>
<td>5</td>
</tr>
<tr>
<td>DI4</td>
<td>디지털 입력 DI4</td>
<td>(10.02 DI delayed status, 비트 3).</td>
<td>6</td>
</tr>
<tr>
<td>DI5</td>
<td>디지털 입력 DI5</td>
<td>(10.02 DI delayed status, 비트 4).</td>
<td>7</td>
</tr>
<tr>
<td>DI6</td>
<td>디지털 입력 DI6</td>
<td>(10.02 DI delayed status, 비트 5).</td>
<td>8</td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입력 DIO1</td>
<td>(11.02 DIO delayed status, 비트 0).</td>
<td>11</td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입력 DIO2</td>
<td>(11.02 DIO delayed status, 비트 1).</td>
<td>12</td>
</tr>
<tr>
<td>EFB MCW bit 11</td>
<td>암베디드 필드버스 인터페이스에서 수신된 제어 워드의 비트 11.</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>19.12</td>
<td>Ext1 control mode</td>
<td>외부 제어 위치 EXT1의 운전 모드를 선택합니다.</td>
<td>Speed</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
<td>속도 제어 모드. 기준 토크는 파라미터 25.01 Torque reference speed control을 사용합니다. (기준 속도 제어의 최종 출력)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Torque</td>
<td>토크 제어 모드. 기준 토크는 파라미터 26.74 Torque ref ramp out을 사용합니다. (기준 토크 제어의 최종 출력)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>속도 및 토크 조합: 속도 제어기의 출력(25.01 Torque reference speed control)과 기준 토크(26.74 Torque ref ramp out)을 비교하여 작은 값을 출력합니다. 만약 속도 오차가 음수이면 오차가 양수가 될 때까지 속도 제어기의 출력을 따라 운전됩니다. 이렇게하면 토크 제어에서 부하가 갑자기 제거된 경우에 제어가 불가능하여 모터 속도가 급격하게 상승하는 것을 방지할 수 있습니다.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>속도 및 토크 조합: 속도 제어기의 출력(25.01 Torque reference speed control)과 기준 토크(26.74 Torque ref ramp out)를 비교하여 큰 값을 출력합니다. 만약 속도 오차가 양수이면 오차가 음수가 될 때까지 속도 제어기의 출력을 따라 운전됩니다. 이렇게하면 토크 제어에서 부하가 갑자기 제거된 경우에 제어가 불가능하여 모터 속도가 급격하게 상승하는 것을 방지할 수 있습니다.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Add</td>
<td>속도 및 토크 조합: 속도 제어기의 출력과 기준 토크가 더해집니다.</td>
<td>6</td>
</tr>
<tr>
<td>19.14</td>
<td>Ext2 control mode</td>
<td>외부 제어 위치 EXT2의 운전 모드를 선택합니다. 자세한 사항은 19.12 Ext1 control mode를 참고하십시오.</td>
<td>Speed</td>
</tr>
<tr>
<td>19.16</td>
<td>Local control mode</td>
<td>로컬 제어의 운전 모드를 선택합니다.</td>
<td>Speed</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
<td>속도 제어 모드. 기준 토크는 기준 속도 제어의 최종 출력 (25.01 Torque reference speed control)을 사용합니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Torque</td>
<td>토크 제어 모드. 기준 토크는 기준 토크 제어의 최종 출력 (26.74 Torque ref ramp out)을 사용합니다.</td>
<td>1</td>
</tr>
<tr>
<td>19.17</td>
<td>Local control disable</td>
<td>제어 페널에서의 시작/정지 버튼 및 PC 풀의 로컬 제어를 허용 또는 금지시킵니다.</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>로컬 제어 허용.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>로컬 제어 금지.</td>
<td>1</td>
</tr>
</tbody>
</table>
19.20 Scalar control reference unit
스칼라 제어 모드에서 기준값의 타일을 선택합니다.
저세한 사항은 드라이브의 운영 모드 (페이지 22) 및 파라미터 99.04
Motor control mode를 확인하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hz</td>
<td></td>
<td>Hz. 주파수 제어 제한의 출력 (28.02 Frequency ref ramp output)를</td>
<td>0</td>
</tr>
<tr>
<td>Rpm</td>
<td></td>
<td>Rpm. 램프 및 S자 곡선 이후 출력 (23.02 Speed ref ramp output)를</td>
<td>1</td>
</tr>
</tbody>
</table>

20 Start/stop/direction
시작/정지/방향 및 운전/정지/조그 허용 신호 소스 선택.
정/역 방향 기준 허용 신호의 소스 선택.
이에 대한 저세한 사항은 로컬 제어 vs. 외부 제어 (페이지 20) 절을 참고하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
</table>
| 20.01| Ext1 commands | 외부 제어 위치 EXT1의 시작, 정지 및 방향 명령의 소스를 선택합니다.
이에 대한 저세한 사항은 파라미터 20.02…20.05를 확인하십시오. | In1 Start; In2 Dir |
| | Not selected | 외부 명령 없음. | 0 |
| | In1 Start | 시작 및 정지 명령은 파라미터 20.03 Ext1 in1 source에서 선택된 소스에 의해 입력됩니다. | 1 |

<table>
<thead>
<tr>
<th>소스 상태 1 (20.03)</th>
<th>소스 상태 2 (20.04)</th>
<th>명령</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 > 1 (20.02 = Edge)</td>
<td>X</td>
<td>시작</td>
</tr>
<tr>
<td>1 (20.02 = Level)</td>
<td>0</td>
<td>정지</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>소스 상태 1 (20.03)</th>
<th>소스 상태 2 (20.04)</th>
<th>명령</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>정지</td>
</tr>
<tr>
<td>0 > 1 (20.02 = Edge)</td>
<td>0</td>
<td>정방향 시작</td>
</tr>
<tr>
<td>1 (20.02 = Level)</td>
<td>1</td>
<td>역방향 시작</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>소스 상태 1 (20.03)</th>
<th>소스 상태 2 (20.04)</th>
<th>명령</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>정지</td>
</tr>
<tr>
<td>0 > 1 (20.02 = Edge)</td>
<td>0</td>
<td>정방향 시작</td>
</tr>
<tr>
<td>1 (20.02 = Level)</td>
<td>1</td>
<td>역방향 시작</td>
</tr>
<tr>
<td>0</td>
<td>0 > 1 (20.02 = Edge)</td>
<td>정지</td>
</tr>
<tr>
<td>1 (20.02 = Level)</td>
<td>1</td>
<td>정지</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>In1P Start; In2 Stop</td>
<td>시작 및 정지 명령은 각 각 파라미터 20.03 Ext1 in1 source 및 20.04 Ext1 in2 source에서 선택된 소스에 의해 입력됩니다.</td>
</tr>
<tr>
<td>5</td>
<td>In1P Start; In2 Stop; In3 Dir</td>
<td>시작 및 정지 명령은 각 각 파라미터 20.03 Ext1 in1 source 및 20.04 Ext1 in2 source에서 선택된 소스에 의해 입력되며, 회전 방향은 20.05 Ext1 in3 source에 의해 결정됩니다.</td>
</tr>
<tr>
<td>6</td>
<td>In1P Start fwd; In2P Start rev; In3 Stop</td>
<td>시작 및 정지 명령은 각 각 파라미터 20.03 Ext1 in1 source, 20.04 Ext1 in2 source 및 20.05 Ext1 in3 source에 의해 선택된 소스에 의해 입력됩니다.</td>
</tr>
<tr>
<td>11</td>
<td>Control panel</td>
<td>시작 및 정지 명령은 제어 패널에 의해 입력됩니다.</td>
</tr>
</tbody>
</table>
| 12 | Fieldbus A | 시작 및 정지 명령은 필드버스 어댑터 A에 의해 입력됩니다.
Note: 시작 신호는 파라미터 20.02 Ext1 start trigger type의 설정에 관계없이 항상 에지 트리거 (Edge-trigger) 모드에서 동작합니다. | |
| 14 | Embedded fieldbus | 시작 및 정지 명령은 임베디드 필드버스에 의해 입력됩니다.
Note: 시작 신호는 파라미터 20.02 Ext1 start trigger type의 설정에 관계없이 항상 레벨 트리거 (Level-trigger) 모드에서 동작합니다. | |
| 15 | M/F link | 시작 및 정지 명령은 마스터/팔로워 링크에 의해 입력됩니다.
Note: 시작 신호는 파라미터 20.02 Ext1 start trigger type의 설정에 관계없이 항상 레벨 트리거 모드에서 동작합니다. | |

표 1:
<table>
<thead>
<tr>
<th>소스 상태 1</th>
<th>소스 상태 2</th>
<th>소스 상태 3</th>
<th>명령</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>1</td>
<td>시작</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>정지</td>
<td></td>
</tr>
</tbody>
</table>

표 2:
<table>
<thead>
<tr>
<th>소스 상태 1</th>
<th>소스 상태 2</th>
<th>소스 상태 3</th>
<th>명령</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>1</td>
<td>0</td>
<td>정방향 시작</td>
</tr>
<tr>
<td>0 -> 1</td>
<td>1</td>
<td>1</td>
<td>역방향 시작</td>
</tr>
<tr>
<td>X</td>
<td>0</td>
<td>X</td>
<td>정지</td>
</tr>
</tbody>
</table>

표 3:
<table>
<thead>
<tr>
<th>소스 상태 1</th>
<th>소스 상태 2</th>
<th>소스 상태 3</th>
<th>명령</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>X</td>
<td>1</td>
<td>정방향 시작</td>
</tr>
<tr>
<td>X</td>
<td>0 -> 1</td>
<td>1</td>
<td>역방향 시작</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>0</td>
<td>정지</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Application Program</td>
<td>시작 및 정지 명령은 응용 프로그램 제어 워드 (파라미터 06.02 Application control word)에 의해 입력됩니다. Note: 시작 신호는 파라미터 20.02 Ext1 start trigger type의 설정에 관계없이 항상 레벨 트리거 모드에서 동작합니다.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>ATF</td>
<td>예약된 영역.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>DDCS controller</td>
<td>시작 및 정지 명령은 외부 컨트롤러 (DDCS)에서 입력됩니다. Note: 시작 신호는 파라미터 20.02 Ext1 start trigger type의 설정에 관계없이 항상 레벨 트리거 모드에서 동작합니다.</td>
<td>16</td>
</tr>
<tr>
<td>20.02</td>
<td>Ext1 start trigger type</td>
<td>외부 제어 위치 EXT1의 시작 신호에 대한 트리거 (에지 또는 레벨) 방법을 설정합니다. Note: 이 파라미터는 20.01 Ext1 commands를 In1 Start, In1 Start; In2 Dir, In1 Start fwd; In2 Start rev, 또는 Control panel로 설정한 경우에 적용됩니다.</td>
<td>Edge</td>
</tr>
<tr>
<td></td>
<td>Edge</td>
<td>시작 신호는 에지 트리거에서 동작합니다. (절스 입력)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Level</td>
<td>시작 신호는 레벨 트리거에서 동작합니다.</td>
<td>1</td>
</tr>
<tr>
<td>20.03</td>
<td>Ext1 in1 source</td>
<td>파라미터 20.01 Ext1 commands를 위한 소스 1을 선택합니다.</td>
<td>DI1</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Selected</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>20.04</td>
<td>Ext1 in2 source</td>
<td>파라미터 20.01 Ext1 commands를 위한 소스 2를 선택합니다. 자세한 사항은 20.03 Ext1 in1 source를 참고하십시오.</td>
<td>DI2</td>
</tr>
<tr>
<td></td>
<td>20.05 Ext1 in3 source</td>
<td>파라미터 20.01 Ext1 commands를 위한 소스 3를 선택합니다. 자세한 사항은 20.03 Ext1 in1 source를 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>20.06 Ext2 commands</td>
<td>외부 제어 위치 EXT1의 시작, 정지 및 방향 명령의 소스를 선택합니다. 이에 대한 자세한 사항은 파라미터 20.07…20.10을 확인하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>외부 명령 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>In1 Start</td>
<td>시작 및 정지 명령은 파라미터 20.08 Ext2 in1 source에서 선택된 소스에 의해 입력됩니다.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>State of source 1 (20.08)</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1 (20.07 = Edge)</td>
<td>Start</td>
</tr>
<tr>
<td>1 (20.07 = Level)</td>
<td>Stop</td>
</tr>
</tbody>
</table>
Parameters 197

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>In1 Start; In2 Dir</td>
<td>시작 명령은 파라미터 20.08 Ext2 in1 source에서 선택된 소스에 의해 입력되며, 회전 방향은 20.09 Ext2 in2 source에 의해 결정됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>소스 상태 1 (20.08)</td>
<td>소스 상태 2 (20.09)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>0 -> 1 (20.07 = Edge)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 (20.07 = Level)</td>
<td>1</td>
</tr>
<tr>
<td>In1 Start fwd; In2 Start rev</td>
<td>정방향 시작 명령은 파라미터 20.08 Ext2 in1 source에서 선택된 소스에 의해 입력되며, 역방향 시작 명령은 20.09 Ext2 in2 source source에서 선택된 소스에 의해 입력됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>소스 상태 1 (20.08)</td>
<td>소스 상태 2 (20.09)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0 -> 1 (20.07 = Edge)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1 (20.07 = Level)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>In1P Start; In2 Stop</td>
<td>시작 및 정지 명령은 각각 파라미터 20.08 Ext2 in1 source 및 20.09 Ext2 in2 source에서 선택된 소스에 의해 입력됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>소스 상태 1 (20.08)</td>
<td>소스 상태 2 (20.09)</td>
</tr>
<tr>
<td></td>
<td>0 -> 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In1P Start; In2 Stop; In3 Dir</td>
<td>시작 및 정지 명령은 각각 파라미터 20.08 Ext2 in1 source 및 20.09 Ext2 in2 source에서 선택된 소스에 의해 입력되며, 회전 방향은 20.10 Ext2 in3 source에 의해 결정됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>소스 상태 1 (20.08)</td>
<td>소스 상태 2 (20.09)</td>
</tr>
<tr>
<td></td>
<td>0 -> 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0 -> 1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>In1P Start fwd; In2P Start rev; In3 Stop</td>
<td>시작 및 정지 명령은 각각 파라미터 20.08 Ext2 in1 source, 20.09 Ext2 in2 source 및 20.10 Ext2 in3 source에 의해 선택된 소스에 의해 입력됩니다.</td>
</tr>
</tbody>
</table>

소스 상태 1 (20.08) | 소스 상태 2 (20.09) | 소스 상태 3 (20.10) | 명령 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 -> 1</td>
<td>X</td>
<td>1</td>
<td>정방향 시작</td>
</tr>
<tr>
<td>X</td>
<td>0 -> 1</td>
<td>1</td>
<td>역방향 시작</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>0</td>
<td>정지</td>
</tr>
</tbody>
</table>

Note: 시작 신호는 파라미터 20.07 Ext2 start trigger type의 설정에 관계없이 항상 에지 트리거 모드에서 동작합니다.

| Control panel | 시작 및 정지 명령은 제어 패널에 의해 입력됩니다. | 11 |
| Fieldbus A | 시작 및 정지 명령은 필드버스 어댑터 A에 의해 입력됩니다. | 12 |

Note: 시작 신호는 파라미터 20.07 Ext2 start trigger type의 설정에 관계없이 항상 레벨 트리거 모드에서 동작합니다.

| Embedded fieldbus | 시작 및 정지 명령은 임베디드 필드버스에 의해 입력됩니다. | 14 |
| | 시작 신호는 파라미터 20.07 Ext2 start trigger type의 설정에 관계없이 항상 레벨 트리거 모드에서 동작합니다. | |

| M/F link | 시작 및 정지 명령은 마스터/팔로워 링크에 의해 입력됩니다. | 15 |

Note: 시작 신호는 파라미터 20.07 Ext2 start trigger type의 설정에 관계없이 항상 레벨 트리거 모드에서 동작합니다.

| Application Program | 시작 및 정지 명령은 응용 프로그램 제어 워드 (파라미터 06.02 Application control word)에 의해 입력됩니다. | 21 |

Note: 시작 신호는 파라미터 20.07 Ext2 start trigger type의 설정에 관계없이 항상 레벨 트리거 모드에서 동작합니다.

| ATF | 예약된 영역. | 22 |
| DDCS controller | 시작 및 정지 명령은 외부 컨트롤러 (DDCS)에서 입력됩니다. | 16 |

Note: 시작 신호는 파라미터 20.07 Ext2 start trigger type의 설정에 관계없이 항상 레벨 트리거 모드에서 동작합니다.

20.07 Ext2 start trigger type
외부 제어 위치 EXT2의 시작 신호에 대한 트리거 (예지 또는 레벨) 방법을 설정합니다.
Note: 이 파라미터는 20.06 Ext2 commands를 In1 Start, In1 Start; In2 Dir, In1 Start fwd; In2 Start rev, 또는 Control panel로 설정할 경우에 적용됩니다.

| Edge | 시작 신호는 에지 트리거에서 동작합니다. (여서 입력) | 0 |
| Level | 시작 신호는 레벨 트리거에서 동작합니다. | 1 |

20.08 Ext2 in1 source
파라미터 20.06 Ext2 commands를 위한 소스 1을 선택합니다. 자세한 사항은 20.03 Ext1 in1 source를 참고하십시오.
Not selected

20.09 Ext2 in2 source
파라미터 20.06 Ext2 commands를 위한 소스 2를 선택합니다. 자세한 사항은 20.03 Ext1 in1 source를 참고하십시오.
Not selected
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.10</td>
<td>Ext2 in3 source</td>
<td>파라미터 20.06 Ext2 commands를 위한 소스 3을 선택합니다. 자세한 사항은 20.03 Ext1 in1 source를 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>20.11</td>
<td>Run enable stop mode</td>
<td>운전 허용 신호가 0이 될 때, 모터를 정지시키는 방법을 설정합니다. 여기서 운전 허용 신호의 소스는 파라미터 20.12 Run enable 1 source에서 선택됩니다.</td>
<td>Coast (95.20 b10)</td>
</tr>
</tbody>
</table>

Coast
- 드라이브의 출력을 차단하는 것에 의해 모터는 관성으로 정지합니다.

WARNING! 만약 기계 브레이크를 사용하는 경우에 모터가 관성 정지해도 안전하지 확인하십시오.

Ramp
- 모터는 감속 시간에 따라 정지합니다. 이에 대한 시간 설정은 페이지 218의 파라미터 그룹 23 Speed reference ramp를 확인하십시오.

Torque limit
- 모터는 토크 제한에 따라 정지합니다. (파라미터 30.19 및 30.20)

20.12 Run enable 1 source
- 운전 허용 신호의 소스 선택을 선택합니다. 정지 상태에서 운전 허용 신호가 0으로 클리어되면서 드라이브는 운전을 시작하지 않으므로, 이미 운전 중인 상태에서는 20.11 Run enable stop mode의 설정에 따라 정지됩니다.
 1 = 운전 허용 신호 입력.
 Note: 파라미터 20.30 Enable signals warning function을 사용하면 운전 허용 신호가 0인 상태에서 경고 메시지를 제거할 수 있습니다.

Not selected	0.
Selected	1.
D11	디지털 입력 D11 (10.02 DI delayed status, 비트 0).
D12	디지털 입력 D12 (10.02 DI delayed status, 비트 1).
D13	디지털 입력 D13 (10.02 DI delayed status, 비트 2).
D14	디지털 입력 D14 (10.02 DI delayed status, 비트 3).
D15	디지털 입력 D15 (10.02 DI delayed status, 비트 4).
D16	디지털 입력 D16 (10.02 DI delayed status, 비트 5).
DIO1	디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).
DIO2	디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).
FBA A MCW bit 3	필드버스 인터페이스 A에서 수신된 제어 워드의 비트 3.
EFB MCW bit 3	임베디드 필드버스 인터페이스에서 수신된 제어 워드의 비트 3.
DIIL	DIIL 입력 (10.02 DI delayed status, 비트 15).

Active control source MCW bit 3
- 메인 제어 워드의 비트 3.
 Notes:
 - 만약 드라이브가 필드버스 제어로 운전 중인 경우에 제어 워드의 비트 3을 0으로 클리어시키면 효과적으로 시작 및 운전 허용 신호를 제거할 수 있습니다. 이 경우에 정지 모드는 20.11 Run enable stop mode 또는 21.03 Stop mode 중 우선 순위가 높은 모드로 결정됩니다. 이것의 우선 순위는 Coast – Torque limit – Ramp입니다.
 - 제어 패널, PC 또는 드라이브 I/O에서 제어하는 경우에 운전 허용 신호는 항상 1로 세팅됩니다.

| Other [bit] | 기타 소스 선택. |
200 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.19</td>
<td>Enable start command</td>
<td>시작 허용 신호의 소스 선택을 선택합니다.</td>
<td>Selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 시작 허용 신호 입력. 시작 허용 신호가 0으로 클리어되면 드라이브는 시작이 금지됩니다. 그러나 이미 운전 중인 경우에는 드라이브는 정지되지 않습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 시작 명령이 입력된 상태에서 레벨 트리거로 동작하는 경우에 시작 허용 신호를 1로 세트하면 드라이브는 즉시 운전을 시작합니다. 그러나 에지 트리거로 동작하는 경우에는 시작 명령을 0에서 1로 다시 세트해야 합니다. 이에 대한 자세한 사항은 20.02 Ext1 start trigger type, 20.07 Ext2 start trigger type 및 20.29 Local start trigger type을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 파라미터 20.30 Enable signals warning function을 사용하면 신호가 0인 상태에서 경고 메시지를 제거할 수 있습니다.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Not selected</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected</td>
<td>1.</td>
</tr>
<tr>
<td>DI1</td>
<td></td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td></td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td>DI3</td>
<td></td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td></td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td>DI5</td>
<td></td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td>DI6</td>
<td></td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td>DIO1</td>
<td></td>
<td>디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td></td>
<td>디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td>DIIL</td>
<td></td>
<td>DIIL 입력 (10.02 DI delayed status, 비트 15).</td>
<td>30</td>
</tr>
<tr>
<td>Other [bit]</td>
<td></td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| 20.23 | Positive speed enable | 정방향 속도 허용 신호의 소스를 선택합니다.
1 = 정방향 속도 허용.
0 = 정방향 속도는 0이 됩니다. 즉, 아래 그림과 같이 23.01 Speed ref ramp input은 이 신호를 0으로 클리어 시키면 0 rpm으로 설정됩니다.
제어 모드에 따른 동작:
속도 제어: 모터 속도는 감속 시간에 따라 서서히 감소합니다. 이때 모듈레이션을 유지시켜 모터가 정방향으로 회전하는 것을 러쉬 제어기에 의해 차단합니다.
토크 제어: 러시 제어기는 모터의 회전 방향을 감시합니다. | Selected |
| 20.24 | Negative speed enable | 역방향 속도 허용 신호의 소스를 선택합니다. 자세한 사항은 파라미터 20.23 Positive speed enable을 참고하십시오. | Selected |

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20.23 Positive speed enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.24 Negative speed enable</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23.01 Speed ref ramp input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01.01 Motor speed used</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Not selected 0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected 1.</td>
<td>1</td>
</tr>
<tr>
<td>DI1</td>
<td></td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td></td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td>DI3</td>
<td></td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td></td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td>DI5</td>
<td></td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td>DI6</td>
<td></td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td>DIO1</td>
<td></td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td></td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td>Other [bit]</td>
<td></td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.25</td>
<td>Jogging enable</td>
<td>조깅 허용 신호의 소스를 선택합니다. (조깅 허용 신호의 소스는 파라미터 20.26 Jogging 1 start source 및 20.27 Jogging 2 start source에 설정합니다.)
1 = 조깅 허용.
0 = 조깅 금지.
Note: 조깅은 외부 제어에서 시작 명령이 0인 경우에만 허용됩니다. 만약 조깅이 이미 허용되었다면 드라이브는 외부 제어 위치에서 시작할 수 없습니다. 단, 필드버스 통신의 인칭 명령에 의한 운전은 제외됩니다.
이에 대한 자세한 사항은 조깅 (페이지 55) 절을 참고하십시오.</td>
<td>Not selected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not selected</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Selected</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.26</td>
<td>Jogging 1 start source</td>
<td>파라미터 20.25 Jogging enable이 허용되고 조깅 기능 1을 동작하기 위한 소스를 선택합니다. (조깅 기능 1은 파라미터 20.25에 관계없이 필드버스를 통한 허용될 수도 있습니다.)
1 = 조깅 1 동작.
Note: 만약 조깅 1과 조깅 2가 모두 허용되면 먼저 동작한 조깅이 우선 순위를 갖습니다.</td>
<td>Not selected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not selected</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Selected</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
</tbody>
</table>
20 Start/stop mode

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
</table>
| 20.27 | Jogging 2 start source | 파라미터 `20.25 Jogging enable`이 허용되고 조정 가능한 2를 동작하기 위한 소스를 선택합니다. (조정 가능한 2는 파라미터 `20.25`와 관계없이 필드버스를 통해 허용될 수도 있습니다.)
1 = 조정 2 동작.
Note: 만약 조정 1과 조정 2가 모두 허용되면 먼저 동작한 조정이 우선 순위를 갖습니다. |
| 20.29 | Local start trigger type | 로컬 제어(제어 패널 또는 PC 화)의 시작 신호가 에지 트리거 또는 레벨 트리거인지 정의합니다.
Edge |
| 20.30 | Enable signals warning function | 운전 허용 및 시작 허용 신호가 0인 상태에서 제거할 경고 메시지를 선택합니다. 이 파라미터는 강고 메시지가 이벤트 로그에 과도하게 저장되는 것을 방지하기 위해 사용될 수 있습니다. 이 파라미터의 비트가 1로 설정된 경우에 해당 경고 메시지는 표시되지 않습니다. |

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>경고</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enable Start</td>
<td>AFEA Enable start signal missing 메시지를 제거합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Run enable 1</td>
<td>AFEB Run enable missing 메시지를 제거합니다.</td>
</tr>
<tr>
<td>2...15</td>
<td>Reserved</td>
<td>경고 메시지 삭제.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>경고</th>
</tr>
</thead>
<tbody>
<tr>
<td>00b…11b</td>
<td>Reserved</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

21 Start/stop mode

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
</table>
| 21.01 | Start mode | 파라미터 `99.04 Motor control mode`를 DTC로 선택한 경우에 모터의 시작 기능을 선택합니다.
Notes:
• 스칼라 제어 모드는 파라미터 `21.19 Scalar start mode`에서 시작 기능을 선택합니다.
• DC 자화 (Fast 또는 Constant time)가 선택되면 회전 중인 모터를 제시동할 수 없습니다.
• 영구자석 동기 모터 및 동기 임력터스 모터를 사용한 경우에는 이 파라미터를 **Automatic**으로 선택해야 합니다.
• 이 파라미터는 드라이브를 운전하는 동안에 변경될 수 없습니다. 자세한 사항은 [DC 자화 (페이지 63)] 참조하시오. |
| | Fast | 모터를 빠르게 자가시킵니다. 자화 시간(Magnetization time)은 흐름 모터의 사이즈에 따라서 200 ms에서 2 s 범위로 결정되며, 이 모드는 높은 기동 토크를 요구하는 경우에 선택할 수 있습니다. |

Automatic
모터를 일정한 시간 동안 자화시킵니다. 자화 시간은 파라미터 21.02에 정의됩니다. 이 모드는 일정한 자화 시간이 요구되는 경우 (예를 들어, 모터 운전이 기계 브레이크의 동작과 일치해야 하는 경우)에 선택할 수 있으며, 이 시간을 충분히 길게 설정하였을 때, 높은 기동 토크를 보장할 수 있습니다.

WARNING! 모터가 완전히 자화되지 않더라도 설정한 자화 시간이 지남에 드라이브는 시작할 것입니다. 따라서 높은 기동 토크가 필수인 용용 분야에서는 자화 시간을 충분히 길게 설정해야 합니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Constant time</td>
<td>모터를 최적으로 시작합니다. 이것은 회전 중 재시동(Flying start) 및 자동 재시동(Automatic restart) 기능을 포함하고 있으며, 모터 제어 프로그램은 모터의 자속과 기계적인 상태를 확인하여 모든 조건에서 즉시 운전을 시작합니다.</td>
</tr>
<tr>
<td>2</td>
<td>Automatic</td>
<td>대부분의 경우에 모터를 최적으로 시작합니다. 이것은 회전 중 재시동(Flying start) 및 자동 재시동(Automatic restart) 기능을 포함하고 있으며, 모터 제어 프로그램은 모터의 자속과 기계적인 상태를 확인하여 모든 조건에서 즉시 운전을 시작합니다.</td>
</tr>
<tr>
<td>3</td>
<td>Flying start</td>
<td>모터가 고속(150 Hz 이상)으로 운전하고 있는 경우에 최적화되어 있습니다. 이 설정은 유도전동기 전용입니다.</td>
</tr>
<tr>
<td>500 ms</td>
<td>21.02 Magnetization time</td>
<td>파라미터 21.01 Start mode를 Constant time으로 설정하였거나 21.19 Scalar start mode를 Const time으로 설정한 경우에 모터의 사전 자화 시간을 정의합니다. 드라이브는 시각 명령이 입력된 후에 설정 시간 동안 자동으로 모터를 자화시킵니다. 모터를 완전히 자화시키기 위해서는 이 값은 회전자 시정수(Rotor time constant)보다 충분히 길게 설정해야 하며, 만약 정확한 시정수를 알 수 없다면 아래 표를 참고하여 설정하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>모터 정격 용량</th>
<th>일정 자화 시간</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1 kW</td>
<td>≥ 50 to 100 ms</td>
</tr>
<tr>
<td>1 to 10 kW</td>
<td>≥ 100 to 200 ms</td>
</tr>
<tr>
<td>10 to 200 kW</td>
<td>≥ 200 to 1000 ms</td>
</tr>
<tr>
<td>200 to 1000 kW</td>
<td>≥ 1000 to 2000 ms</td>
</tr>
</tbody>
</table>

Note: 이 파라미터는 드라이브 운전 중에 변경할수 없습니다.

<table>
<thead>
<tr>
<th>0 ... 10000 ms</th>
<th>일정 자화 시간.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 1 ms</td>
<td></td>
</tr>
</tbody>
</table>

| 21.03 Stop mode | 정지 명령이 입력된 경우에 모터를 정지시키는 방법을 설정합니다. 추가적인 제동은 자속 제동 기능(파라미터 97.05 Flux braking)을 설정하는 것에 의해 가능해집니다. **Note:** 이 설정은 마스터/팔로워 구성에서 팔로워 드라이브에는 효과가 없습니다. |
| Coast | 드라이브의 출력 반도체 소자를 오프하는 것으로 모터를 관성으로 정지시킵니다. **WARNING!** 만약 기계 브레이크를 사용한다면 모터를 관성 정지시켜도 문제가 없는지 확인하십시오. |

<p>| Coast | 0 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ramp</td>
<td></td>
<td>모터를 감속 시간에 따라 정지시킵니다. 자세한 사항은 파라미터 그룹 23 Speed reference ramp (page 218)를 확인하십시오.</td>
<td>1</td>
</tr>
<tr>
<td>Torque limit</td>
<td></td>
<td>모터를 토큰 제한에 따라 정지시킵니다. (파라미터 30.19 및 30.20).</td>
<td>2</td>
</tr>
<tr>
<td>21.04</td>
<td>Emergency stop mode</td>
<td>비상 정지 명령이 입력된 경우에 모터를 정지시키는 방법을 설정합니다. 비상 정지 신호의 소스는 파라미터 21.05 Emergency stop source에 의해 선택됩니다.</td>
<td></td>
</tr>
<tr>
<td>Ramp stop (Off1)</td>
<td></td>
<td>드라이브가 운전 상태인 경우, • 1 = 정상 운전. • 0 = 표준 감속 시간 (페이지 42 Reference ramping)에 따라 정지. 드라이브가 정지된 후에 비상 정지 신호가 제거되고 시작 신호가 0에서 1로 세트될 때 재시동할 수 있습니다. 드라이브 정지 상태인 경우, • 1 = 시작 허용. • 0 = 시작 금지.</td>
<td>0</td>
</tr>
<tr>
<td>Coast stop (Off2)</td>
<td></td>
<td>드라이브가 운전 상태인 경우, • 1 = 정상 운전. • 0 = 손상 정지. 시작 인터록 신호 (Start interlock signal)가 복원되고 시작 신호가 0에서 1로 세트될 때 재시동할 수 있습니다. 드라이브 정지 상태인 경우, • 1 = 시작 허용. • 0 = 시작 금지.</td>
<td>1</td>
</tr>
<tr>
<td>Eme ramp stop (Off3)</td>
<td></td>
<td>드라이브가 운전 상태인 경우, • 1 = 정상 운전. • 0 = 파라미터 23.23 Emergency stop time에 정의된 비상 정지 시간에 따라 감속 정지. 드라이브가 정지된 후에 비상 정지 신호가 제거되고 시작 신호가 0에서 1로 세트될 때 재시동할 수 있습니다. 드라이브 정지 상태인 경우, • 1 = 시작 허용. • 0 = 시작 금지.</td>
<td>2</td>
</tr>
<tr>
<td>21.05</td>
<td>Emergency stop source</td>
<td>비상 정지 신호의 소스를 선택합니다. 정지 모드는 파라미터 21.04 Emergency stop mode에 의해 선택됩니다. 0 = 비상 정지 허용. 1 = 정상 운전. Note: 이 파라미터는 드라이브가 운전 중인 경우에 변경할 수 없습니다.</td>
<td>Inactive (true); DI4 (95.20 b1, 95.20 b2)</td>
</tr>
<tr>
<td>Active (false)</td>
<td></td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>Inactive (true)</td>
<td></td>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>DIIL</td>
<td></td>
<td>DIIL 입력 (10.02 DI delayed status, 비트 15).</td>
<td>2</td>
</tr>
<tr>
<td>DI1</td>
<td></td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>3</td>
</tr>
<tr>
<td>DI2</td>
<td></td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>4</td>
</tr>
<tr>
<td>DI3</td>
<td></td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>5</td>
</tr>
<tr>
<td>DI4</td>
<td></td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>6</td>
</tr>
<tr>
<td>DI5</td>
<td></td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>7</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>21.06</td>
<td>Zero speed limit</td>
<td>영속도 제한값 정의. 모터는 이 파라미터에 설정한 영속도 제한값에 도달할 때까지 감속 시간에 따라 정지하고 영속도 지연 시간 이후에 관성 정지합니다.</td>
<td>30.00 rpm</td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td>영속도 제한값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>21.07</td>
<td>Zero speed delay</td>
<td>영속도 지연 시간을 정의합니다. 이 기능은 빠른 재시동이 필요한 응용 분야에서 유용하게 사용될 수 있습니다. 이 지연 시간 동안 드라이브는 회전자 위치 정보를 정확하게 알고 있습니다. 영속도 지연 시간이 없는 경우, 드라이브는 정지 명령이 입력되고 램프 시간에 따라 감속합니다. 실제 모터 속도가 파라미터 21.06 Zero speed limit 이하로 떨어지면 인버터는 모듈레이션을 중단하고 모터는 관성 정지합니다.</td>
<td>0 ms</td>
</tr>
</tbody>
</table>

영속도 지연 시간이 있는 경우, 드라이브는 정지 명령이 입력되고 램프 시간에 따라 감속합니다. 실제 모터 속도가 파라미터 21.06 Zero speed limit 이하로 떨어지면 영속도 지연 시간 기능이 동작하며, 속도 제어기는 동작을 유지합니다. 이때 인버터는 계속 모듈레이션 중이고 모터는 자화되어 있으므로 드라이브는 빠르게 재시동할 수 있습니다. 이 기능은 예를 들어, 조정 기능에서 유용하게 사용될 수 있습니다.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>영속도 지연 시간.</th>
<th>1 = 1 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ... 30000 ms</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameters 207

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def (FbEq16)</th>
</tr>
</thead>
</table>
| 21.08 | DC current control | DC 홀드 및 사후 자화 기능을 허용 또는 금지합니다. 자세한 사항은 DC 자화 (페이지 63) 절을 참고하십시오. **Notes:**
* 이 기능은 DTC 모드에서만 유효합니다.
* DC 자화는 모터를 가열시킵니다. 장시간 동안 모터를 자화시키려 하는 경우에는 외부 냉각팬이 반드시 필요합니다.
* 만약 일정한 부하가 모터에 가해진다면 회전축이 회전하는 것을 방지할 수 없습니다. | 0000b |

<table>
<thead>
<tr>
<th>Bit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = DC 홀드 허용. 자세한 사항은 DC 홀드 (페이지 63)를 확인하십시오. Note: DC 홀드 기능은 시각 명령이 입력되지 않은 경우에 유효하지 않습니다.</td>
</tr>
<tr>
<td>1</td>
<td>1 = 사후 자화 허용. 자세한 사항은 사후 자화 (페이지 64)를 확인하십시오. Note: 사후 자화 기능은 정지 모드 (21.03 Stop mode)가 Ramp인 경우에만 허용됩니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000b…0011b</th>
<th>DC 자화 선택.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.09 DC hold speed</td>
<td>DC 홀드 속도를 정의합니다. 자세한 사항은 파라미터 21.08 DC current control 및 DC 홀드 (페이지 63)를 참고하십시오.</td>
<td>5.00 rpm</td>
</tr>
<tr>
<td>0.0 ... 1000.00 rpm</td>
<td>DC 홀드 속도.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>21.10 DC current reference</td>
<td>모터 전력 전류에 대한 DC 홀드 전류의 %값을 정의합니다. 자세한 사항은 파라미터 21.08 DC current control 및 DC 홀드 (페이지 63)를 참고하십시오.</td>
<td>30.0%</td>
</tr>
<tr>
<td>0.0 ... 100.0%</td>
<td>DC 홀드 전류.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>21.11 Post magnetization time</td>
<td>모터가 정지된 후에 사후 자화의 동작 시간을 정의합니다. 자화 전류는 파라미터 21.10 DC current reference에 설정합니다. 자세한 사항은 21.08 DC current control을 확인하십시오.</td>
<td>0 s</td>
</tr>
<tr>
<td>0…3000 s</td>
<td>사후 자화 시간.</td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>

| 21.12 Continuous magnetization command | 연속 자화 기능을 허용 또는 금지합니다. 자세한 사항은 연속 자화 (페이지 64)를 참고하십시오. 자화 전류는 기준 자속을 기반으로 계산됩니다. 자세한 사항은 파라미터 그룹 97 Motor control을 참고하십시오. **Notes:**
* 이 기능은 정지 모드 (파라미터 21.03 Stop mode)가 Ramp이고 DTC 모드인 경우에만 유효합니다.
* 연속 자화는 모터를 가열시킵니다. 장시간 동안 모터를 자화시키려 하는 경우에는 외부 냉각팬이 반드시 필요합니다.
* 만약 일정한 부하가 모터에 가해진다면 회전축이 회전하는 것을 방지할 수 없습니다.
0 = 정상 운전.
1 = 자화 허용. | Off |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>On</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>21.13</td>
<td>Autophasing mode</td>
<td>오토페이징을 수행하는 방법을 선택합니다. 자세한 사항은 오토페이징 (페이지 59) 절을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>Turning</td>
<td>가장 정확한 오토페이징 결과를 제공합니다. 모터 회전이 허용되고 기동 시간이 중요하지 않은 경우에 권장됩니다. Note: 모터가 회전하므로 부하 토크는 5% 미만이어야 합니다.</td>
</tr>
<tr>
<td></td>
<td>Standstill 1</td>
<td>Turning 모드에 비해 빠르지만, 정확한 결과를 제공하지 않습니다. 이 모드에서 모터는 회전하지 않습니다.</td>
</tr>
<tr>
<td></td>
<td>Standstill 2</td>
<td>Standstill 1 모드의 동작이 이상할 때 사용할 수 있지만, Standstill 1 모드에 비해 상당히 느립니다. 이 모드에서 모터는 회전하지 않습니다.</td>
</tr>
<tr>
<td></td>
<td>Turning with Z-pulse</td>
<td>엔코더의 영점 펄스 신호가 연결된 경우에 사용할 수 있습니다. 이 모드에서 모터는 영점 펄스 신호가 감출될 때까지 회전합니다.</td>
</tr>
<tr>
<td>21.14</td>
<td>Pre-heating input source</td>
<td>모터 예열 기능의 소스를 선택합니다. 자세한 사항은 예열 (페이지 63) 절을 참고하십시오. Note: 예열 기능은 다음과 같은 경우에 허용되지 않습니다. • 안전 토크 차단 (STO) 기능 동작, • 드라이브 폴트 동작, • 정지 시간이 1분 미만이거나, • PID 슬립 기능 동작. 예열 기능은 드라이브가 시작될 때 급지되고 사전 자화, 사후 자화, 또는 연속 자화 기능에 의해 무시됩니다. 0 = 예열 차단. 1 = 예열 동작.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>On</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
</tr>
<tr>
<td></td>
<td>Supervision 1</td>
<td>신호 감지 1 (32.01 Supervision status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td>Supervision 2</td>
<td>신호 감지 2 (32.01 Supervision status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td>Supervision 3</td>
<td>신호 감지 3 (32.01 Supervision status, 비트 2).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>21.16</td>
<td>Pre-heating current</td>
<td>모터 정격 전류에 대한 예열 전류의 %값을 정의합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 30.0%</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>21.18</td>
<td>Auto restart time</td>
<td>모터는 순간 정전이 발생한 후에 자동으로 재시동될 수 있습니다. 자세한 사항은 자동 재시동(페이지 76) 절을 참고하십시오. 이 파라미터는 재시동이 시도된 후에 DC 초기 충전을 포함하는 최대 정전 시간을 정의합니다. 만약 이 파라미터가 0.0 s로 설정된 경우에 자동 재시동 기능은 동작하지 않습니다.</td>
</tr>
</tbody>
</table>

WARNING! 이 기능은 복전된 후에 드라이브를 자동으로 재시동하고 연속 운전합니다. 단, 위험 상황이 발생하지 않도록 주의하십시오.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 s</td>
<td>자동 재시동 금지.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1 ... 5.0 s</td>
<td>최대 정전 시간.</td>
<td></td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>

Notes:
• DTC 모드의 시작 기능은 파라미터 21.01 Start mode에 선택합니다.
• 영구자석 동기 모터는 Automatic으로 설정해야 합니다.
• 이 파라미터는 드라이브 운전 중인 경우에 변경되지 않습니다. |

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>영속도에서 즉시 시작.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | Const time | 드라이브가 시작된 후에 모터를 사전 자화시킵니다. 사전 자화 시간은 파라미터 21.02 Magnetization time에 의해 정의됩니다. 이 모드는 일정한 자화 시간이 요구되는 경우(예를 들어, 모터 운전이 기계 브레이크의 동작과 일치해야 하는 경우)에 선택할 수 있으며, 이 시간을 충분히 걸게 설정하였을 때, 높은 기동 토크를 보장합니다.
Note: 이 모드는 전진 중인 모터의 시작에 적용될 수 없습니다. |

WARNING! 모터가 완전히 자화되지 않더라도 설정한 자화 시간이 지난면 드라이브는 시작할 것입니다. 따라서 높은 기동 토크가 필요할 경우 본 장치는 자화 시간을 충분히 길게 설정해야 합니다.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Automatic</td>
<td>이 설정은 회전 중 재시동이 필요한 경우에 적용될 수 있습니다.</td>
<td></td>
</tr>
</tbody>
</table>

| 21.20| Follower force ramp stop | 토크 제어 팔로워 드라이브에서 램프 정지 (Off1 또는 Off3) 명령으로 정지하도록 속도 제어 모드로 강제 전환합니다. 팔로워 드라이브에서 독립적인 램프 정지 명령이 필요합니다. 자세한 사항은 마스터/팔로워 기능(페이지 31) 절을 참고하십시오. |

Note:
1 = 강제 램프 정지.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not selected</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Selected</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DIIL</td>
<td>DIIL 입력 (10.02 DI delayed status, 비트 15).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>5</td>
</tr>
</tbody>
</table>
22 Speed reference selection

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
</tbody>
</table>

22.01 Speed ref unlimited

제한 조건이 적용되지 않은 기준 속도의 출력을 표시합니다. 페이지 565의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.

-30000.00 ... 30000.00 rpm

제한 조건이 적용되지 않은 기준 속도.

See par. 46.01

22.11 Speed ref source

기준 속도 소스 1을 선택합니다. 2개의 소스 신호는 이 파라미터와 22.12 Speed ref2 source에 정의될 수 있으며, 파라미터 22.14 Speed ref1/2 selection에 의해 선택된 디지털 입력은 2개의 기준 소스의 전환 신호로 사용될 수 있습니다.

All1 scaled

Zero

<table>
<thead>
<tr>
<th>입력 없음.</th>
<th>0</th>
</tr>
</thead>
</table>

AI1 scaled	12.12 AI1 scaled value (페이지 158 참고).
AI2 scaled	12.22 AI2 scaled value (페이지 160 참고).
FB A ref1	03.05 FB A reference 1 (페이지 119 참고).
FB A ref2	03.06 FB A reference 2 (페이지 120 참고).
EFB ref1	03.09 EFB reference 1 (페이지 120 참고).
EFB ref2	03.10 EFB reference 2 (페이지 120 참고).
DDCS ctrl ref1	03.11 DDCS controller ref 1 (페이지 120 참고).
DDCS ctrl ref2	03.12 DDCS controller ref 2 (페이지 120 참고).
M/F reference 1	03.13 M/F or D2D ref1 (페이지 120 참고).
M/F reference 2	03.14 M/F or D2D ref2 (페이지 120 참고).
Motor potentiometer	22.80 Motor potentiometer ref act (모터 포텐시미터의 출력).

![Diagram](image)
Parameters 211

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID</td>
<td>40.01 Process PID output actual (프로세스 PID 제어기의 출력).</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Control panel (ref saved)</td>
<td>기준값을 제어 패널로부터 입력하며, 마지막으로 사용된 기준값을 초기 기준값으로 사용합니다. 자세한 사항은 페이지 211을 참고하십시오.</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Control panel (ref copied)</td>
<td>기준값을 제어 패널로부터 입력하며, 이전 소스 또는 실제값을 초기 기준값으로 사용합니다. 자세한 사항은 페이지 211을 참고하십시오.</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.12 Speed ref2 source</td>
<td>기준 속도 소스 2를 선택합니다. 파라미터 22.11 Speed ref1 source를 참고하십시오.</td>
<td>Zero</td>
<td></td>
</tr>
<tr>
<td>22.13 Speed ref1 function</td>
<td>파라미터 22.11 Speed ref1 source 및 22.12 Speed ref2 source에 의해 선택된 기준 소스의 연산 기능을 선택합니다. 파라미터 22.11 Speed ref1 source의 블록도를 참고하십시오.</td>
<td>Ref1</td>
<td></td>
</tr>
<tr>
<td>Ref1</td>
<td>22.11 Speed ref1 source에 선택된 신호를 기준 속도 1로 사용.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Add (ref1 + ref2)</td>
<td>기준 소스의 합을 기준 속도 1로 사용.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sub (ref1 - ref2)</td>
<td>기준 소스의 차 ([22.11 Speed ref1 source] - [22.12 Speed ref2 source])를 기준 속도 1로 사용.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Mul (ref1 × ref2)</td>
<td>기준 소스의 곱을 기준 속도 1로 사용.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Min (ref1, ref2)</td>
<td>기준 소스의 작은 값을 기준 속도 1로 사용.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Max (ref1, ref2)</td>
<td>기준 소스의 큰 값을 기준 속도 1로 사용.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>22.14 Speed ref1/2 selection</td>
<td>기준 속도 1과 2의 선택. 파라미터 22.11 Speed ref1 source의 블록도를 참고하십시오. 0 = 기준 속도 1, 1 = 기준 속도 2.</td>
<td>Follow Ext1/Ext2 selection</td>
<td></td>
</tr>
<tr>
<td>Speed reference 1</td>
<td>0.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Speed reference 2</td>
<td>1.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Follow Ext1/Ext2 selection</td>
<td>외부 제어 위치 EXT1을 선택하면 기준 속도 1이 사용되며, EXT2를 선택하면 기준 속도 2가 사용됩니다. 자세한 사항은 파라미터 19.11 Ext1/Ext2 selection을 참고하십시오.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>22.15</td>
<td>Speed additive 1 source</td>
<td>선택된 기준 속도에 더해지는 추가 속도 1을 정의합니다. (페이지 564의 제어 제어 블록도를 확인하십시오). 소스 선택을 위해 22.11 Speed ref1 source를 참고하십시오. Note: 안전상 비상 정지 중에는 이 값이 적용되지 않습니다.</td>
<td>Zero</td>
</tr>
<tr>
<td>22.16</td>
<td>Speed share</td>
<td>선택된 기준 속도 1 또는 2에 곱해지는 환산 계수 (Scaling factor)를 정의합니다. 여기서 기준 속도 1 또는 2는 파라미터 22.14 Speed ref1/2 selection에 의해 선택됩니다.</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>-8.000 …8.000</td>
<td>기준 속도의 환산 계수.</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>22.17</td>
<td>Speed additive 2 source</td>
<td>선택된 기준 속도에 더해지는 추가 속도 2를 정의합니다. (페이지 564를 참고하십시오). 소스 선택을 위해 22.11 Speed ref1 source를 참고하십시오. Note: 안전상 비상 정지 중에는 이 값이 적용되지 않습니다.</td>
<td>Zero</td>
</tr>
<tr>
<td>22.21</td>
<td>Constant speed function</td>
<td>일정 속도 기능의 사용 방법을 선택하고 이 기능이 적용될 때 회전 방향 신호가 고려할 것인지에 대한 여부를 결정합니다.</td>
<td>0000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Constant speed mode</td>
<td>1 = 파라미터 22.22, 22.23 및 22.24에 정의된 3개의 입력 소스를 사용하여 7개의 일정 속도를 선택합니다. 0 = 파라미터 22.22, 22.23 및 22.24에 정의된 3개의 입력 소스를 사용하여 독립적으로 일정 속도 1, 2, 3을 선택합니다. 만약 입력 소스가 동시에 입력된 경우에는 낮은 번호가 우선 순위를 갖습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Direction enable</td>
<td>1 = 방향 신호에 따라 부호 (정방향: +1, 역방향: -1)가 일정 속도 (파라미터 22.26…22.32)에 곱해집니다. 이 이렇게 하면 14개 (정방향 7개, 역방향 7개)의 일정 속도를 효과적으로 설정할 수 있습니다. WARNING: 만약 방향 신호가 역방향이고 일정 속도가 음수이면 드라이브는 정방향으로 운전됩니다. 0 = 일정 속도의 운전 방향은 일정 속도 (파라미터 22.26…22.32)의 부호에 따라 결정됩니다.</td>
</tr>
<tr>
<td>2…15</td>
<td>예약된 영역</td>
<td></td>
</tr>
</tbody>
</table>

<p>| 0000b…0011b | 일정 속도 구성 웨드. | 1 = 1 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.22</td>
<td>Constant speed sel1</td>
<td>파라미터 22.21 Constant speed function의 비트 0가 0인 경우, 일정 속도 1의 선택 소스를 설정합니다. 파라미터 22.21 Constant speed function의 비트 0가 1인 경우, 이 파라미터와 22.23 Constant speed sel2 및 22.24 Constant speed sel3를 조합하여 다음과 같이 일정 속도를 선택합니다.</td>
<td>D15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>입력 소스</th>
<th>입력 소스</th>
<th>입력 소스</th>
<th>입력 소스</th>
<th>입력 소스</th>
<th>입력 소스</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.22</td>
<td>22.23</td>
<td>22.24</td>
<td>22.25</td>
<td>22.26</td>
<td>22.27</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not selected</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Not selected</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Not selected</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Not selected</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Not selected</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Not selected</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Not selected</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Not selected</th>
<th>Selected</th>
<th>DI1</th>
<th>DI2</th>
<th>DI3</th>
<th>DI4</th>
<th>DI5</th>
<th>DI6</th>
<th>DIO1</th>
<th>DIO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other [bit]</th>
<th>기타 소스 선택.</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

| 22.23 | Constant speed sel2 | 파라미터 22.21 Constant speed function의 비트 0가 0인 경우, 일정 속도 2의 선택 소스를 설정합니다. 파라미터 22.21 Constant speed function의 비트 0가 1인 경우, 이 파라미터와 22.22 Constant speed sel1 및 22.24 Constant speed sel3을 조합하여 다음과 같이 일정 속도를 선택합니다. 또한 파라미터 22.22 Constant speed sel1의 표를 참고하십시오. | Not selected |

| 22.24 | Constant speed sel3 | 파라미터 22.21 Constant speed function의 비트 0가 0인 경우, 일정 속도 3의 선택 소스를 설정합니다. 파라미터 22.21 Constant speed function의 비트 0가 1인 경우, 이 파라미터와 22.22 Constant speed sel1 및 22.24 Constant speed sel3을 조합하여 다음과 같이 일정 속도를 선택합니다. 또한 파라미터 22.22 Constant speed sel1의 표를 참고하십시오. | Not selected |

<table>
<thead>
<tr>
<th>22.26</th>
<th>Constant speed 1</th>
<th>일정 속도 1을 정의합니다.</th>
<th>300.00 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-30000.00 ...</td>
<td>일정 속도 1.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td></td>
<td>30000.00 rpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>22.27</td>
<td>Constant speed 2</td>
<td>일정 속도 2를 정의합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>일정 속도 2.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.28</td>
<td>Constant speed 3</td>
<td>일정 속도 3를 정의합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>일정 속도 3.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.29</td>
<td>Constant speed 4</td>
<td>일정 속도 4를 정의합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>일정 속도 4.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.30</td>
<td>Constant speed 5</td>
<td>일정 속도 5를 정의합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>일정 속도 5.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.31</td>
<td>Constant speed 6</td>
<td>일정 속도 6을 정의합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>일정 속도 6.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.32</td>
<td>Constant speed 7</td>
<td>일정 속도 7을 정의합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>일정 속도 7.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.41</td>
<td>Speed ref safe</td>
<td>다음과 같은 감시 기능이 동작한 경우에 기준이 되는 안전 속도를 정의합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>12.03 AI supervision function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>49.05 Communication loss action</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.02 FBA A comm loss func</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>50.32 FBA B comm loss func</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>58.14 Communication loss action.</td>
<td></td>
</tr>
<tr>
<td>22.42</td>
<td>Jogging 1 ref</td>
<td>조깅 기능 1을 위한 기준 속도를 정의합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>이에 자세한 사항은 페이지 55를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>22.43</td>
<td>Jogging 2 ref</td>
<td>조깅 기능 2를 위한 기준 속도를 정의합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>이에 자세한 사항은 페이지 55를 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FB Eq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>22.51</td>
<td>Critical speed function</td>
<td>위험 속도 기능을 허용 또는 금지시킵니다. 또한 지정 범위가 회전 방향에 관계없이 모두 유효한지 결정합니다. 자세한 사항은 위험 속도/주파수 설정(페이지 43) 절을 참고하십시오.</td>
<td>0000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enable</td>
<td>1 = 위험 속도 기능을 허용합니다. 0 = 위험 속도 기능을 금지합니다.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sign mode</td>
<td>1 = 파라미터 22.52…22.57의 부호를 사용합니다. 0 = 파라미터 22.52…22.57의 절댓값을 사용합니다. 이것은 회전 방향에 관계없이 모두 유효합니다.</td>
<td></td>
</tr>
<tr>
<td>2…15</td>
<td>예약된 영역.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

000b..001b 위험 속도 구성 워드. 1 = 1

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FB Eq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.52</td>
<td>Critical speed 1 low</td>
<td>위험 속도 범위 1의 하한값을 정의합니다. Note: 이 값은 22.53 Critical speed 1 high보다 작거나 같아야 합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>위험 속도 1의 하한값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.53</td>
<td>Critical speed 1 high</td>
<td>위험 속도 범위 1의 상한값을 정의합니다. Note: 이 값은 22.52 Critical speed 1 low보다 크거나 같아야 합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>위험 속도 1의 상한값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.54</td>
<td>Critical speed 2 low</td>
<td>위험 속도 범위 2의 하한값을 정의합니다. Note: 이 값은 22.55 Critical speed 2 high보다 작거나 같아야 합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>위험 속도 2의 하한값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.55</td>
<td>Critical speed 2 high</td>
<td>위험 속도 범위 2의 상한값을 정의합니다. Note: 이 값은 22.54 Critical speed 3 low보다 크거나 같아야 합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>위험 속도 2의 상한값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.56</td>
<td>Critical speed 3 low</td>
<td>위험 속도 범위 3의 하한값을 정의합니다. Note: 이 값은 22.57 Critical speed 3 high보다 작거나 같아야 합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>위험 속도 3의 하한값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.57</td>
<td>Critical speed 3 high</td>
<td>위험 속도 범위 3의 상한값을 정의합니다. Note: 이 값은 22.56 Critical speed 3 low보다 크거나 같아야 합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>위험 속도 3의 상한값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.71</td>
<td>Motor potentiometer function</td>
<td>모터 포텐시미터의 동작을 선택합니다. 자세한 사항은 모터 포텐시미터(페이지 69) 절을 참고하십시오.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Disabled</td>
<td>모터 포텐시미터 금지.</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Enabled (init at stop/power-up)</td>
<td>모터 포텐셔미터는 먼저 파라미터 22.72 Motor potentiometer initial value에 정의된 값을 사용합니다. 드라이브가 운전 중일 때 파라미터 22.73 Motor potentiometer up source 및 22.74 Motor potentiometer down source로 값을 조절할 수 있습니다. 드라이브가 정지되거나 전원이켜진 경우에 초기값 (22.72)으로 재설정됩니다.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Enabled (resume always)</td>
<td>동작 상태는 Enabled (init at stop/power-up)과 동일하지만, 드라이브가 정지되거나 전원이켜진 경우에 이전값을 유지합니다.</td>
<td>2</td>
</tr>
<tr>
<td>22.72</td>
<td>Motor potentiometer initial value</td>
<td>모터 포텐셔미터의 초기값을 정의합니다. 자세한 사항은 파라미터 22.71 Motor potentiometer function를 참고하십시오.</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>-32768.00 ... 32767.00</td>
<td>모터 포텐셔미터의 초기값.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
| 22.73 | Motor potentiometer up source | 모터 포텐셔미터의 증가 신호 소스를 선택합니다.
0 = 변화없음.
1 = 모터 포텐셔미터 값 증가. (증가 및 감소 소스가 동시에 입력된 경우에 포텐셔미터 갯은 변경되지 않습니다.) | Not selected |
| | Not selected | 0. | 0 |
| | Selected | 1. | 1 |
| | D11 | 디지털 입력 DI1 (10.02 DI delayed status, 비트 0). | 2 |
| | D12 | 디지털 입력 DI2 (10.02 DI delayed status, 비트 1). | 3 |
| | D13 | 디지털 입력 DI3 (10.02 DI delayed status, 비트 2). | 4 |
| | D14 | 디지털 입력 DI4 (10.02 DI delayed status, 비트 3). | 5 |
| | D15 | 디지털 입력 DI5 (10.02 DI delayed status, 비트 4). | 6 |
| | D16 | 디지털 입력 DI6 (10.02 DI delayed status, 비트 5). | 7 |
| | DIO1 | 디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0). | 10 |
| | DIO2 | 디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1). | 11 |
| | Other [bit] | 기타 소스 선택. | - |
| 22.74 | Motor potentiometer down source | 모터 포텐셔미터의 감소 신호 소스를 선택합니다.
0 = 변화없음.
1 = 모터 포텐셔미터 값 감소. (증가 및 감소 소스가 동시에 입력된 경우에 포텐셔미터 값은 변경되지 않습니다.) 이에 대한 자세한 사항은 파라미터 **22.73 Motor potentiometer up source**를 확인하십시오. | Not selected |
<p>| 22.75 | Motor potentiometer ramp time | 모터 포텐셔미터의 변화율을 정의합니다. 이 파라미터는 포텐셔미터 값이 하한값 (22.76)에서 상한값 (22.77)으로 변경되는데 필요한 시간을 지정합니다. 이것은 양방향에 대해 동일하게 적용됩니다. | 60.0 s |
| | 0.0 ... 3600.0 s | 모터 포텐셔미터의 램프 시간. | 10 = 1 |
| 22.76 | Motor potentiometer min value | 모터 포텐셔미터의 하한값을 정의합니다. | -1500.00 |
| | -32768.00 ... 32767.00 | 모터 포텐셔미터의 하한값. | 1 = 1 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.77</td>
<td>Motor potentiometer max value</td>
<td>모터 포텐시미터의 상한값을 정의합니다.</td>
<td>1500.00</td>
</tr>
<tr>
<td></td>
<td>-32768.00 ... 32767.00</td>
<td>모터 포텐시미터의 상한값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.80</td>
<td>Motor potentiometer ref act</td>
<td>파라미터 22.71…22.74에서 구성된 모터 포텐시미터의 출력값을 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-32768.00 ... 32767.00</td>
<td>모터 포텐시미터 값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.81</td>
<td>Speed reference act 1</td>
<td>파라미터 22.11 Speed ref1 source에 선택된 기준 속도 1의 값을 표시합니다. 페이지 564의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>기준 속도 1의 값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.82</td>
<td>Speed reference act 2</td>
<td>파라미터 22.12 Speed ref2 source에 선택된 기준 속도 2의 값을 표시합니다. 페이지 564의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>기준 속도 2의 값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.83</td>
<td>Speed reference act 3</td>
<td>파라미터 22.14 Speed ref1/2 selection에서 선택한 기준 토크를 표시합니다. 페이지 564의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>최종 선택한 기준 속도.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.84</td>
<td>Speed reference act 4</td>
<td>파라미터 22.15 Speed additive 1 source가 추가된 기준 속도를 표시합니다. 페이지 564의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>추가 속도 1이 적용된 기준 속도.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.85</td>
<td>Speed reference act 5</td>
<td>파라미터 22.16 Speed share의 환산 계수가 적용된 기준 속도를 표시합니다. 페이지 564의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>환산 계수가 적용된 기준 속도.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>22.86</td>
<td>Speed reference act 6</td>
<td>파라미터 22.17 Speed additive 2 source가 추가된 기준 속도를 표시합니다. 페이지 564의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>추가 속도 2가 적용된 기준 속도.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>22.87</td>
<td>Speed reference act 7</td>
<td>위험 속도 기능이 적용되기 전에 기준 속도를 표시합니다. 페이지 565의 제어 채인 블록도를 확인하십시오. 이 값은 다음을 제외하고는 파라미터 22.86 Speed reference act 6으로부터 입력됩니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23</th>
<th>Speed reference ramp</th>
<th>램프 기준 속도 설정 (드라이브의 가속률 및 감속률 정의). 페이지 566의 제어 채인 블록도를 확인하십시오.</th>
<th>See par. 46.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.01</td>
<td>Speed ref ramp input</td>
<td>램프 또는 S자 극선이 적용되기 전에 기준 속도를 표시합니다. 페이지 566의 제어 채인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-3000.00 ... 30000.00 rpm</th>
<th>램프 및 S자 극선이 적용되지 않은 기준 속도.</th>
<th>See par. 46.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.02</td>
<td>Speed ref ramp output</td>
<td>램프 또는 S자 극선이 적용된 기준 속도를 표시합니다. 페이지 566의 제어 채인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>-30000.00 ... 300000.00 rpm</th>
<th>램프 및 S자 극선이 적용된 기준 속도.</th>
<th>See par. 46.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.11</td>
<td>Ramp set selection</td>
<td>파라미터 23.12...23.15에 정의된 2개의 가속속 시간을 전환하는 소스를 선택합니다. 0 = 가속 시간 1 및 감속 시간 1. 1 = 가속 시간 2 및 감속 시간 2.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acc/Dec time 1</th>
<th>0.</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc/Dec time 2</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>D11</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td>D12</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td>D13</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td>D14</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td>D15</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td>D16</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입력/ 출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입력/ 출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>23.12</td>
<td>Acceleration time 1</td>
<td>영속도에서 파라미터 46.01 Speed scaling에 정의된 속도까지 증가하는데 걸리는 가속 시간 1을 정의합니다. 만약 기준 속도가 가속률 (Acceleration rate)보다 빠르게 증가하면 드라이브는 토크 제한값을 초과하지 않도록 출력을 제한할 것입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>가속 시간 1.</td>
</tr>
<tr>
<td>23.13</td>
<td>Deceleration time 1</td>
<td>파라미터 46.01 Speed scaling에 정의된 속도에서 영속도까지 감소하는데 걸리는 감속 시간 1을 정의합니다. 만약 기준 속도가 감속률 (Deceleration rate)보다 빠르게 감소하면 드라이브는 토크 제한값 (또는 DC 링크 전압의 상한값)을 초과하지 않도록 출력을 제한할 것입니다. 감속 시간이 너무 짧다고 의심되면 과전압 제어 기능 (파라미터 20.30 Overvoltage control)이 허용되어 있는지 확인하십시오. Note: 관성이 큰 부하에서 급감속을 원한다면 드라이브에 제동저항 및 제동초퍼를 설치해야 합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>감속 시간 1.</td>
</tr>
<tr>
<td>23.14</td>
<td>Acceleration time 2</td>
<td>가속 시간 2를 정의합니다. 자세한 사항은 파라미터 23.12 Acceleration time 1을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>가속 시간 2.</td>
</tr>
<tr>
<td>23.15</td>
<td>Deceleration time 2</td>
<td>감속 시간 2를 정의합니다. 자세한 사항은 파라미터 23.13 Deceleration time 1을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>감속 시간 2.</td>
</tr>
</tbody>
</table>
23.16 Shape time acc 1

가속 시작점에서 기준 속도를 S자 형태의 곡선으로 변형합니다. 0.000 s: 선형 캠프, 가속 또는 감속이 느린 부하에 적합합니다. 0.001...1000.000 s: S자 곡선, 리프팅 부하 (Lifting load)와 같이 부드러운 가동 및 정지를 요구하는 응용 분야에 적합합니다.

Note: 안전을 이유로 비상 정지 기능에는 적용되지 않습니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FB Eq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.16</td>
<td>Shape time acc 1</td>
<td>가속 시작점에서 기준 속도를 S자 형태의 곡선으로 변형합니다. 0.000 s: 선형 캠프, 가속 또는 감속이 느린 부하에 적합합니다. 0.001...1000.000 s: S자 곡선, 리프팅 부하 (Lifting load)와 같이 부드러운 가동 및 정지를 요구하는 응용 분야에 적합합니다.</td>
<td>0.000 s</td>
</tr>
</tbody>
</table>

가속하는 경우:

모터 속도

변형 캠프:

S자 곡선:

시간

감속하는 경우:

모터 속도

S자 곡선:

시간

0.000 …1800.000 s 가속 시작점에서 변형 시간. 10 = 1 s

23.17 | Shape time acc 2 | 가속 종료점에서 기준 속도를 S자 형태의 곡선으로 변형합니다. 자세한 사항은 23.16 Shape time acc 1을 참고하십시오. | 0.000 s |

0.000 …1800.000 s 가속 종료점에서 변형 시간. 10 = 1 s

23.18 | Shape time dec 1 | 감속 시작점에서 기준 속도를 S자 형태의 곡선으로 변형합니다. 자세한 사항은 23.16 Shape time acc 1을 참고하십시오. | 0.000 s |

0.000 …1800.000 s 감속 시작점에서 변형 시간. 10 = 1 s
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.19</td>
<td>Shape time dec 2</td>
<td>감속 종료점에서 기준 속도를 S자 형태의 곡선으로 변형합니다. 자세한 사항은 23.16 Shape time acc 1을 참고하십시오.</td>
<td>0.000 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>감속 종료점에서 변형 시간.</td>
<td></td>
</tr>
<tr>
<td>23.20</td>
<td>Acc time jogging</td>
<td>영속도에서 파라미터 46.01 Speed scaling에 정의된 속도까지 증가하는데 걸리는 조감 가속 시간을 정의합니다. 자세한 사항은 조감(페이지 55) 절을 참고하십시오.</td>
<td>60.000 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>조감 가속 시간.</td>
<td></td>
</tr>
<tr>
<td>23.21</td>
<td>Dec time jogging</td>
<td>파라미터 46.01 Speed scaling에 정의된 속도에서 영속도까지 감소하는데 걸리는 조감 감속 시간을 정의합니다.</td>
<td>60.000 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>조감 감속 시간.</td>
<td></td>
</tr>
<tr>
<td>23.23</td>
<td>Emergency stop</td>
<td>속도 제어 모드에서 비상 정지(Off3)시킨 경우에 파라미터 46.01 Speed scaling에서 영속도까지 감소하는데 걸리는 시간을 정의합니다. 이는 토큰 제어 모드에서도 적용됩니다. 주파수 제어 모드에서 Off3 정지시킨 경우에 파라미터 46.02 Frequency scaling에서 억주파수까지 감소하는데 걸리는 시간을 정의합니다. 여기서 비상 정지 모드와 동작 소스는 파라미터 21.04 Emergency stop mode 및 21.05 Emergency stop source에서 각각 선택되며, 필드버스 통신으로도 비상 정지시킬 수 있습니다. Note: 비상 정지 Off1은 파라미터 23.11...23.19(속도 또는 토큰 제어) 또는 28.71...28.75(주파수 제어)에 정의된 표준 감속 시간에 따라 정지합니다.</td>
<td>3.000 s</td>
</tr>
<tr>
<td></td>
<td>time</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>비상 정지 Off3 감속 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>23.24</td>
<td>Speed ramp in zero</td>
<td>램프 함수로 들어가기 전에 기준 속도를 0으로 강제 설정하는 소스를 선택합니다. 0 = 기준 속도를 0으로 강제 설정 1 = 기준 속도를 램프 함수 출력으로 설정.</td>
<td>Inactive</td>
</tr>
<tr>
<td></td>
<td>source</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active 0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inactive 1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1 디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2 디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI3 디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI4 디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI5 디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI6 디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO1 디지털 입력/D 출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2 디지털 입력/D 출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>기타 소스 선택.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ramp out balancing enable (23.26)

램프 함수 출력의 밸런싱 기능을 허용/금지시킬 소스를 선택합니다. 이 기능은 토크 제어에서 속도 제어 모드로 원활하게 전환하기 위해 사용됩니다. 밸런싱 출력은 현재 속도를 추적하므로 전환이 필요한 경우에 기준 속도로 신속하게 전환합니다. 또한 밸런싱은 속도 제어 모드에서도 가능합니다. 자체한 사항은 파라미터 25.09 Speed ctrl balancing enable 및 23.27 Ramp out balancing ref를 참고하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 = 금지.</td>
<td>1 = 허용.</td>
<td></td>
</tr>
</tbody>
</table>

Not selected 0. | 0 |
Selected 1. | 1 |

디지털 입력 DI1	(10.02 DI delayed status, 비트 0).	2	
디지털 입력 DI2	(10.02 DI delayed status, 비트 1).	3	
디지털 입력 DI3	(10.02 DI delayed status, 비트 2).	4	
디지털 입력 DI4	(10.02 DI delayed status, 비트 3).	5	
디지털 입력 DI5	(10.02 DI delayed status, 비트 4).	6	
디지털 입력 DI6	(10.02 DI delayed status, 비트 5).	7	
DI10	디지털 입/출력 DIO1	(11.02 DIO delayed status, 비트 0).	10
DI02	디지털 입/출력 DIO2	(11.02 DIO delayed status, 비트 1).	11

Additional Note

- 램프 속도 밸런싱을 위한 기준값을 정의합니다. 램프 함수 출력은 알려진 밸런싱 기능을 허용할 때, 이 값으로 감져 설정됩니다.

-30000.00 ... 30000.00 rpm 램프 함수 출력의 밸런싱을 위한 기준값.

See par. 46.01
외부 컨트롤러에서 기준 속도를 변경하는 동안 램프 속도의 기울기를 제어하는 기능을 허용합니다. 이를 통해 2개의 표준 램프 함수 대신 지속적으로 가변되는 램프 속도를 출력할 수 있습니다. 만약 외부 컨트롤러의 업데이트 시간과 가변 속도 변화 시간 (23.29 Variable slope rate)이 같으면 결과적으로 기준 속도 (23.02 Speed ref ramp output)는 직선적으로 출력됩니다.

$t = \text{외부 제어 신호의 업데이트 시간.}$

$A = t\text{초 동안 변화한 기준 속도.}$

이 기능은 외부 제어 모드에서만 동작합니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.28</td>
<td>Variable slope enable</td>
<td>외부 컨트롤러에서 기준 속도를 변경하는 동안 램프 속도의 기울기를 제어하는 기능을 허용합니다. 이를 통해 2개의 표준 램프 함수 대신 지속적으로 가변되는 램프 속도를 출력할 수 있습니다. 만약 외부 컨트롤러의 업데이트 시간과 가변 속도 변화 시간 (23.29 Variable slope rate)이 같으면 결과적으로 기준 속도 (23.02 Speed ref ramp output)는 직선적으로 출력됩니다.</td>
</tr>
<tr>
<td>23.29</td>
<td>Variable slope rate</td>
<td>파라미터 23.28 Variable slope enable에 의해 가변 송료 기능이 허용된 경우에 기준 속도의 변화 시간을 정의합니다. 이 파라미터에 외부 컨트롤러의 정확한 업데이트 시간을 입력하십시오.</td>
</tr>
<tr>
<td>2...30000 ms</td>
<td>가변 송료 변화율.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>23.39</td>
<td>Follower speed correction out</td>
<td>속도 제어 팔로워 드라이브에서 부하 분담을 위한 속도 보정항을 표시합니다. 자세한 사항은 속도 제어 팔로워 드라이브의 부하 분담 기능 (페이지 32)을 참고하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td>-30000.00 ... 30000.00 rpm</td>
<td>속도 보정항.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>23.40</td>
<td>Follower speed correction enable</td>
<td>속도 제어 팔로워 드라이브에서 부하 분담 기능을 허용/금지시키는 소스를 선택합니다. 자세한 사항은 속도 제어 팔로워 드라이브의 부하 분담 기능 (페이지 32)을 참고하십시오.</td>
</tr>
<tr>
<td>Not selected</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td>Selected</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
</tbody>
</table>
24 Speed reference conditioning

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI3</td>
<td>Follower speed correction gain</td>
<td>속도 제어 필터링 드라이브에서 속도 보정항의 이득을 조정합니다. 이것은 필터링이 마스터 토크를 얼마나 정확하게 추정할 것인지에 정의하며, 이 값이 클수록 더 정확한 성능을 얻을 수 있습니다. 차세한 사항은 속도 필터링 드라이브의 부하 분담 기능 (페이지 32) 절을 참고하십시오.</td>
<td>1.00%</td>
</tr>
<tr>
<td>DI4</td>
<td>Follower speed correction gain</td>
<td>속도 제어 필터링 드라이브에서 속도 보정항의 이득을 조정합니다. 차세한 사항은 속도 필터링 드라이브의 부하 분담 기능 (페이지 32) 절을 참고하십시오.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>DI5</td>
<td>Follower speed correction gain</td>
<td>속도 제어 필터링 드라이브에서 속도 보정항의 이득을 조정합니다. 차세한 사항은 속도 필터링 드라이브의 부하 분담 기능 (페이지 32) 절을 참고하십시오.</td>
<td>MF ref 2</td>
</tr>
<tr>
<td>DI6</td>
<td>Follower speed correction gain</td>
<td>속도 제어 필터링 드라이브에서 속도 보정항의 이득을 조정합니다. 차세한 사항은 속도 필터링 드라이브의 부하 분담 기능 (페이지 32) 절을 참고하십시오.</td>
<td>Other [bit]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>24.01</th>
<th>Used speed reference</th>
<th>최종적으로 속도 제어기에 사용된 기준 속도를 표시합니다. 페이지 569의 제어 제어 인체속도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</th>
<th>See par. 46.01</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>최종 기준 속도.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>최종 기준 속도.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>속도 오차 계산을 위해 사용된 속도 피드백 값을 표시합니다. 페이지 569의 제어 제어 인체속도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>속도 오차 계산을 위해 사용된 속도 피드백.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td></td>
<td>Speed error filtered</td>
<td>필터링된 속도 오차를 표시합니다. 페이지 569의 제어 제어 인체속도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.0 ... 30000.0 rpm</td>
<td>필터링된 속도 오차.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td></td>
<td>Speed error inverted</td>
<td>반전된 속도 오자를 표시합니다. 페이지 569의 제어 제어 인체속도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.0 ... 30000.0 rpm</td>
<td>반전된 속도 오차.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>24.11</td>
<td>Speed correction</td>
<td>램프 함수 출력 및 속도 제한하기 사이에 추가되는 보정값을 정의합니다. 예를 들어, 제지기 섹션 사이의 드로잉을 조절하는 것과 같이 필요한 경우, 속도를 줄이는데 유용하게 사용될 수 있습니다. Note: 안전을 위해 비상 정지가 동작한 경우에는 적용되지 않습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WARNING! 만약 기준 속도 보정값이 21.06 Zero speed limit보다 크면 램프 정지가 불가능하므로 램프 정지가 필요한 경우에는 이 값을 줄이거나 제거하십시오. 페이지 569의 제어 체인 블록도를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-10000.00 ... 10000.00 rpm</td>
<td>기준 속도 보정값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>24.12</td>
<td>Speed error filter time</td>
<td>속도 오차 필터의 시점수를 정의합니다. 만약 기준 속도가 빠르게 변경되는 경우에 속도 측정 과정에서 발생할 수 있는 간섭을 필터링 할 수 있습니다. 그러나 속도 오차를 필터링하면 속도 제어기의 튜닝 결과에 영향을 줄 수 있으며, 필터링 시간이 길면 제어가 불안정해 집니다. 0 ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>필터 시간.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>24.13</td>
<td>RFE speed filter</td>
<td>공진 주파수 (Resonance frequency) 필터를 허용 또는 금지시킵니다. 이 필터는 파라미터 24.13...24.17에 의해 구성됩니다. 속도 제어기로 입력되는 속도 오차는 기계적인 공진 주파수의 증폭을 방지하기 위해 2차 대역 제거 필터 (2nd order band-elimination filter)가 사용됩니다. Note: 공진 주파수 필터를 적용하면 주파수 필터에 대한 이해가 필요합니다. 잘못된 설정은 오히려 기계적인 진동을 증폭시키고 드라이브 하드웨어를 손상시킬 수 있습니다. 파라미터를 변경하기 전에 필터를 금지시키거나 드라이브를 정지하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = 공진 주파수 필터 금지. 1 = 공진 주파수 필터 허용.</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>On</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Value</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>24.14</td>
<td>Frequency of zero</td>
<td>공진 주파수 필터의 영점 주파수 (Zero frequency)를 정의합니다. 이 값은 공진 주파수 근처에서 설정되어야 하며, 속도 제어기 이전에 필터링됩니다. 아래 그림은 필터에 대한 주파수 응답을 나타냅니다.</td>
<td>45.00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>
</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 공진 주파수 대역을 필터링하려면 영점 감쇠 계수 (24.14)가 극점 감쇠 계수 (24.15)보다 충분히 작아야 합니다.</td>
<td></td>
</tr>
<tr>
<td>24.15</td>
<td>Damping of zero</td>
<td>영점 주파수 (24.14)의 감쇠 계수를 정의합니다. 이 값이 0이면 공진 주파수를 최대로 제거합니다.</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 공진 주파수 대역을 필터링하려면 영점 감쇠 계수 (24.14)가 극점 감쇠 계수 (24.15)보다 충분히 작아야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 공진 주파수 대역을 필터링하려면 영점 감쇠 계수 (24.14)가 극점 감쇠 계수 (24.15)보다 충분히 작아야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>24.16</td>
<td>Frequency of pole</td>
<td>공진 주파수 필터의 극점 주파수 (Frequency of pole)를 정의합니다.</td>
<td>40.00 Hz</td>
</tr>
</tbody>
</table>

Note: 만약 이 값이 영점 주파수 (24.14)와 매우 다른 경우에는 극점 부근에서 주파수가 증폭되어 기계적인 손상을 유발할 수 있습니다.

<table>
<thead>
<tr>
<th>0.50 ... 500.00 Hz</th>
<th>극점 주파수.</th>
<th>1 = 1 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.17</td>
<td>Damping of pole</td>
<td>0.250</td>
</tr>
</tbody>
</table>

Note: 공진 주파수 대역을 필터링하려면 영점 감쇠 계수 (24.16)가 극점 감쇠 계수 (24.17)보다 충분히 작아야 합니다.
속도 오차 와도우 제어 기능을 허용 또는 금지시킵니다. 이것은 토크 제어 모드에서 제어가 파손되어 모터가 급가속하는 것을 방지합니다.

Note: 속도 오차 와도우 제어는 운전 모드 (19.12, 19.14)가 Add이거나 속도 제어 팔로워 드라이브 (페이지 32 참고)에서만 유효합니다.

정상 운전 중에 드라이브는 속도 제어기의 입력을 0으로 유지하고 토크 제어를 수행하지만, 부하가 감지가 제어되면 모터의 속도가 급격히 상승할 것입니다. 이때 속도 오차 (기준 속도 – 실제 속도)는 오차 와도우를 벗어날 때까지 증가하게 되는데, 속도 제어기는 이 오차를 입력으로 비례 이득 (25.02 Speed proportional gain)과 관련된 기준 토크를 출력하고 이 값을 외부에서 입력된 기준 토크에 더하여 내부 기준 토크로 하게 됩니다. 속도 오차 와도우 제어 기능의 동작 상태는 06.19 Speed control status word의 비트 3에서 확인할 수 있으며, 와도우 바운더리 (Windows boundaries)는 다음과 같이 24.43 Speed error window high와 24.44 Speed error window low에 설정합니다.

그리고 모터의 과속 상황에서 속도 오차는 음수이므로 위의 그림에서 양방향에 대한 과속 제한을 정의하는 파라미터는 24.44입니다.

\[
0 = \text{속도 오차 와도우 제어 금지.} \\
1 = \text{속도 오차 와도우 제어 허용.}
\]

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.41</td>
<td>Speed error window control enable</td>
<td>속도 오차 와도우 제어 기능을 허용 또는 금지시킵니다. 이것은 토크 제어 모드에서 제어가 파손되어 모터가 급가속하는 것을 방지합니다.</td>
</tr>
</tbody>
</table>

<p>| | | Def/FbEq16 |
|-----------------|-----------------------|
| Disable | 0. | 0 |
| Enable | 1. | 1 |
| Other [bit] | 기타 소스 선택. | - |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.42</td>
<td>Speed window control mode</td>
<td>속도 오차 원도우 제어 기능 ([24.41 Speed error window control enable])이 허용된 경우에 이 기능이 동작할 때 내부 속도 제어기를 PID 제어할 것이지 아니면 P 제어할 것인지 선택합니다.</td>
<td>Normal speed control</td>
</tr>
<tr>
<td></td>
<td>Normal speed control</td>
<td>PID 제어 ([파라미터 25.02, 25.03 및 25.04]).</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>P-control</td>
<td>P 제어 ([파라미터 25.02]). 적분 제어기 및 미분 제어기는 0으로 강제 설정합니다.</td>
<td>1</td>
</tr>
<tr>
<td>24.43</td>
<td>Speed error window high</td>
<td>속도 오차 원도우의 위쪽 바운더리를 정의합니다. 자세한 사항은 [파라미터 24.41 Speed error window control enable]을 참고하십시오.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 3000.00 rpm</td>
<td>속도 오차 원도우의 위쪽 바운더리.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>24.44</td>
<td>Speed error window low</td>
<td>속도 오차 원도우의 아래쪽 바운더리를 정의합니다. 자세한 사항은 [파라미터 24.41 Speed error window control enable]을 참고하십시오.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 3000.00 rpm</td>
<td>속도 오차 원도우의 아래쪽 바운더리.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>24.46</td>
<td>Speed step</td>
<td>속도 제어기의 입력에 추가할 속도 오차를 정의합니다. 이것은 대형 드라이브 시스템 (Large drive systems)에서 동적 성능을 향상시키기 위해 사용할 수 있습니다. </td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-3000.00 ... 3000.00 rpm</td>
<td>속도 오차의 스텝 입력.</td>
<td>See par. 46.01</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25 Speed control</th>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25.01 Torque reference speed control</td>
<td>토크 제어기에 입력할 속도 제어기의 출력을 표시합니다. 페이지 570의 제어 제어 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>-1600.0 ... 1600.0%</td>
<td>토크 제한된 속도 제어기의 출력.</td>
<td>See par. 46.03</td>
</tr>
</tbody>
</table>
속도 제어기의 비례 이득 (Kp)을 정의합니다. 이 값이 너무 크면 모터에서 진동이 발생하므로 속도 응답 특성을 확인하여 적절히 설정합니다. 아래 그림은 일정한 오차가 입력된 경우의 속도 제어기 출력을 나타냅니다.

Note: 이 파라미터는 속도 제어기를 오토 튜닝하면 자동 갱신됩니다. 자세한 사항은 속도 제어기 오토 튜닝(페이지 44) 절을 참고하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.02</td>
<td>Speed proportional gain</td>
<td>속도 제어기의 비례 이득 (Kp)을 정의합니다. 이 값이 너무 크면 모터에서 진동이 발생하므로 속도 응답 특성을 확인하여 적절히 설정합니다. 아래 그림은 일정한 오차가 입력된 경우의 속도 제어기 출력을 나타냅니다.</td>
<td>10.00; 5.00 (95.21 b1/b2)</td>
</tr>
</tbody>
</table>

만약 비례 이득이 1.00이면 10%의 속도 오차는 10%의 비례적인 출력을 생성합니다.

Note: 이 파라미터는 속도 제어기를 오토 튜닝하면 자동 갱신됩니다. 자세한 사항은 속도 제어기 오토 튜닝(페이지 44) 절을 참고하십시오.

| 0.00 ... 250.00 | 속도 제어기의 비례 이득. | 100 = 1 |
속도 제어기의 적분 시간을 정의합니다. 여기서 적분 시간은 비례 이득이 1이고 속도 오차가 일정한 경우에 속도 제어기 출력의 변화율을 나타냅니다. 적분 시간이 짧을수록 속도 오차는 빠르게 보정되며, 이것을 0으로 설정하면 적분 제어기는 동작하지 않습니다. 수동으로 속도 제어기를 튜닝할 때 적분 시간을 0으로 설정하고 비례 이득을 조정하여 속도 응답을 확인한 다음 적분 시간을 조정하십시오. 이 제어기에는 토크 또는 전류 제한에 따라 누적된 적분값으로 인해 적분기가 포화(Saturation)되는 것을 방지하기 위한 안티와인드업 제어(Anti-windup control) 기능을 포함하고 있습니다. 아래 그림은 일정한 오차가 입력된 경우의 속도 제어기 출력을 나타냅니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.03</td>
<td>Speed integration time</td>
<td>속도 제어기의 적분 시간을 정의합니다. 여기서 적분 시간은 비례 이득이 1이고 속도 오차가 일정한 경우에 속도 제어기 출력의 변화율을 나타냅니다. 적분 시간이 짧을수록 속도 오차는 빠르게 보정되며, 이것을 0으로 설정하면 적분 제어기는 동작하지 않습니다. 수동으로 속도 제어기를 튜닝할 때 적분 시간을 0으로 설정하고 비례 이득을 조정하여 속도 응답을 확인한 다음 적분 시간을 조정하십시오. 이 제어기에는 토크 또는 전류 제한에 따라 누적된 적분값으로 인해 적분기가 포화(Saturation)되는 것을 방지하기 위한 안티와인드업 제어(Anti-windup control) 기능을 포함하고 있습니다. 아래 그림은 일정한 오차가 입력된 경우의 속도 제어기 출력을 나타냅니다.</td>
<td>2.50 s; 5.00 (95.21 b1/b2)</td>
</tr>
</tbody>
</table>

![속도 제어기 출력 그림](image)

Note: 이 파라미터는 속도 제어기를 오토 튜닝하면 자동 갱신됩니다. 자세한 사항은 속도 제어기 오토 튜닝(페이지 44) 절을 참고하십시오.

<table>
<thead>
<tr>
<th>범위</th>
<th>설명</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 ... 1000.00 s</td>
<td>속도 제어기의 적분 시간.</td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.04</td>
<td>Speed derivation time</td>
<td>속도 제어기의 미분 시간을 정의합니다. 미분 동작은 속도 오차가 변할 때 속도 제어기의 출력을 상승시키며, 미분 시간이 길수록 출력은 더욱 상승합니다. 미분기는 외란 (Disturbances)에 대한 제어 성능을 항상시킬 수 있으며, 이것을 0으로 설정하면 PI 제어기로만 동작합니다. 속도 제어 응용에서는 통상 미분 제어가 불필요하므로 이 파라미터의 기본값은 0입니다. 아래 그림은 일정한 오차가 입력된 경우의 속도 제어기 출력을 나타냅니다. 여기서 오차에 대한 미분값은 외란에 대한 영향을 제거하기 위해 적절히 필터링되어야 합니다.</td>
</tr>
</tbody>
</table>

![라벨 그리드](이미지)

비례 이득 = $K_p = 1$
$T_i = $적분 시간 > 0
$T_D = $미분 시간 > 0
$T_s = $샘플링 시간 $= 500 \mu s$
$\Delta e = $현재 샘플링된 속도 오차와 이전 주기에 샘플링된 속도 오차의 차이

<table>
<thead>
<tr>
<th></th>
<th>Speed derivation time</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 … 10.000 s</td>
<td>속도 제어기의 미분 시간.</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>25.05</td>
<td>Derivation filter time</td>
<td>미분 필터의 시정수를 정의합니다. 자세한 사항은 25.04 Speed derivation time을 참고하십시오.</td>
</tr>
<tr>
<td>0…10000 ms</td>
<td>미분 필터의 시정수.</td>
<td>1 = 1 ms</td>
</tr>
</tbody>
</table>
Parameters 233

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.06</td>
<td>Acc comp derivation time</td>
<td>가속도 보상기의 미분 시간을 정의합니다. 이것은 관성이 큰 부하를 운전하는 경우에 원하는 기울기로 가속 또는 감속할 수 있도록 기준 속도의 미분값을 속도 제어기의 출력에 보상합니다. 미분 동작의 이론은 파라미터 25.04 Speed derivation time을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 일반적으로 전체 시스템의 기계 시정수를 확인하고 이것의 50 ~ 100 % 사이의 값으로 선정하십시오. 아래 그림은 관성이 큰 부하를 가속시킨 경우의 램프 응답 특성을 나타냅니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.00 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 일반적으로 전체 시스템의 기계 시정수를 확인하고 이것의 50 ~ 100 % 사이의 값으로 선정하십시오. 아래 그림은 관성이 큰 부하를 가속시킨 경우의 램프 응답 특성을 나타냅니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.07</td>
<td>Acc comp filter time</td>
<td>가속도 보상기에 적용되는 필터의 시정수를 정의합니다. 자세한 사항은 25.04 Speed derivation time 및 25.06 Acc comp derivation time을 참고하십시오.</td>
<td>8.0 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 1000.0 ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
25.08 Drooping rate

정격 속도에 대한 드롭률을 정의합니다. 드롭 제어기에서는 설정한 드롭률과 부하율 (기준 토크 / 속도 제어기 출력)에 따라 특정 운전정에서 모터 속도를 감소시킵니다. 속도 제어기의 출력이 100%인 경우에 감소할 속도는 이 파라미터에 설정한 드롭률을 결정합니다. 드롭 효과는 부하가 감소함에 따라 선형적으로 0까지 감소합니다. 드롭 제어는 마스터/팔로워 응용에서 모터 회전속이 커플링으로 연결된 경우에 정확한 부하 분담을 위해 사용합니다. 실제로 프로세스의 드롭률은 여러 가지 시험으로 결정해야 합니다.

![드롭률 그래프](image)

감소 속도 = 속도 제어기 출력 × 드롭률 × 정격 속도
예: 속도 제어기 출력이 50%, 드롭률이 1%, 드라이브 속도가 1500 rpm일 때, 감소 속도를 계산하면 0.5 × 0.01 × 1500 rpm = 7.5 rpm입니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.08</td>
<td>Drooping rate</td>
<td>정격 속도에 대한 드롭률을 정의합니다.</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.09</td>
<td>Speed ctrl balancing enable</td>
<td>속도 제어기 출력 밸런싱 기능의 허용/금지시키는 소스를 선택합니다. 이 기능은 토크 제어 모드에서 속도 제어 모드로 전환하는 부드러운 전환을 위해 사용할 수 있습니다. 밸런싱 기능을 허용한 경우에 속도 제어기의 출력은 파라미터 25.10 Speed ctrl balancing ref 값으로 강제 설정되며, 램프 함수에서도 밸런싱 (파라미터 23.26 Ramp out balancing enable 참고)하는 것이 가능합니다.</td>
</tr>
</tbody>
</table>

| 0 | 금지. |
| 1 | 허용. |

<p>| Not selected | 0. | 1 |
| Selected | 1. | 2 |
| DI1 | 디지털 입력 DI1 (10.02 DI delayed status, 비트 0). | 2 |
| DI2 | 디지털 입력 DI2 (10.02 DI delayed status, 비트 1). | 3 |
| DI3 | 디지털 입력 DI3 (10.02 DI delayed status, 비트 2). | 4 |
| DI4 | 디지털 입력 DI4 (10.02 DI delayed status, 비트 3). | 5 |
| DI5 | 디지털 입력 DI5 (10.02 DI delayed status, 비트 4). | 6 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>기타 소스 선택.</td>
<td>.</td>
</tr>
<tr>
<td>25.10</td>
<td>Speed ctrl balancing ref</td>
<td>속도 제어기의 출력 레니싱을 위한 기준값을 정의합니다. 파라미터 25.09 Speed ctrl balancing enable에 의해 레니싱 기능이 허용된 경우에 속도 제어기의 출력은 이 값으로 강제 설정됩니다.</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-300.0 … 300.0% 속도 제어기의 출력 레니싱 기준값.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>25.11</td>
<td>Speed control min torque</td>
<td>속도 제어기 출력 (기준 토크)의 하한값을 정의합니다.</td>
<td>-300.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1600.0 … 0.0% 속도 제어기 출력의 하한값.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>25.12</td>
<td>Speed control max torque</td>
<td>속도 제어기 출력 (기준 토크)의 상한값을 정의합니다.</td>
<td>300.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 … 1600.0% 속도 제어기 출력의 상한값.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>25.13</td>
<td>Min torq sp ctrl em stop</td>
<td>램프 비상 정지 (Off1 또는 Off3) 중에 속도 제어기 출력 (기준 토크)의 하한값을 정의합니다.</td>
<td>-400.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1600.0 … 0.0% 램프 비상 정지 시점에서 속도 제어기 출력의 하한값.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>25.14</td>
<td>Max torq sp ctrl em stop</td>
<td>램프 비상 정지 (Off1 또는 Off3) 중에 속도 제어기 출력 (기준 토크)의 상한값을 정의합니다.</td>
<td>400.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 … 1600.0% 램프 비상 정지 시점에서 속도 제어기 출력의 상한값.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>25.15</td>
<td>Proportional gain em stop</td>
<td>비상 정지할 때 속도 제어기의 비례 이득을 정의합니다. 자세한 사항은 파라미터 25.02 Speed proportional gain을 참고하시오.</td>
<td>10.00; 5.00 (95.21 b1/b2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00 … 250.00 비상 정지 시점에서의 비례 이득.</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>
설명

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.18</td>
<td>Speed adapt min limit</td>
<td>적응형 속도 제어기의 최저 속도를 정의합니다. 속도 제어기의 비례 이득 (25.02 Speed proportional gain) 및 적분 시간 (25.03 Speed integration time)은 실제 속도 (90.01 Motor speed for control)에 따라 조절됩니다. 이것은 비례 이득과 적분 시간에 특징한 속도 계수를 곱하여 얻어지는데, 이 계수는 비례 이득과 적분 시간에 대해 개별적으로 정의합니다. 실제 속도가 25.18 Speed adapt min limit 이하인 경우에 비례 이득과 적분 시간은 각각 25.21 Kp adapt coef at min speed와 25.22 Ti adapt coef at min speed에 곱해집니다. 그러나 25.19 Speed adapt max limit 이상인 경우에는 계수가 1로 되어 적응형 제어를 수행하지 않습니다. 반면에 실제 속도가 25.18 Speed adapt min limit와 25.19 Speed adapt max limit 사이에서의 경우에는 비례 이득과 적분 시간에 공한지는 계수는 선형적으로 계산됩니다. 페이지 570의 병목도는 참고하십시오.</td>
<td>0 rpm</td>
</tr>
<tr>
<td>25.19</td>
<td>Speed adapt max limit</td>
<td>적응형 속도 제어기의 최고 속도를 정의합니다. 자세한 사항은 파라미터 25.18 Speed adapt min limit를 참고하십시오.</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>25.21</td>
<td>Kp adapt coef at min speed</td>
<td>최저 속도에서 비례 이득에 공한지는 계수를 정의합니다. 자세한 사항은 파라미터 25.18 Speed adapt min limit를 참고하십시오.</td>
<td>1.000</td>
</tr>
<tr>
<td>25.22</td>
<td>Ti adapt coef at min speed</td>
<td>최저 속도에서 적분 시간에 공한지는 계수를 정의합니다. 자세한 사항은 파라미터 25.18 Speed adapt min limit를 참고하십시오.</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Graph

![Graph showing the relationship between speed and parameters](attachment:image.png)
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.25</td>
<td>Torque adapt max limit</td>
<td>적응형 속도 제어기를 위한 기준 토크의 상한값을 정의합니다. 속도 제어기의 비례 이득은 기준 토크 (26.01 Torque reference to TQ)에 따라 조정될 것입니다. 이 기능은 특정 토크 범위 내의 계수를 비례 이득 (25.02 Speed proportional gain)에 곱하는 기능을 포함합니다. 기준 토크가 0%인 경우에는 비례 이득은 파라미터 25.27 Kp adapt coef at min torque에 설정한 값과 같습니다. 그러나 기준 토크가 25.25 Torque adapt max limit 이상인 경우에는 계수 1되어 적응형 제어를 수행하지 않습니다. 반면에 기준 토크 0%에서 25.25 Torque adapt max limit 사이에 비례 이득과 곱해지는 계수는 선형적으로 계산됩니다. 기준 토크는 파라미터 25.26 Torque adapt filt time를 사용하여 필터링될 수 있습니다. 결과적으로 이 기능은 정부하 및 백래쉬 (Backlashes)에 의한 영향을 최소화하는데 사용할 수 있습니다. 여기서 백래쉬는 한쌍의 기어가 맞물려있을 때, 치면 (Tooth surface) 사이에 생기는 틈새를 의미합니다. 페이지 570의 블록도를 참고하십시오.</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>See par. 46.03</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.26</td>
<td>Torque adapt filt time</td>
<td>적응형 속도 제어기에 적용되는 필터 시정수를 정의합니다. 실제로는 비례 이득의 변화율을 조정합니다. 자세한 사항은 파라미터 25.25 Torque adapt max limit를 참고하십시오.</td>
<td>0.000 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>적응형 속도 제어기를 위한 필터 시정수.</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>25.27</td>
<td>Kp adapt coef at min torque</td>
<td>기준 토크가 0%일 때, 비례 이득에 곱해지는 계수를 정의합니다. 자세한 사항은 파라미터 25.25 Torque adapt max limit를 참고하십시오.</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>기준 토크가 0%일 때, 비례 이득에 곱해지는 계수.</td>
<td>1000</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.30</td>
<td>Flux adaption enable</td>
<td>모터 기준 자속 (01.24 Flux actual %) 기반의 적응형 속도 제어기를 허용 또는 금지시킵니다. 속도 제어기의 비례 이득에는 기준 자속이 0...100 %인 경우에 0...1 범위의 계수가 곱해집니다. 페이지 570의 볼록도를 참고하십시오.</td>
<td>Enable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>넘버</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
</table>
| 25.33| Speed controller autotune | 속도 제어기의 오토 튜닝 기능을 동작시키는 소스를 선택합니다. 자세한 사항은 속도 제어기 오토 튜닝(페이지 44) 절을 참고하십시오. 정상적으로 오토 튜닝 과정이 완료되면 속도 제어기의 파라미터 25.02 Speed proportional gain, 25.03 Speed integration time 및 25.37 Mechanical time constant는 자동으로 재조정됩니다. 오토 튜닝을 수행하기 위한 전제 조건은 다음과 같습니다.
- 모터 ID run을 성공적으로 완료해야 합니다.
- 속도 및 토크 제한값 (30 Limits)을 설정해야 합니다.
- 속도 피드백 필터링 (90 Feedback selection), 속도 오차 필터링 (24 Speed reference conditioning), 영속도 제한값 (21 Start/stop mode)을 설정해야 합니다.
- 드라이브는 속도 제어 모드로 운전해야 합니다. |

WARNING! 모터와 기계 장치는 오토 튜닝하는 동안 속도 및 토크 제한값 근처에서 운전되므로 이 기능을 동작시키지 않으면서 확인하십시오. 오토 튜닝 중에 드라이브를 정지시키면 즉시 과정이 중단됩니다.
0 -> 1 = 속도 제어기의 오토 튜닝 기능 동작.
Note: 이 값은 0으로 자동 클리어되지 않습니다.
| 25.34| Speed controller autotune mode | 속도 제어기의 오토 튜닝 모드를 선택합니다. 이 설정은 기준 속도의 스텝 입력에 대한 토크 응답에 영향을 줍니다. |

<table>
<thead>
<tr>
<th>넘버</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.34</td>
<td>Speed controller autotune mode</td>
<td>속도 제어기의 오토 튜닝 모드를 선택합니다. 이 설정은 기준 속도의 스텝 입력에 대한 토크 응답에 영향을 줍니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Smooth</td>
<td>느린 응답 특성.</td>
<td>Normal</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FB Eq16</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>25.37</td>
<td>Mechanical time constant</td>
<td>속도 제어기의 오토 튜닝 과정에서 모터와 기계 장치의 기계적인 시정수를 설정합니다. 이 값은 필요에 따라 수동 조절할 수 있습니다.</td>
<td>-</td>
</tr>
<tr>
<td>25.38</td>
<td>Autotune torque step</td>
<td>오토 튜닝 과정에서 사용되는 기준 토크의 스텝 입력을 정의합니다. 이 값은 정격 토크에 대한 백분율이며, 최대 토크는 토크 제한값 (30 Limits) 또는 정격 토크에 의해 제한될 수 있습니다.</td>
<td>10.00%</td>
</tr>
<tr>
<td>25.39</td>
<td>Autotune speed step</td>
<td>오토 튜닝 과정에서 사용되는 기준 속도의 스텝 입력을 정의합니다. 이 값은 정격 속도에 대한 백분율이며, 오토 튜닝 시점에서의 기준 속도에 더해집니다. 최고 속도는 속도 제한값 (30 Limits) 또는 정격 속도에 의해 제한될 수 있습니다.</td>
<td>10.00%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 모터는 가속이 완료되고 정상 상태로 진입하기 전에 최고 속도를 약간 초과할 것이며, 이를 오버슈트(overshoot)라고 합니다.</td>
<td></td>
</tr>
<tr>
<td>25.40</td>
<td>Autotune repeat times</td>
<td>오토 튜닝 과정에서 수행되는 튜닝 반복 횟수를 정의합니다. 이 값이 커지면 기준 토크 및 기준 속도의 작은 스텝 입력으로도 정확도가 향상된 결과를 얻을 수 있습니다.</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FB Eq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.53</td>
<td>Torque prop reference</td>
<td>속도 제어기의 비례 제어 출력을 표시합니다. 페이지 570의 제어 제어 출력을 확인하시오. 이 파라미터는 임기 전용입니다.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3000.0 ... 30000.0% 토크 제어기의 비례 제어 출력.</td>
<td></td>
</tr>
<tr>
<td>25.54</td>
<td>Torque integral reference</td>
<td>속도 제어기의 적분 제어 출력을 표시합니다. 페이지 570의 제어 제어 출력을 확인하시오. 이 파라미터는 임기 전용입니다.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3000.0 ... 30000.0% 토크 제어기의 적분 제어 출력.</td>
<td></td>
</tr>
<tr>
<td>25.55</td>
<td>Torque deriv reference</td>
<td>속도 제어기의 미분 제어 출력을 표시합니다. 페이지 570의 제어 제어 출력을 확인하시오. 이 파라미터는 임기 전용입니다.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3000.0 ... 30000.0% 토크 제어기의 미분 제어 출력.</td>
<td></td>
</tr>
<tr>
<td>25.56</td>
<td>Torque acc compensation</td>
<td>가속도 보상기의 출력을 표시합니다. 페이지 570의 제어 제어 출력을 확인하시오. 이 파라미터는 임기 전용입니다.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3000.0 ... 30000.0% 가속도 보상기의 출력.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>25.57</td>
<td>Torque reference unbalanced</td>
<td>가속도 보상이 적용된 속도 제어기의 출력을 표시합니다. 페이지 570의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-30000.0 ... 30000.0%</td>
<td>가속도 보상이 적용된 속도 제어기의 출력.</td>
<td>See par. 46.03</td>
</tr>
</tbody>
</table>

26 Torque reference chain

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.01</td>
<td>Torque reference to TC</td>
<td>제한 조건이 적용되지 않은 기준 토크를 정격 토크에 대한 백분율로 표시합니다. 이 값은 전력, 토크, 부하 조건 등에 의해 제한됩니다. 페이지 571 및 573의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600.0 ... 1600.0%</td>
<td>제한 조건이 적용되지 않은 기준 토크.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.02</td>
<td>Torque reference used</td>
<td>최종적으로 토크 제어기에 사용된 기준 토크를 정격 토크에 대한 백분율로 표시합니다. 페이지 573의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-1600.0 ... 1600.0%</td>
<td>최종 기준 토크.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.08</td>
<td>Minimum torque ref</td>
<td>기준 토크의 하한값을 정의합니다. 토크 핸프 함수로 입력되기 전에 기준 토크를 제한합니다. 자세한 사항은 파라미터 30.19 Minimum torque 1을 참고하십시오.</td>
<td>-300.0%</td>
</tr>
<tr>
<td></td>
<td>-1000.0 ... 0.0%</td>
<td>기준 토크 하한값.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.09</td>
<td>Maximum torque ref</td>
<td>기준 토크의 상한값을 정의합니다. 토크 핸프 함수로 입력되기 전에 기준 토크를 제한합니다. 자세한 사항은 파라미터 30.20 Maximum torque 1을 참고하십시오.</td>
<td>300.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1000.0%</td>
<td>기준 토크 상한값.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>-----</td>
<td>---------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>26.11</td>
<td>Torque ref1 source</td>
<td>기준 토크 소스 1을 선택합니다. 2개의 소스 신호는 이 파라미터와 26.12 Torque ref2 source에 정의될 수 있으며, 파라미터 26.14 Torque ref1/2 selection에 의해 선택된 디지털 입력은 2개의 기준 소스의 전환 신호로 사용될 수 있습니다.</td>
<td>Zero</td>
</tr>
</tbody>
</table>

| 26.12 | Torque ref2 source | 기준 속도 소스 2를 선택합니다. 파라미터 26.11 Torque ref1 source를 참고하십시오. | Zero |

입력 목록

<table>
<thead>
<tr>
<th></th>
<th>설명</th>
<th>값</th>
<th>26.14 Torque ref1/2 selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>입력 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Al1 scaled</td>
<td>12.12 Al1 scaled value (페이지 158 참고).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Al2 scaled</td>
<td>12.22 Al2 scaled value (페이지 160 참고).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>FB A ref1</td>
<td>03.05 FB A reference 1 (페이지 119 참고).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>FB A ref2</td>
<td>03.06 FB A reference 2 (페이지 120 참고).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>EFB ref1</td>
<td>03.09 EFB reference 1 (페이지 120 참고).</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>EFB ref2</td>
<td>03.10 EFB reference 2 (페이지 120 참고).</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>DDCS ctrl ref1</td>
<td>03.11 DDCS controller ref 1 (페이지 120 참고).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DDCS ctrl ref2</td>
<td>03.12 DDCS controller ref 2 (페이지 120 참고).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>M/F reference 1</td>
<td>03.13 M/F or D2D ref1 (페이지 120 참고).</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>M/F reference 2</td>
<td>03.14 M/F or D2D ref2 (페이지 120 참고).</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Motor potentiometer</td>
<td>22.80 Motor potentiometer ref act (모터 포텐셔미터의 출력).</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>40.01 Process PID output actual (프로세스 PID 제어기의 출력).</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Control panel (ref saved)</td>
<td>기준값을 제어 패널로부터 입력하여, 마지막으로 사용된 기준값을 초기 기준값으로 사용합니다. 자세한 사항은 페이지 21을 참고하십시오.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Control panel (ref copied)</td>
<td>기준값을 제어 패널로부터 입력하여, 이전 소스 또는 실제값을 초기 기준값으로 사용합니다. 자세한 사항은 페이지 21을 참고하십시오.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>.</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image-url)
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.13</td>
<td>Torque ref1 function</td>
<td>파라미터 26.11 Torque ref1 source 및 26.12 Torque ref2 source에 의해 선택된 기준 소스의 연산 기능을 선택합니다. 파라미터 26.11 Torque ref1 source의 블록도를 참고하십시오.</td>
<td>Ref1</td>
</tr>
<tr>
<td></td>
<td>Ref1</td>
<td>26.11 Torque ref1 source에 선택된 신호를 기준 토크 1로 사용.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Add (ref1 + ref2)</td>
<td>기준 소스의 합을 기준 토크 1로 사용.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sub (ref1 - ref2)</td>
<td>기준 소스의 차 ([26.11 Torque ref1 source] - [26.12 Torque ref2 source])를 기준 토크 1로 사용.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mul (ref1 × ref2)</td>
<td>기준 소스의 곱을 기준 토크 1로 사용.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Min (ref1, ref2)</td>
<td>기준 소스의 작은 값을 기준 토크 1로 사용.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Max (ref1, ref2)</td>
<td>기준 소스의 큰 값을 기준 토크 1로 사용.</td>
<td>5</td>
</tr>
<tr>
<td>26.14</td>
<td>Torque ref1/2 selection</td>
<td>기준 토크 1과 2의 선택, 파라미터 26.11 Torque ref1 source의 블록도를 참고하십시오.</td>
<td>Torque reference 1</td>
</tr>
<tr>
<td></td>
<td>Torque reference 1</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Torque reference 2</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Follow Ext1/Ext2 selection</td>
<td>외부 제어 위치 EXT1을 선택하면 기준 토크 1이 사용되며, EXT2를 선택하면 기준 토크 2가 사용됩니다. 자세한 사항은 파라미터 19.11 Ext1/Ext2 selection을 참고하십시오.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>26.15</td>
<td>Load share</td>
<td>선택된 기준 토크 1 또는 2에 공배하는 환산 계수를 정의합니다. 이 파라미터는 동일한 플랫폼에 설치된 두 모터 사이에 부하 분담이 이루어지도록 보정할 수도 있지만, 가능한 마스터 드라이브의 기준 토크를 사용하십시오.</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>-8.000 ... 8.000</td>
<td>기준 토크의 환산 계수.</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>26.16</td>
<td>Torque additive 1 source</td>
<td>기준 토크에 더해지는 추가 토크 1을 정의합니다. 페이지 571의 제어 제어 블록도를 확인하십시오. 소스 선택을 위해 22.11 Speed ref1 source를 참고하십시오. Note: 안전상 비상 정지 중에는 이 값이 적용되지 않습니다.</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td>0.000 ... 30.000 s</td>
<td>필터 시청수.</td>
<td>0.000 s</td>
</tr>
<tr>
<td></td>
<td>0.000 ... 30.000 s</td>
<td>필터 시청수.</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>26.18</td>
<td>Torque ramp up time</td>
<td>영토크에서 정격 토크까지 증가하는데 걸리는 시간을 정의합니다.</td>
<td>0.000 s</td>
</tr>
<tr>
<td></td>
<td>0.000 ... 60.000 s</td>
<td>기준 토크의 증가 시간.</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>26.19</td>
<td>Torque ramp down time</td>
<td>정격 토크에서 영토크까지 감소하는데 걸리는 시간을 정의합니다.</td>
<td>0.000 s</td>
</tr>
<tr>
<td></td>
<td>0.000 ... 60.000 s</td>
<td>기준 토크의 감소 시간.</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>26.25</td>
<td>Torque additive 2 source</td>
<td>기준 토크에 더해지는 추가 토크 2를 정의합니다. 이 값은 속도 제어 및 토크 제어 모드에서 모두 사용할 수 있습니다. 페이지 57의 제어 제한 블록도를 확인하십시오. 자세한 사항은 파라미터 26.11 Torque ref1 source를 참고하십시오. Note: 안전상 비상 정지 중에는 이 값이 적용되지 않습니다.</td>
<td>Zero</td>
</tr>
<tr>
<td>26.26</td>
<td>Force torque ref add 2 zero</td>
<td>추가 토크 2(파라미터 26.25 Torque additive 2 source)를 0으로 강제 설정하는 소스를 선택합니다. 0 = 정상 운전. 1 = 0으로 강제 설정.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Selected</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>D11</td>
<td>디지털 입력 D11 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>D12</td>
<td>디지털 입력 D12 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>D13</td>
<td>디지털 입력 D13 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>D14</td>
<td>디지털 입력 D14 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>D15</td>
<td>디지털 입력 D15 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>D16</td>
<td>디지털 입력 D16 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>D101</td>
<td>디지털 입력/출력 D101 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>D102</td>
<td>디지털 입력/출력 D102 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td></td>
</tr>
<tr>
<td>26.41</td>
<td>Torque step</td>
<td>기준 토크에 추가되는 스텝 입력값을 정의합니다. Note: 안전상 비상 정지 중에는 이 값이 적용되지 않습니다.</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td>-300.0 ... 300.0%</td>
<td>토크 스텝 입력.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.42</td>
<td>Torque step enable</td>
<td>파라미터 26.41 Torque step에 설정한 토크 스텝 입력을 허용 또는 금지시킵니다.</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>토크 스텝 입력 금지.</td>
<td>0</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Enable</td>
<td>토크 스텝 입력 허용.</td>
<td>1</td>
</tr>
<tr>
<td>26.51</td>
<td>Oscillation damping</td>
<td>파라미터 26.51...26.58은 진동 감쇠 기능을 구성합니다. 이에 대한 자세한 사항은 진동 감쇠 (페이지 47)절 및 페이지 573의 볼록도를 참고하십시오. 이 파라미터는 진동 감쇠 기능을 허용 또는 금지시키는 소스를 선택합니다. 1 = 진동 감쇠 알고리즘 허용.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>0.0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Selected</td>
<td>1.1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>26.52</td>
<td>Oscillation damping out enable</td>
<td>진동 감쇠 기능의 출력을 기준 토크에 적용할 것인지 결정합니다. Note: 진동 감쇠 출력을 적용하기 전에 파라미터 26.53...26.57을 조정하십시오. 그 다음 입력 신호 (26.53)와 출력 신호 (26.59)를 확인하여 이 값을 적용해도 안전한지 확인하십시오. 1 = 진동 감쇠 기능의 출력을 기준 토크에 적용.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>0.0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Selected</td>
<td>1.1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>26.53</td>
<td>Oscillation compensation input</td>
<td>진동 감쇠 기능의 입력 신호를 선택합니다. Note: 이 파라미터를 변경하기 전에 26.52를 급지시키고, 26.58을 모니터링한 후에 다시 허용하십시오.</td>
<td>Speed error</td>
</tr>
<tr>
<td></td>
<td>Speed error</td>
<td>24.01 Used speed reference. Note: 이 설정은 스칼라 제어 모드에서 지원하지 않습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DC voltage</td>
<td>01.11 DC voltage.</td>
<td>1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Value</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>26.55</td>
<td>Oscillation damping frequency</td>
<td>진동 감쇠 필터의 중심 주파수 (Center frequency)를 정의합니다. 초단위로 모니터링되는 신호 (26.53)의 최대 진동수에 따라 이 값을 설정하십시오. \textbf{Note:} 이 파라미터를 변경하기 전에 26.52를 급지시키고, 26.58을 모니터링한 후에 다시 허용하십시오.</td>
<td>31.0 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.1 ... 60.0 Hz 진동 감쇠 필터의 중심 주파수.</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>26.56</td>
<td>Oscillation damping phase</td>
<td>진동 감쇠 필터의 위상을 정의합니다. \textbf{Note:} 이 파라미터를 변경하기 전에 26.52를 급지시키고, 26.58을 모니터링한 후에 다시 허용하십시오.</td>
<td>180 deg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…360 deg 진동 감쇠 필터의 위상.</td>
<td>10 = 1 deg</td>
</tr>
<tr>
<td>26.57</td>
<td>Oscillation damping gain</td>
<td>진동 감쇠 기능의 이득을 정의합니다. \textbf{Note:} 이 파라미터를 변경하기 전에 26.52를 급지시키고, 26.58을 모니터링한 후에 다시 허용하십시오.</td>
<td>1.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 100.0% 진동 감쇠 기능의 이득.</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.58</td>
<td>Oscillation damping output</td>
<td>진동 감쇠 기능의 출력을 표시합니다. 이 값은 파라미터 26.52 Oscillation damping out enable을 허용한 경우에 기준 토크에 적용됩니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1600.000 ... 1600.000% 진동 감쇠 기능의 출력.</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.70</td>
<td>Torque reference act 1</td>
<td>기준 토크 1 (파라미터 26.11 Torque ref1 source)의 값을 표시합니다. 페이지 571의 제어 제한 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1600.0 ... 1600.0% 기준 토크 1의 값.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.71</td>
<td>Torque reference act 2</td>
<td>기준 토크 2 (파라미터 26.12 Torque ref2 source)의 값을 표시합니다. 페이지 571의 제어 제한 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1600.0 ... 1600.0% 기준 토크 2의 값.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.72</td>
<td>Torque reference act 3</td>
<td>파라미터 26.14 Torque ref1/2 selection에서 선택한 기준 토크를 표시합니다. 페이지 571의 제어 제한 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1600.0 ... 1600.0% 최종 선택한 기준 토크.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.73</td>
<td>Torque reference act 4</td>
<td>추가 토크 1이 적용된 기준 토크를 표시합니다. 페이지 571의 제어 제한 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1600.0 ... 1600.0% 추가 토크 1이 적용된 기준 토크.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>26.74 Torque ref ramp out</td>
<td>토큰 제한기와 램프 함수를 가진 기준 토큰표시합니다. 페이지 571의 제어 체인 블록도를 확인하십시오. 이 파라미터는 얻기 전용입니다.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1600.0 ... 1600.0%</td>
<td>토큰 제한기와 램프 함수를 가진 기준 토큰.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.75 Torque reference act 5</td>
<td>제어 모드 (속도 또는 토큰)에 따른 기준 토큰 블록도를 표시합니다. 페이지 573의 제어 체인 블록도를 확인하십시오. 이 파라미터는 얻기 전용입니다.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1600.0 ... 1600.0%</td>
<td>제어 모드에 따른 기준 토큰.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.76 Torque reference act 6</td>
<td>추가 토큰 2가 적용된 기준 토큰 블록도를 표시합니다. 페이지 573의 제어 체인 블록도를 확인하십시오. 이 파라미터는 얻기 전용입니다.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1600.0 ... 1600.0%</td>
<td>추가 토큰 2가 적용된 기준 토큰.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.77 Torque ref add A actual</td>
<td>추가 토큰 2를 표시합니다. 페이지 573의 제어 체인 블록도를 확인하십시오. 이 파라미터는 얻기 전용입니다.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1600.0 ... 1600.0%</td>
<td>추가 토큰 2.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.78 Torque ref add B actual</td>
<td>기존 토큰에 추가 토큰 2가 더해지기 전의 값을 표시합니다. 페이지 573의 제어 체인 블록도를 확인하십시오. 이 파라미터는 얻기 전용입니다.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1600.0 ... 1600.0%</td>
<td>추가 토큰 2.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>26.81 Rush control gain</td>
<td>러시 제어기의 비례 이득을 정의합니다.</td>
<td>10.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 ... 10000.0</td>
<td>러시 제어기의 비례 이득 (0.0 = 사용하지 않음).</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.82 Rush control integration time</td>
<td>러시 제어기의 적분 시간을 정의합니다.</td>
<td>2.0 s</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0 ... 10.0 s</td>
<td>러시 제어기의 적분 시간 (0.0 = 사용하지 않음).</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>28 Frequency reference chain</td>
<td>기존 주파수 체인 설정.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28.01 Frequency ref ramp input</td>
<td>램프 함수가 적용되기 전에 기준 주파수를 표시합니다. 페이지 577의 제어 체인 블록도를 확인하십시오. 이 파라미터는 얻기 전용입니다.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-500.00 ... 500.00 Hz</td>
<td>램프 함수가 적용되지 않은 기준 주파수.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>28.02 Frequency ref ramp output</td>
<td>램프 함수가 적용된 최종 기준 주파수를 표시합니다. 페이지 577의 제어 체인 블록도를 확인하십시오. 이 파라미터는 얻기 전용입니다.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-500.00 ... 500.00 Hz</td>
<td>최종 기준 주파수.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>28.11</td>
<td>Frequency ref1 source</td>
<td>기준 주파수 소스 1을 선택합니다. 2개의 소스 신호는 이 파라미터와 28.12 Frequency ref2 source에 정의될 수 있으며, 파라미터 28.14 Frequency ref1/2 selection에 의해 선택된 디지털 입력은 2개의 기준 소스의 전환 신호로 사용될 수 있습니다.</td>
<td>Zero</td>
</tr>
</tbody>
</table>

![이미지](image-url)

<table>
<thead>
<tr>
<th></th>
<th>입력 없음.</th>
<th>입력 없음.</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>A11 scaled</td>
<td>12.12 A11 scaled value (페이지 158 참고).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A2 scaled</td>
<td>12.22 A2 scaled value (페이지 160 참고).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>FB A ref1</td>
<td>03.05 FB A reference 1 (페이지 119 참고).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>FB A ref2</td>
<td>03.06 FB A reference 2 (페이지 120 참고).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>EFB ref1</td>
<td>03.09 EFB reference 1 (페이지 120 참고).</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>EFB ref2</td>
<td>03.10 EFB reference 2 (페이지 120 참고).</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>DDCS ctrl ref1</td>
<td>03.11 DDCS controller ref 1 (페이지 120 참고).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DDCS ctrl ref2</td>
<td>03.12 DDCS controller ref 2 (페이지 120 참고).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>M/F reference 1</td>
<td>03.13 M/F or D2D ref1 (페이지 120 참고).</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>M/F reference 2</td>
<td>03.14 M/F or D2D ref2 (페이지 120 참고).</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Motor potentiometer</td>
<td>22.80 Motor potentiometer ref act (모터 포텐셔미터의 출력).</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td>40.01 Process PID output actual (프로세스 PID 제어기의 출력).</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Control panel (ref saved)</td>
<td>기준값을 제어 패널로부터 입력하며, 마지막으로 사용된 기준값을 초기 기준값으로 사용합니다. 자세한 사항은 페이지 21을 참고하십시오.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Control panel (ref copied)</td>
<td>기준값을 제어 패널로부터 입력하며, 이전 소스 또는 실제값을 초기 기준값으로 사용합니다. 자세한 사항은 페이지 21을 참고하십시오.</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28.12</td>
<td>Frequency ref2 source</td>
<td>기준 주파수 소스 2를 선택합니다. 파라미터 28.11 Frequency ref1 source를 참고하십시오.</td>
<td>Zero</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>28.13</td>
<td>Frequency ref1 function</td>
<td>파라미터 28.11 Frequency ref1 source 및 28.12 Frequency ref2 source에 의해 선택된 기존 소스의 연산 기능을 선택함. 파라미터 28.11 Frequency ref1 source의 블록도를 참고하십시오.</td>
<td>Ref1</td>
</tr>
<tr>
<td></td>
<td>Ref1</td>
<td>28.11 Frequency ref1 source에 선택된 신호를 기준 주파수 1로 사용.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Add (ref1 + ref2)</td>
<td>기존 소스의 합을 기준 주파수 1로 사용.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Sub (ref1 - ref2)</td>
<td>기존 소스의 차 ([28.11 Frequency ref1 source] - [28.12 Frequency ref2 source])를 기준 주파수 1로 사용.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Mul (ref1 \times ref2)</td>
<td>기존 소스의 곱을 기준 주파수 1로 사용.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Min (ref1, ref2)</td>
<td>기존 소스의 작은 값을 기준 주파수 1로 사용.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Max (ref1, ref2)</td>
<td>기존 소스의 큰 값을 기준 주파수 1로 사용.</td>
<td>5</td>
</tr>
<tr>
<td>28.14</td>
<td>Frequency ref1/2 selection</td>
<td>기준 주파수 1과 2의 선택. 파라미터 28.11 Frequency ref1 source의 블록도를 참고하십시오.</td>
<td>Follow Ext1/Ext2 selection</td>
</tr>
<tr>
<td></td>
<td>Frequency reference 1</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Frequency reference 2</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Follow Ext1/Ext2 selection</td>
<td>외부 제어 위치 EXT1을 선택하면 기준 주파수 1이 사용되며, EXT2를 선택하면 기준 주파수 2가 사용됩니다. 자세한 사항은 파라미터 19.11 Ext1/Ext2 selection을 참고하십시오.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
</tbody>
</table>
입력 소스 28.22 | 입력 소스 28.23 | 입력 소스 28.24 | 일정 주파수
---|---|---|---
0 | 0 | 0 | 선택 없음.
1 | 0 | 0 | Constant frequency 1
0 | 1 | 0 | Constant frequency 2
1 | 1 | 0 | Constant frequency 3
0 | 0 | 1 | Constant frequency 4
1 | 0 | 1 | Constant frequency 5
0 | 1 | 1 | Constant frequency 6
1 | 1 | 1 | Constant frequency 7

Not selected | 0. | 0
Selected | 1. | 1
D11 | 디지털 입력 D11 (10.02 DI delayed status, 비트 0). | 2
D12 | 디지털 입력 D12 (10.02 DI delayed status, 비트 1). | 3
D13 | 디지털 입력 D13 (10.02 DI delayed status, 비트 2). | 4
D14 | 디지털 입력 D14 (10.02 DI delayed status, 비트 3). | 5
D15 | 디지털 입력 D15 (10.02 DI delayed status, 비트 4). | 6
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

28.23 Constant frequency sel2

파라미터 28.21 Constant frequency function의 비트 0가 0인 경우, 일정 주파수 2의 선택 소스를 설정합니다.

파라미터 28.21 Constant frequency function의 비트 0가 1인 경우, 이 파라미터와 28.22 Constant frequency sel1 및 28.24 Constant frequency sel3을 조합하여 다음과 같이 일정 주파수를 선택합니다.

또한 파라미터 28.22 Constant frequency sel1의 표를 참고하십시오.

28.24 Constant frequency sel3

파라미터 28.21 Constant frequency function의 비트 0가 0인 경우, 일정 속도 3의 선택 소스를 설정합니다.

파라미터 28.21 Constant frequency function의 비트 0가 1인 경우, 이 파라미터와 28.22 Constant frequency sel1 및 28.23 Constant frequency sel2를 조합하여 다음과 같이 일정 주파수를 선택합니다.

또한 파라미터 28.22 Constant frequency sel1의 표를 참고하십시오.

28.26 Constant frequency 1

일정 주파수 1을 정의합니다.

-500.00 ... 500.00 Hz 일정 주파수 1. See par. 46.02

28.27 Constant frequency 2

일정 주파수 2를 정의합니다.

-500.00 ... 500.00 Hz 일정 주파수 2. See par. 46.02

28.28 Constant frequency 3

일정 주파수 3을 정의합니다.

-500.00 ... 500.00 Hz 일정 주파수 3. See par. 46.02

28.29 Constant frequency 4

일정 주파수 4를 정의합니다.

-500.00 ... 500.00 Hz 일정 주파수 4. See par. 46.02

28.30 Constant frequency 5

일정 주파수 5를 정의합니다.

-500.00 ... 500.00 Hz 일정 주파수 5. See par. 46.02

28.31 Constant frequency 6

일정 주파수 6을 정의합니다.

-500.00 ... 500.00 Hz 일정 주파수 6. See par. 46.02
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.32</td>
<td>Constant frequency 7</td>
<td>일정 주파수 7을 정의합니다.</td>
<td>0.00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500.00 ... 500.00 Hz</td>
<td>일정 주파수 7.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>28.41</td>
<td>Frequency ref safe</td>
<td>다음과 같은 감시 기능이 동작한 경우에 기준이 되는 안전 주파수를 정의합니다.</td>
<td>0.00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 12.03 AI supervision function</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 49.05 Communication loss action</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 50.02 FBA A comm loss func</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 50.32 FBA B comm loss func</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 58.14 Communication loss action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-500.00 ... 500.00 Hz</td>
<td>안전 기준 주파수.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>28.51</td>
<td>Critical frequency function</td>
<td>위험 주파수 기능을 허용 또는 금지시킵니다. 또한 지정 범위가 허용범위와 관계없이 모두 유효한지 결정합니다.</td>
<td>0000b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>자세한 사항은 위험 속도/주파수 설정 (페이지 43) 절을 참고하십시오.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Enable</td>
<td>1 = 위험 주파수 기능을 허용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = 위험 주파수 기능을 금지합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Sign mode</td>
<td>1 = 파라미터 28.52...28.57의 부호를 사용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = 파라미터 28.52...28.57의 절댓값을 사용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이것은 화전 방향에 관계없이 모두 유효합니다.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>28.56</td>
<td>Critical frequency 3 low</td>
<td>위험 속도 주파수 3의 하한값을 정의합니다. Note: 이 값은 28.57 Critical frequency 3 high보다 작거나 같아야 합니다.</td>
</tr>
<tr>
<td>-500.00 ... 500.00 Hz</td>
<td>위험 주파수 3의 하한값.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>28.57</td>
<td>Critical frequency 3 high</td>
<td>위험 주파수 범위 3의 상한값을 정의합니다. Note: 이 값은 28.56 Critical frequency 3 low보다 크거나 같아야 합니다.</td>
</tr>
<tr>
<td>-500.00 ... 500.00 Hz</td>
<td>위험 주파수 3의 상한값.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>28.71</td>
<td>Freq ramp set selection</td>
<td>파라미터 28.72...28.75에 정의된 2개의 가속속 시간을 전환하는 소스를 선택합니다. 0 = 가속 시간 1 및 감속 시간 1. 1 = 가속 시간 2 및 감속 시간 2.</td>
</tr>
<tr>
<td>Acc/Dec time 1</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td>Acc/Dec time 2</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>28.72</td>
<td>Freq acceleration time 1</td>
<td>영주파수에서 파라미터 46.02 Frequency scaling에 정의된 주파수까지 증가하는데 걸리는 가속 시간 1을 정의합니다. 만약 기준 주파수가 가속률 (Acceleration rate)보다 빠르게 증가하면 드라이브는 토크 제한값을 초과하지 않도록 출력을 제한할 것입니다.</td>
</tr>
<tr>
<td>0.000 ... 1800.000 s</td>
<td>가속 시간 1.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>28.73</td>
<td>Freq deceleration time 1</td>
<td>파라미터 46.02 Frequency scaling에 정의된 속도에서 영주파수까지 감소하는데 걸리는 감속 시간 1을 정의합니다. 만약 기준 주파수가 감속률 (Deceleration rate)보다 빠르게 감소하면 드라이브는 토크 제한값 (또는 DC 링크 전압의 상한값)을 초과하지 않도록 출력을 제한할 것입니다. 감속 시간이 너무 짧다고 의심되면 과전압 제어 기능 (파라미터 30.30 Overvoltage control)이 허용되어 있는지 확인하십시오. Note: 완성이 큰 부하에서 급감속을 원한다면 드라이브에 제동저항 및 제동조폐를 설치해야 합니다.</td>
</tr>
<tr>
<td>0.000 ... 1800.000 s</td>
<td>감속 시간 1.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>28.74</td>
<td>Freq acceleration time 2</td>
<td>가속 시간 2를 정의합니다. 자세한 사항은 파라미터 28.72 Freq acceleration time 1을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 1800.000 s 가속 시간 2.</td>
</tr>
<tr>
<td>28.75</td>
<td>Freq deceleration time 2</td>
<td>감속 시간 2를 정의합니다. 자세한 사항은 파라미터 28.73 Freq deceleration time 1을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 1800.000 s 감속 시간 2.</td>
</tr>
<tr>
<td>28.76</td>
<td>Freq ramp in zero source</td>
<td>램프 함수로 들어가기 전에 기준 주파수를 0으로 강제 설정하는 소스를 선택합니다. 0 = 기준 주파수를 0으로 강제 설정.</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>D11</td>
<td>디지털 입력 D11 (10.02 DI delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td>D12</td>
<td>디지털 입력 D12 (10.02 DI delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td>D13</td>
<td>디지털 입력 D13 (10.02 DI delayed status, 비트 2).</td>
</tr>
<tr>
<td></td>
<td>D14</td>
<td>디지털 입력 D14 (10.02 DI delayed status, 비트 3).</td>
</tr>
<tr>
<td></td>
<td>D15</td>
<td>디지털 입력 D15 (10.02 DI delayed status, 비트 4).</td>
</tr>
<tr>
<td></td>
<td>D16</td>
<td>디지털 입력 D16 (10.02 DI delayed status, 비트 5).</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>28.77</td>
<td>Freq ramp hold</td>
<td>램프 함수의 출력을 실제 주파수로 강제 설정하는 소스를 선택합니다. 0 = 실제 주파수로 강제 설정. 1 = 정상 운전.</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>D11</td>
<td>디지털 입력 D11 (10.02 DI delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td>D12</td>
<td>디지털 입력 D12 (10.02 DI delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td>D13</td>
<td>디지털 입력 D13 (10.02 DI delayed status, 비트 2).</td>
</tr>
<tr>
<td></td>
<td>D14</td>
<td>디지털 입력 D14 (10.02 DI delayed status, 비트 3).</td>
</tr>
<tr>
<td></td>
<td>D15</td>
<td>디지털 입력 D15 (10.02 DI delayed status, 비트 4).</td>
</tr>
<tr>
<td></td>
<td>D16</td>
<td>디지털 입력 D16 (10.02 DI delayed status, 비트 5).</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>28.78</td>
<td>Freq ramp output balancing</td>
<td>램프 주파수 브런싱을 위한 기준값을 정의합니다. 램프 함수 출력은 파라미터 28.79 Freq ramp out balancing enable에 의해 브런싱이 허용될 때, 이 값으로 강제 설정됩니다.</td>
</tr>
<tr>
<td></td>
<td>-500.00 ... 500.00 Hz</td>
<td>램프 함수 출력의 브런싱을 위한 기준값.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>28.79</td>
<td>Freq ramp out balancing enable</td>
<td>램프 함수 출력의 불란상성 기능을 허용/금지시킬 소스를 선택합니다. 지세한 사항은 28.78 Freq ramp output balancing를 참고하십시오. 0 = 금지. 1 = 허용.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not selected 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected 1.</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입력/ 출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입력/ 출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>28.90</td>
<td>Frequency ref act 1</td>
<td>파라미터 28.11 Frequency ref1 source에 선택된 기준 주파수 1의 값을 표시합니다. 페이지 576의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500.00 ... 500.00 Hz 기준 주파수 1의 값.</td>
</tr>
<tr>
<td>28.91</td>
<td>Frequency ref act 2</td>
<td>파라미터 28.12 Frequency ref2 source에 선택된 기준 주파수 2의 값을 표시합니다. 페이지 576의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500.00 ... 500.00 Hz 기준 주파수 2의 값.</td>
</tr>
<tr>
<td>28.92</td>
<td>Frequency ref act 3</td>
<td>파라미터 26.14 Torque ref1/2 selection에서 선택한 기준 토크를 표시합니다. 페이지 576의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500.00 ... 500.00 Hz 최종 선택한 기준 주파수.</td>
</tr>
<tr>
<td>28.96</td>
<td>Frequency ref act 7</td>
<td>일정 주파수, 제어 패널 기준값 등이 적용된 기준 주파수를 표시합니다. 페이지 576의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500.00 ... 500.00 Hz 기준 주파수 7의 값.</td>
</tr>
<tr>
<td>28.97</td>
<td>Frequency ref unlimited</td>
<td>주파수 제한기 및 램프 함수가 적용되지 않은 기준 주파수를 표시합니다. 페이지 577의 제어 체인 블록도를 확인하십시오. 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-500.00 ... 500.00 Hz 주파수 제한기 및 램프 함수가 적용되지 않은 기준 주파수.</td>
</tr>
</tbody>
</table>
30 Limits

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.01</td>
<td>Limit word 1</td>
<td>운전 제한 워드 1입니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Torq lim</td>
<td>1 = 모터 제어 (부족전압 제어, 전류 제어, 부하각 또는 최대 토크 제어) 또는 파라미터에 설정한 토크 제한값에 의해 모터 토크가 제한되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Spd ctrl lim min</td>
<td>1 = 파라미터 25.11 Speed control min torque에 의해 속도 제어기의 출력이 제한되었습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Spd ctrl lim max</td>
<td>1 = 파라미터 25.12 Speed control max torque에 의해 속도 제어기의 출력이 제한되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Torq ref max</td>
<td>1 = 파라미터 26.09 Maximum torque ref, 30.25 Maximum torque sel, 30.26 Power motoring limit 또는 30.27 Power generating limit에 의해 기준 토크의 램프 입력이 제한되었습니다. 페이지 574의 제어 블록도를 참고하십시오.</td>
</tr>
<tr>
<td>4</td>
<td>Torq ref min</td>
<td>1 = 파라미터 26.08 Minimum torque ref, 30.18 Minimum torque sel, 30.26 Power motoring limit 또는 30.27 Power generating limit에 의해 기준 토크의 램프 입력이 제한되었습니다. 페이지 574의 제어 블록도를 참고하십시오.</td>
</tr>
<tr>
<td>5</td>
<td>Tlim max speed</td>
<td>1 = 토크 제어 모드에서 30.12 Maximum speed를 초과하여 기준 토크가 제한되었습니다. (러시 제어기 동작)</td>
</tr>
<tr>
<td>6</td>
<td>Tlim min speed</td>
<td>1 = 토크 제어 모드에서 30.11 Minimum speed를 초과하여 기준 토크가 제한되었습니다. (러시 제어기 동작)</td>
</tr>
<tr>
<td>7</td>
<td>Max speed ref lim</td>
<td>1 = 파라미터 30.12 Maximum speed 또는 영구자석 모터에서 DC 전압 기반으로 기준 속도가 제한되었습니다.</td>
</tr>
<tr>
<td>8</td>
<td>Min speed ref lim</td>
<td>1 = 파라미터 30.11 Minimum speed 또는 영구자석 모터에서 DC 전압 기반으로 기준 속도가 제한되었습니다.</td>
</tr>
<tr>
<td>9</td>
<td>Max freq ref lim</td>
<td>1 = 30.14 Maximum frequency에 의해 기준 주파수가 제한되었습니다.</td>
</tr>
<tr>
<td>10</td>
<td>Min freq ref lim</td>
<td>1 = 30.13 Minimum frequency에 의해 기준 주파수가 제한되었습니다.</td>
</tr>
<tr>
<td>11</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Sw freq ref lim</td>
<td>1 = 스위칭 주파수의 제한으로 요청된 출력 주파수가 도달할 수 없습니다. (예를 들어, 인버터 출력 필터 사용 또는 방폭 보호 기능)</td>
</tr>
<tr>
<td>13...15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000h...FFFFh</th>
<th>운전 제한 워드 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>30.02</td>
<td>Torque limit status</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Undervoltage</td>
<td>*1 = DC 링크가 부족한 전압 상태입니다.</td>
</tr>
<tr>
<td>1</td>
<td>Overvoltage</td>
<td>*1 = DC 링크가 과전압 상태입니다.</td>
</tr>
<tr>
<td>2</td>
<td>Minimum torque</td>
<td>*1 = 파라미터 30.26 Power motoring limit, 30.27 Power generating limit 또는 30.18 Minimum torque set에 의해 토크가 제한되었습니다. 페이지 574의 제어 볼록도를 참고하십시오.</td>
</tr>
<tr>
<td>3</td>
<td>Maximum torque</td>
<td>*1 = 파라미터 30.26 Power motoring limit, 30.27 Power generating limit 또는 30.25 Maximum torque set에 의해 토크가 제한되었습니다. 페이지 574의 제어 볼록도를 참고하십시오.</td>
</tr>
<tr>
<td>4</td>
<td>Internal current</td>
<td>1 = 내부적으로 인버터 전류가 제한되었습니다. (비트 8...11 확인)</td>
</tr>
<tr>
<td>5</td>
<td>Load angle</td>
<td>(영구자석 동기 모터 및 동기 릴렉턴스 모터에서만 유효함.) 1 = 부하각이 제한되어 드라이브는 더 이상 토크를 발생할 수 없습니다.</td>
</tr>
<tr>
<td>6</td>
<td>Motor pullout</td>
<td>(유도 모터에서만 유효함.) 1 = 최대 토크가 제한되어 드라이브는 더 이상 토크를 발생할 수 없습니다.</td>
</tr>
</tbody>
</table>

주의사항

- 비트 0...3은 한 비트만, 비트 9...13는 여러 비트가 동시에 온길 수 있습니다. 이 비트들은 제한값을 초과한 경우에 1로 세트됩니다.

<table>
<thead>
<tr>
<th>000h...FFFFh</th>
<th>토크 제한 상태 워드.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.11 Minimum speed</td>
<td>허용된 속도 하한값을 정의합니다.</td>
<td>WARNING! 이 값은 파라미터 30.12 Maximum speed 보다 높게 설정되지 않아야 합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WARNING! 이 값은 주파수 제어 모드에서 적용되지 않습니다. 주파수 제한값 (30.13 및 30.14)이 적절한지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WARNING! 마스터/팔로워 구성에서 팔로워 드라이브의 동일한 부호로 속도 상한값 및 하한값을 설정하지 마십시오. 이에 대한 자세한 사항은 마스터/팔로워 가능 (페이지 31) 절을 참고하십시오.</td>
</tr>
<tr>
<td>-30000.00 ... 30000.00 rpm</td>
<td>속도 하한값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>30.12</td>
<td>Maximum speed</td>
<td>허용된 속도 상한값을 정의합니다. WARNING! 이 같은 파라미터 30.11 Minimum speed 보다 낮게 설정되지 않아야 합니다. 주파수 제한값 (30.13 및 30.14)이 적절한지 확인하십시오. WARNING! 마스터/팔로워 구성에서 팔로워 드라이브에 동일한 부호로 속도 상한값 및 하한값을 설정하지 마십시오. 이에 대한 자세한 사항은 마스터/팔로워 기능 (페이지 31) 절을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>-30000.00 … 30000.00 rpm</td>
<td>속도 상한값.</td>
</tr>
<tr>
<td>30.13</td>
<td>Minimum frequency</td>
<td>허용된 주파수 하한값을 정의합니다. WARNING! 이 같은 파라미터 30.14 Maximum frequency 보다 높게 설정되지 않아야 합니다. WARNING! 이 같은 오직 주파수 제어 모드에서만 효과가 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-500.00 … 500.00 Hz</td>
<td>주파수 하한값.</td>
</tr>
<tr>
<td>30.14</td>
<td>Maximum frequency</td>
<td>허용된 주파수 상한값을 정의합니다. WARNING! 이 같은 파라미터 30.13 Minimum frequency 보다 낮게 설정되지 않아야 합니다. WARNING! 이 같은 오직 주파수 제어 모드에서만 효과가 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-500.00 … 500.00 Hz</td>
<td>주파수 하한값.</td>
</tr>
<tr>
<td>30.15</td>
<td>Maximum start current enable</td>
<td>일시적으로 모터의 기동 전류를 제한합니다. 이 파라미터가 허용되면 드라이브는 유도 모터의 경우에 초기 자화, 영구자석 모터의 경우에 오토 페이지 이후에 약 2초 동안 30.16 Maximum start current의 설정 값만큼 전류를 제한합니다. 이 시간을 초과하면 파라미터 30.17 Maximum current의 설정값에 따라 최대 출력 전류가 제한될 것입니다. Note: 드라이브의 하드웨어에 의존하여 정격 전류에 비해 높은 기동 전류를 출력할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>기동 전류 재한 금지.</td>
</tr>
<tr>
<td></td>
<td>Enable</td>
<td>기동 전류 재한 허용.</td>
</tr>
<tr>
<td>30.16</td>
<td>Maximum start current</td>
<td>최대 기동 전류를 정의합니다. 자세한 사항은 30.15 Maximum start current enable을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>0.00 … 30000.00 A</td>
<td>최대 기동 전류.</td>
</tr>
<tr>
<td>30.17</td>
<td>Maximum current</td>
<td>최대 허용 전류를 정의합니다.</td>
</tr>
<tr>
<td></td>
<td>0.00 … 30000.00 A</td>
<td>최대 허용 전류.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 30.18 | Minimum torque sel | 토크 하한값 1과 토크 하한값 2를 전환하는 소스를 선택합니다.
0 = 파라미터 30.19 Minimum torque 1 적용.
1 = 파라미터 30.21 Minimum torque 2 source 적용. 사용자는 사전에 2개의 토크 제한값을 설정하고 디지털 입력과 같은 2진수 소스를 사용하여 이 사이를 전환할 수 있습니다. 여기서 토크 하한값 선택 (30.18)은 토크 상한값 선택 (30.25)과 별도로 선택할 수 있습니다. 첫 번째 세트는 파라미터 30.19 및 30.20에 정의하며, 두 번째 세트에는 아날로그 소스 (예: 아날로그 입력)을 사용하여 하한값 (30.21) 및 상한값 (30.22)을 정의할 수도 있습니다. |
| 30.19 | Minimum torque 1 | 토크 하한값 1 (파라미터 30.19 Minimum torque 1). |
| 30.21 | Minimum torque 2 source | 토크 하한값 2 (파라미터 30.21 Minimum torque 2 source). |
| DI1 | 디지털 입력 DI1 (10.02 DI delayed status, 비트 0). | 2 |
| DI2 | 디지털 입력 DI2 (10.02 DI delayed status, 비트 1). | 3 |
| DI3 | 디지털 입력 DI3 (10.02 DI delayed status, 비트 2). | 4 |
| DI4 | 디지털 입력 DI4 (10.02 DI delayed status, 비트 3). | 5 |
| DI5 | 디지털 입력 DI5 (10.02 DI delayed status, 비트 4). | 6 |
| DI6 | 디지털 입력 DI6 (10.02 DI delayed status, 비트 5). | 7 |
| DIO1 | 디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0). | 10 |
| DIO2 | 디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1). | 11 |
| Other [bit] | 기타 소스 선택. | - |

Note: 토크는 사용자가 정의한 토크 제한값으로 제한되기도 하지만 다른 이유로 제한 (예: 용량 제한 등)될 수도 있습니다. 페이지 574의 제어 블록도를 참고하십시오.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.19</td>
<td>Minimum torque 1</td>
<td>드라이브의 토크 하한값 1을 정격 토크에 대한 백분율로 표시합니다. 이 값은 파라미터 30.18 Minimum torque set을 Minimum torque 1로 설정한 경우에 적용됩니다. 파라미터 30.18 Minimum torque set의 블록도를 확인하십시오. Note: 모터의 역회전을 방지하기 위한 목적으로 이 파라미터를 0%로 설정하지 마십시오. 개루프 제어 속도에서 완전히 정지하지 않을 것입니다. 역회전을 방지하기 위해 이 파라미터 그룹에서 속도/주파수 제한값을 설정하거나 파라미터 20.23/20.24를 사용하십시오.</td>
<td>-300.0%</td>
</tr>
<tr>
<td></td>
<td>-1600.0 … 0.0%</td>
<td>토크 하한값 1.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>30.20</td>
<td>Maximum torque 1</td>
<td>드라이브의 토크 상한값 1을 정격 토크에 대한 백분율로 표시합니다. 이 값은 파라미터 30.25 Maximum torque set을 Maximum torque 1로 설정한 경우에 적용됩니다. 파라미터 30.18 Minimum torque set의 블록도를 확인하십시오. Note: 선택 소스에서 입력된 양수값은 모두 음수값으로 반전됩니다.</td>
<td>300.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 … 1600.0%</td>
<td>토크 상한값 1.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>30.21</td>
<td>Minimum torque 2 source</td>
<td>드라이브 토크 하한값 2의 입력 소스를 선택합니다. 이 값은 파라미터 30.18 Minimum torque set을 Minimum torque 2 source로 설정한 경우에 적용됩니다. 파라미터 30.18 Minimum torque set의 블록도를 확인하십시오. Note: 선택 소스에서 입력된 양수값은 모두 음수값으로 반전됩니다.</td>
<td>Minimum torque 2</td>
</tr>
<tr>
<td></td>
<td>Zero</td>
<td>입력 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A11 scaled</td>
<td>12.12 A11 scaled value (페이지 158 참고).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A12 scaled</td>
<td>12.22 A12 scaled value (페이지 160 참고).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PID</td>
<td>40.01 Process PID output actual (프로세스 PID 제어기의 출력).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Minimum torque 2</td>
<td>30.23 Minimum torque 2.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>30.22</td>
<td>Maximum torque 2 source</td>
<td>드라이브 토크 상한값 2의 입력 소스를 선택합니다. 이 값은 파라미터 30.25 Maximum torque set을 Maximum torque 2 source로 설정한 경우에 적용됩니다. 파라미터 30.18 Minimum torque set의 블록도를 확인하십시오. Note: 선택 소스에서 입력된 양수값은 모두 음수값으로 반전됩니다.</td>
<td>Maximum torque 2</td>
</tr>
<tr>
<td></td>
<td>Zero</td>
<td>입력 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A11 scaled</td>
<td>12.12 A11 scaled value (페이지 158 참고).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A12 scaled</td>
<td>12.22 A12 scaled value (페이지 160 참고).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>PID</td>
<td>40.01 Process PID output actual (프로세스 PID 제어기의 출력).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Maximum torque 2</td>
<td>30.24 Maximum torque 2.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>30.23</td>
<td>Minimum torque 2</td>
<td>드라이브의 토크 하한값 2를 정격 토크에 대한 백분율로 표시합니다. 이 값은 30.18 Minimum torque sel = 1이고 30.21 Minimum torque 2 source를 Minimum torque 2로 설정한 경우에 적용됩니다. 파라미터 30.18 Minimum torque sel의 볼록도를 확인하십시오.</td>
<td>-300.0%</td>
</tr>
<tr>
<td>-1600.0 … 0.0%</td>
<td>토크 하한값 2.</td>
<td>See par. 46.03</td>
<td></td>
</tr>
<tr>
<td>30.24</td>
<td>Maximum torque 2</td>
<td>드라이브의 토크 상한값 2를 정격 토크에 대한 백분율로 표시합니다. 이 값은 30.25 Maximum torque sel = 1이고 30.22 Maximum torque 2 source를 Maximum torque 2로 설정한 경우에 적용됩니다. 파라미터 30.18 Minimum torque sel의 볼록도를 확인하십시오.</td>
<td>300.0%</td>
</tr>
<tr>
<td>0.0 … 1600.0%</td>
<td>토크 상한값 2.</td>
<td>See par. 46.03</td>
<td></td>
</tr>
<tr>
<td>30.25</td>
<td>Maximum torque sel</td>
<td>토크 상한값 1과 토크 상한값 2를 전환하는 소스를 선택합니다. 0 = 파라미터 30.20 Maximum torque 1 적용. 1 = 파라미터 30.22 Maximum torque 2 source 적용. 자세한 사항은 파라미터 30.18 Minimum torque sel을 확인하십시오.</td>
<td>Maximum torque 1</td>
</tr>
<tr>
<td>Maximum torque 1</td>
<td>토크 상한값 1 (파라미터 30.20 Maximum torque 1).</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Maximum torque 2 source</td>
<td>토크 상한값 2 (파라미터 30.22 Maximum torque 2 source).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D11</td>
<td>디지털 입력 D11 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D12</td>
<td>디지털 입력 D12 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>D13</td>
<td>디지털 입력 D13 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D14</td>
<td>디지털 입력 D14 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>D15</td>
<td>디지털 입력 D15 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>D16</td>
<td>디지털 입력 D16 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>30.26</td>
<td>Power motoring limit</td>
<td>드라이브가 모터 모드 (Motoring mode)로 동작할 때, 모터에서 부하로 전달되는 전력 상한값 (최대 출력량)을 정의합니다. 이 값은 모터의 정격 출력에 대한 백분율입니다.</td>
<td>300.00%</td>
</tr>
<tr>
<td>0.00 … 600.00%</td>
<td>모터 모드에서 최대 출력량.</td>
<td>1 = 1%</td>
<td></td>
</tr>
<tr>
<td>30.27</td>
<td>Power generating limit</td>
<td>드라이브가 발전 모드 (Generating mode)로 동작할 때, 부하에서 모터로 전달되는 전력 상한값 (최대 발전량)을 정의합니다. 이 값은 모터의 정격 출력에 대한 백분율입니다.</td>
<td>-300.00%</td>
</tr>
<tr>
<td>-600.00 … 0.00%</td>
<td>발전 모드에서 최대 발전량.</td>
<td>1 = 1%</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>30.30</td>
<td>Overvoltage control</td>
<td>드라이브 DC 링크의 과전압 제어를 허용합니다. 과전력이 큰 부하를 급제동시키면 DC 링크 전압이 위험 수준까지 상승할 것입니다. 이때 드라이브는 자동으로 제동 토크를 감소시켜 과전압 한계를 초과하지 않도록 제어합니다. Note: 제동초퍼 및 제동저항, 또는 회생형 서플라이 유닛이 설치된 경우에는 이 제어기를 급지시키시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>과전압 제어 길지.</td>
<td>Enable</td>
</tr>
<tr>
<td></td>
<td>Enable</td>
<td>과전압 제어 허용.</td>
<td></td>
</tr>
<tr>
<td>30.31</td>
<td>Undervoltage control</td>
<td>드라이브 DC 링크의 부족전압 제어를 허용합니다. 입력 전원이 차단된 경우에 자동으로 모터 토크를 감소시켜 DC 전압을 하한값 이상으로 제어합니다. 즉, 모터 토크를 감소시키면 부하의 관성 에너지가 회생되어 모터가 완전히 정지하기 전까지 DC 링크를 충전할 것입니다. 이것은 원심 분리기 (Centrifuge) 및 팬과 같이 관성이 큰 부하에서 LVRT (Low-Voltage Ride-Through) 기능처럼 동작할 것입니다. Note: 제동초퍼 및 제동저항, 또는 회생형 서플라이 유닛이 설치된 경우에는 이 제어기를 급지시키시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>부족전압 제어 길지.</td>
<td>Enable</td>
</tr>
<tr>
<td></td>
<td>Enable</td>
<td>부족전압 제어 허용.</td>
<td></td>
</tr>
<tr>
<td>30.101</td>
<td>LSU limit word 1</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.) 서플라이 유닛 제한 워드 1을 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>P user ref max</td>
<td>1 = 서플라이 제어 프로그램의 파라미터에 의해 기준 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>P user ref min</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>P user max</td>
<td>1 = 파라미터 30.149에 의해 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>P user min</td>
<td>1 = 파라미터 30.148에 의해 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>4</td>
<td>P cooling overtemp</td>
<td>1 = 냉각수 과열에 의해 기준 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>5</td>
<td>P power unit overtemp</td>
<td>1 = 서플라이 유닛 과열에 의해 기준 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>6...15</td>
<td>예약된 영역</td>
<td></td>
</tr>
</tbody>
</table>

0000h...FFFFh 서플라이 유닛 제한 워드 1. 1 = 1
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.102</td>
<td>LSU limit word 2</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.) 서플라이 유닛 제한 워드 2를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Q user ref max</td>
<td>1 = 기준 무효 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Q user ref min</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Q cooling overtemp</td>
<td>1 = 냉각수 과열에 의해 기준 무효 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Q power unit overtemp</td>
<td>1 = 서플라이 유닛 과열에 의해 기준 무효 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>4</td>
<td>AC overvoltage</td>
<td>1 = 입력 AC 과전압이 보호되었습니다.</td>
</tr>
<tr>
<td>5…6</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>AC diff max</td>
<td>1 = (AC 전압 탑압의 기준 무효 전력이 사용될 때)</td>
</tr>
<tr>
<td>8</td>
<td>AC diff min</td>
<td>AC 제어 입력이 제한되었습니다.</td>
</tr>
<tr>
<td>9…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h…FFFFh | 서플라이 유닛 제한 워드 2. | 1 = 1 |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.103</td>
<td>LSU limit word 3</td>
<td>(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.) 서플라이 유닛 제한 워드 3를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Undervoltage limit</td>
<td>1 = 부족전압 제어기에 의해 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Overvoltage limit</td>
<td>1 = 과전압 제어기에 의해 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Motoring power</td>
<td>1 = 온도 또는 사용자 설정 (파라미터 30.148 및 30.149)에 의해 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Generating power</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Active current limit</td>
<td>1 = 유효 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>5</td>
<td>Reactive current limit</td>
<td>1 = 무효 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>6</td>
<td>Thermal limit</td>
<td>1 = 내부 메인 회로의 열정격에 의해 유효 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>7</td>
<td>SOA limit</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>User current limit</td>
<td>1 = 서플라이 제어 프로그램의 전류 제한 파라미터에 의해 유효 전력이 제한되었습니다.</td>
</tr>
<tr>
<td>9</td>
<td>Thermal IGBT</td>
<td>1 = 내부 IGBT의 열적 스트레스 한계에 의해 유효전력가 제한되었습니다.</td>
</tr>
<tr>
<td>10…11</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Q act neg</td>
<td>1 = 최대 전류에 의해 역방향 무효 전력가 제한되었습니다.</td>
</tr>
<tr>
<td>13</td>
<td>Q act pos</td>
<td>1 = 최대 전류에 의해 정방향 무효 전력가 제한되었습니다.</td>
</tr>
<tr>
<td>14</td>
<td>P act neg</td>
<td>1 = 최대 전류에 의해 역방향 유효 전력가 제한되었습니다.</td>
</tr>
<tr>
<td>15</td>
<td>P act pos</td>
<td>1 = 최대 전류에 의해 정방향 유효 전력가 제한되었습니다.</td>
</tr>
</tbody>
</table>

| 0000h…FFFFh | 서플라이 유닛 제한 워드 3. | 1 = 1 |

30.104 LSU limit word 4
(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)
서플라이 유닛 제한 워드 4를 표시합니다.
이 파라미터는 읽기 전용입니다.

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Udc ref max</td>
<td>1 = 서플라이 제어 프로그램의 파라미터에 의해 기준 DC 전압이 제한되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Udc ref min</td>
<td>1 = 서플라이 제어 프로그램의 파라미터에 의해 전류가 제한되었습니다.</td>
</tr>
<tr>
<td>2</td>
<td>User I max</td>
<td>1 = 서플라이 제어 프로그램의 파라미터에 의해 전류가 제한되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Temp I max</td>
<td>1 = 온도 기반으로 전류가 제한되었습니다.</td>
</tr>
<tr>
<td>4...15</td>
<td></td>
<td>예약된 영역.</td>
</tr>
</tbody>
</table>

0000h...FFFFh 서플라이 유닛 제한 워드 4. 1 = 1

30.148 LSU minimum power limit
(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)
서플라이 유닛의 전력 하한값을 정의합니다. 음수값은 드라이브에서 네트워크로 회생하는 것을 의미합니다.

-200.0 … 0.0% 서플라이 유닛의 전력 하한값. 1 = 1%

30.149 LSU maximum power limit
(95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)
서플라이 유닛의 전력 상한값을 정의합니다.
양수값은 네트워크에서 드라이브의 전원 공급을 의미합니다.

0.0 … 200.0% 서플라이 유닛의 전력 상한값. 1 = 1%

31 Fault functions
Configuration of external events; selection of behavior of the drive upon fault situations.

31.01 External event source
외부 이벤트 1의 소스를 정의합니다.
파라미터 31.02 External event 1 type을 선택하십시오.
0 = 트리거 이벤트. 1 = 정상 운전.

- Active (false) 0. 0
- Inactive (true) 1. 1

- DI1 DII 입력 (10.02 DI delayed status, 비트 15). 2
- DI1 디지털 입력 DI1 (10.02 DI delayed status, 비트 0). 3
- DI2 디지털 입력 DI2 (10.02 DI delayed status, 비트 1). 4
- DI3 디지털 입력 DI3 (10.02 DI delayed status, 비트 2). 5
- DI4 디지털 입력 DI4 (10.02 DI delayed status, 비트 3). 6
- DI5 디지털 입력 DI5 (10.02 DI delayed status, 비트 4). 7
- DI6 디지털 입력 DI6 (10.02 DI delayed status, 비트 5). 8
- DIO1 디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0). 11
- DIO2 디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1). 12

- Other [bit] 기타 소스 선택. -

31.02 External event type
외부 이벤트 1의 타입을 선택합니다.

- Fault (95.20 b8) Fault
- Warning 경고 발생. 0

Parameters 263
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>264</td>
<td>Warning/Fault</td>
<td>드라이브 운전 중 = 폴트 발생.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>드라이브 정지 중 = 경고 발생.</td>
<td></td>
</tr>
<tr>
<td>31.03</td>
<td>External event 2 source</td>
<td>외부 이벤트 2의 소스를 정의합니다.</td>
<td>Inactive (true); DI1L (95.20 b5)</td>
</tr>
<tr>
<td></td>
<td>External event 2 type</td>
<td>외부 이벤트 2의 타입을 선택합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>폴트 발생.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>경고 발생.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Warning/Fault</td>
<td>드라이브 운전 중 = 폴트 발생.</td>
<td>3</td>
</tr>
<tr>
<td>31.04</td>
<td>External event 3 source</td>
<td>외부 이벤트 3의 소스를 정의합니다.</td>
<td>Inactive (true)</td>
</tr>
<tr>
<td></td>
<td>External event 3 type</td>
<td>외부 이벤트 3의 타입을 선택합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>폴트 발생.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>경고 발생.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Warning/Fault</td>
<td>드라이브 운전 중 = 폴트 발생.</td>
<td>3</td>
</tr>
<tr>
<td>31.05</td>
<td>External event 4 source</td>
<td>외부 이벤트 4의 소스를 정의합니다.</td>
<td>Inactive (true)</td>
</tr>
<tr>
<td></td>
<td>External event 4 type</td>
<td>외부 이벤트 4의 타입을 선택합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>폴트 발생.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>경고 발생.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Warning/Fault</td>
<td>드라이브 운전 중 = 폴트 발생.</td>
<td>3</td>
</tr>
<tr>
<td>31.06</td>
<td>External event 5 source</td>
<td>외부 이벤트 5의 소스를 정의합니다.</td>
<td>Inactive (true)</td>
</tr>
<tr>
<td></td>
<td>External event 5 type</td>
<td>외부 이벤트 5의 타입을 선택합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>폴트 발생.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>경고 발생.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Warning/Fault</td>
<td>드라이브 운전 중 = 폴트 발생.</td>
<td>3</td>
</tr>
<tr>
<td>31.07</td>
<td>Fault reset selection</td>
<td>외부 폴트 리셋 신호의 소스를 선택합니다. 이 신호는 현재의 제어 위치(EXT1/EXT2/포질)와 관계없이 동적시킬 수 있습니다.</td>
<td>Di3</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>0.</td>
<td>0</td>
</tr>
</tbody>
</table>
비트
0 Overcurrent (과전류 폴트).
1 Overvoltage (과전압 폴트).
2 Undervoltage (부족전압 폴트).
3 AI supervision fault (아날로그 입력 감시 폴트).
4 Supply unit (서플라이 유닛 폴트).
5…7 예약된 영역.
8 Application fault 1 (응용 프로그램 폴트 1).
9 Application fault 2 (응용 프로그램 폴트 2).
10 사용자 선택 폴트 (파라미터 31.13 User selectable fault 확인).
11 External fault 1 (파라미터 31.01 External event 1 source에 선택된 소스)
12 External fault 2 (파라미터 31.03 External event 2 source에 선택된 소스)
13 External fault 3 (파라미터 31.05 External event 3 source에 선택된 소스)
14 External fault 4 (파라미터 31.07 External event 4 source에 선택된 소스)
15 External fault 5 (파라미터 31.09 External event 5 source에 선택된 소스)

0000h...FFFh 자동 리셋 구성 워드. 1 = 1
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.13</td>
<td>User selectable fault</td>
<td>파라미터 31.12 Autoreset selection의 비트 10에 의해 자동 리셋시킬 폴트를 정의합니다. 이에 대한 폴트 리스트는 고장 추적 (페이지 508) 장을 참고하십시오.</td>
<td>0000h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0000h...FFFFh 폴트 코드.</td>
<td>10 = 1</td>
</tr>
<tr>
<td>31.14</td>
<td>Number of trials</td>
<td>파라미터 31.15 Total trials time에 설정한 시간 동안 시도하는 리셋 횟수를 정의합니다. 폴트 상태에서 이 횟수만큼 31.16 Delay time 간격으로 리셋을 시도합니다. 여기서 자동 리셋시킬 폴트 종류는 31.12 Autoreset selection에 정의합니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...5 자동 리셋 시도 횟수.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>31.15</td>
<td>Total trials time</td>
<td>자동 리셋을 시도할 전체 시간을 정의합니다. 이 시간 동안 리셋 시도 횟수는 파라미터 31.14 Number of trials에 정의됩니다.</td>
<td>30.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0 ... 600.0 s 전체 리셋 시도 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>31.16</td>
<td>Delay time</td>
<td>자동 리셋하기 전에 대기 시간을 정의합니다. 자세한 사항은 파라미터 31.12 Autoreset selection을 참고하십시오.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 120.0 s 자동 리셋 대기 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>31.19</td>
<td>Motor phase loss</td>
<td>모터 결상이 검출된 경우에 드라이브가 어떻게 반응할지 선택합니다.</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No action 동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fault 드라이브 트립 정지 (3381 Output phase loss).</td>
<td>1</td>
</tr>
<tr>
<td>31.20</td>
<td>Earth fault</td>
<td>모터 또는 모터 케이블에서 땅 또는 전류 불평형이 발생한 경우에 드라이브가 어떻게 반응할지 선택합니다.</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No action 동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning 드라이브 경고 문진 (A2B3 Earth leakage).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fault 드라이브 트립 정지 (2330 Earth leakage).</td>
<td>2</td>
</tr>
<tr>
<td>31.21</td>
<td>Supply phase loss</td>
<td>입력 결상이 검출된 경우에 드라이브가 어떻게 반응할지 선택합니다.</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No action 동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fault 드라이브 트립 정지 (3130 Input phase loss).</td>
<td>1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>31.22</td>
<td>STO indication run/stop</td>
<td>1개 또는 2개의 안전 토크 차단 (STO) 신호가 제거된 경우에 어떻게 표시할 것인지를 선택합니다. 그리고 드라이브가 운전 중인지 아니면 정지 중인지에 따라 다르게 표시합니다. 아래의 각 선택 표는 해당 설정으로 생성된 메시지를 보여줍니다.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 이 파라미터는 STO 자체 기능에는 영향을 주지 않으며, 이 설정과 관계없이 동작합니다. 드라이브가 정상 운전 중에 1개 또는 2개의 STO 신호가 제거되면 즉시 드라이브를 정지시키고, STO 신호가 복구되더라도 풀트리셋될 때까지 정지 상태를 유지합니다.
- 1개의 STO 신호만 제거되면 오작동으로 간주되어 항상 풀트가 발생합니다.

STO에 대한 자세한 사항은 하드웨어 매뉴얼을 참고하십시오.

<table>
<thead>
<tr>
<th>입력</th>
<th>표시 (운전 또는 정지)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1</td>
<td>IN2</td>
</tr>
<tr>
<td>0 0</td>
<td>풀트 5091 Safe torque off.</td>
</tr>
<tr>
<td>0 1</td>
<td>풀트 5091 Safe torque off.</td>
</tr>
<tr>
<td></td>
<td>풀트 FA81 Safe torque off 1 loss.</td>
</tr>
<tr>
<td>1 0</td>
<td>풀트 5091 Safe torque off.</td>
</tr>
<tr>
<td></td>
<td>풀트 FA82 Safe torque off 2 loss.</td>
</tr>
<tr>
<td>1 1</td>
<td>정상 운전.</td>
</tr>
</tbody>
</table>

Fault/Fault

<table>
<thead>
<tr>
<th>입력</th>
<th>표시</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1</td>
<td>IN2</td>
</tr>
<tr>
<td>0 0</td>
<td>풀트 5091 Safe torque off.</td>
</tr>
<tr>
<td>0 1</td>
<td>풀트 5091 Safe torque off, 풀트 FA81 Safe torque off 1 loss.</td>
</tr>
<tr>
<td>1 0</td>
<td>풀트 5091 Safe torque off, 풀트 FA82 Safe torque off 2 loss.</td>
</tr>
<tr>
<td>1 1</td>
<td>정상 운전.</td>
</tr>
</tbody>
</table>

Fault/Warning

<table>
<thead>
<tr>
<th>입력</th>
<th>표시</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN1</td>
<td>IN2</td>
</tr>
<tr>
<td>0 0</td>
<td>풀트 5091 Safe torque off.</td>
</tr>
<tr>
<td>0 1</td>
<td>풀트 5091 Safe torque off, 풀트 FA81 Safe torque off 1 loss.</td>
</tr>
<tr>
<td>1 0</td>
<td>풀트 5091 Safe torque off, 풀트 FA82 Safe torque off 2 loss.</td>
</tr>
<tr>
<td>1 1</td>
<td>정상 운전.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>2</td>
<td>Fault/Event</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Warning/Warning</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Event/Event</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>No indication/No indication</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31.23</td>
<td>Wiring or earth fault</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>No action</td>
<td>동작 없음.</td>
</tr>
<tr>
<td>Fault</td>
<td>드라이브 트립 정지 (3181 Wiring or earth fault).</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| 31.24| Stall function | 모터가 구속된 경우에 드라이브가 어떻게 반응할지 선택합니다. 스트 상태는 다음과 같이 정의됩니다.
• 스트 전류 제한값 (31.25 Stall current limit)을 초과하고,
• 출력 주파수가 31.27 Stall frequency limit에 설정된 스트 주파수 제한값 아래에 있거나 모터 속도가 파라미터 31.26 Stall speed limit에 설정된 스트 속도 제한값보다 낮습니다.
• 위와 같은 상태에서 파라미터 31.28 Stall time을 초과했습니다. | Fault |
| | No action | 동작 없음. | 0 |
| | Warning | 드라이브 경고 운전 (A780 Motor stall). | 1 |
| | Fault | 드라이브 트립 정지 (7121 Motor stall). | 2 |
| 31.25| Stall current limit | 스트 전류 제한값을 모터 정격 전류의 백분율로 정의합니다. 자세한 사항은 파라미터 31.24 Stall function을 확인하십시오. | 200.0% |
| 31.26| Stall speed limit | 스트 속도 제한값을 정의합니다. 자세한 사항은 파라미터 31.24 Stall function을 확인하십시오. | 150.00 rpm; 180.00 rpm (95.20 b0) |
| 31.27| Stall frequency limit | 스트 주파수 제한값을 정의합니다. 자세한 사항은 파라미터 31.24 Stall function을 확인하십시오.
Note: 이 값을 10 Hz 미만으로 설정하는 것은 권장하지 않습니다. | 15.00 Hz; 18.00 Hz (95.20 b0) |
<p>| 31.28| Stall time | 스트 시간을 정의합니다. 자세한 사항은 파라미터 31.24 Stall function을 확인하십시오. | 20 s |
| | 0 ... 3600 s | 스트 시간. | 1 = 1 s |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.30</td>
<td>Overspeed trip margin</td>
<td>모터의 최대 허용 속도(과속 보호 기능)를 정의합니다. 만약 실제 속도 (90.01 Motor speed for control) 또는 주정 속도가 속도 제한값 (30.11 또는 30.12)을 벗어난 상태에서 이 파라미터의 속도 마진을 초과한 경우에 드라이브는 트립 정지 (7310 Overspeed)할 것입니다. 다시 말해, 속도 상한값이 1420 rpm이고 속도 마진이 300 rpm이라면 드라이브는 1720 rpm에서 트립 정지합니다.</td>
</tr>
<tr>
<td>31.32</td>
<td>Emergency ramp supervision</td>
<td>파라미터 31.32 Emergency ramp supervision 및 31.33 Emergency ramp supervision delay는 01.29 Speed change rate과 함께 비상 정지 모드 (Off1 및 Off3)에 대한 감시 기능을 제공합니다. 이 기능은 다음을 기반으로 수행됩니다. • 모터가 정지하는 시간을 확인하거나, • 실제 감속률과 예상 감속률 (Deceleration rate)을 비교합니다. 만약 이 파라미터를 0 %로 설정하면 최대 정지 시간은 파라미터 31.33에 설정합니다. 그렇지 않으면 파라미터 23.11...23.19 (Off1) 또는 23.23 Emergency stop time (Off3)에서 계산된 예상 감속률의 최대 허용 편차를 이 파라미터에 정의합니다. 만약 현재의 감속률 (01.29)이 예상 감속률을 벗어나게 되면 06.17 Drive status word 2의 비트 8이 1로 세트되고 드라이브는 트립 정지 (73B0 Emergency ramp failed)할 것입니다. 이 기능은 31.32가 0 %이고 31.33이 0 s로 설정된 경우에 동작하지 않습니다. 또한 파라미터 21.04 Emergency stop mode를 참고하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 ... 10000.0 rpm</td>
<td>속도 마진.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>31.32</td>
<td>Emergency ramp supervision</td>
<td>파라미터 31.32 Emergency ramp supervision 및 31.33 Emergency ramp supervision delay는 01.29 Speed change rate과 함께 비상 정지 모드 (Off1 및 Off3)에 대한 감시 기능을 제공합니다. 이 기능은 다음을 기반으로 수행됩니다. • 모터가 정지하는 시간을 확인하거나, • 실제 감속률과 예상 감속률 (Deceleration rate)을 비교합니다. 만약 이 파라미터를 0 %로 설정하면 최대 정지 시간은 파라미터 31.33에 설정합니다. 그렇지 않으면 파라미터 23.11...23.19 (Off1) 또는 23.23 Emergency stop time (Off3)에서 계산된 예상 감속률의 최대 허용 편차를 이 파라미터에 정의합니다. 만약 현재의 감속률 (01.29)이 예상 감속률을 벗어나게 되면 06.17 Drive status word 2의 비트 8이 1로 세트되고 드라이브는 트립 정지 (73B0 Emergency ramp failed)할 것입니다. 이 기능은 31.32가 0 %이고 31.33이 0 s로 설정된 경우에 동작하지 않습니다. 또한 파라미터 21.04 Emergency stop mode를 참고하십시오.</td>
</tr>
</tbody>
</table>

<p>| 0…300% | 최대 허용 편차. | 1 = 1% |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.33</td>
<td>Emergency ramp supervision delay</td>
<td>만약 파라미터 31.32 Emergency ramp supervision을 0 %로 설정한 경우에는 이 파라미터는 비상 정지 (Off1 또는 Off3)가 허용되는 최대 시간을 정의합니다. 이 시간이 경과되더라도 모터가 정지하지 않으면 06.17 Drive status word 2의 비트 8이 1로 세트되고 드라이브는 트립 정지 (73B0 Emergency ramp failed)가 됩니다. 반면에 31.32가 0 %가 아닌 경우에 이 파라미터는 비상 정지 명령과 감시 동작 사이의 자연 시간을 정의합니다. 이 파라미터는 인버터가 속도 변화율을 감지하기 위해 가능한 짧게 설정하는 것이 좋습니다.</td>
</tr>
<tr>
<td></td>
<td>0…32767 s</td>
<td>최대 감속 시간 또는 감시 동작 자연 시간.</td>
</tr>
<tr>
<td>31.35</td>
<td>Main fan fault function</td>
<td>메인 냉각팬에서 오류가 감지된 경우에 드라이브가 어떻게 반응할지 선택합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 만약 냉각팬이 1개 이상인 인버터의 경우에는 1개의 냉각팬이 정지해도 나머지 팬으로 연속 동작할 수 있습니다. 제어 프로그램은 오류가 감지되면 자동으로 다음과 같은 동작을 수행합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 모듈의 다른 냉각팬을 최고 속도로 설정합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 다른 모듈의 냉각팬을 최고 속도로 설정합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 소위칭 주파수를 최소로 감소시킵니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 별개 모듈간의 온도 차이를 감시하지 않습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>만약 이 파라미터를 Fault로 설정하면 인버터는 트립 정지됩니다. 그렇지 않으면 인버터가 연속해서 동작할 것입니다.</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault</td>
<td>드라이브 트립 정지 (5080 Fan).</td>
<td>0</td>
</tr>
<tr>
<td>Warning</td>
<td>드라이브 경고 운전 (A581 Fan).</td>
<td>1</td>
</tr>
<tr>
<td>No action</td>
<td>동작 없음.</td>
<td>2</td>
</tr>
<tr>
<td>31.36</td>
<td>Aux fan fault function</td>
<td>보조 냉각팬 (ZCU 제어 유닛 냉각)에서 오류가 감지된 경우에 드라이브가 어떻게 반응할지 선택합니다.</td>
</tr>
<tr>
<td>Fault</td>
<td>드라이브 트립 정지 (5081 Auxiliary fan broken).</td>
<td>0</td>
</tr>
<tr>
<td>Warning</td>
<td>드라이브 경고 운전 (A582 Auxiliary fan missing).</td>
<td>1</td>
</tr>
</tbody>
</table>
번호 이름/값 설명

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
</table>
| 31.37 | Ramp stop supervision | 파라미터 31.37 Ramp stop supervision과 31.38 Ramp stop supervision delay는 01.29 Speed change rate과 함께 램프 정지에 대한 감시 기능을 제공합니다. 이 기능은 다음을 기반으로 수행됩니다.
- 모터가 정지하는 시간을 확인하거나,
- 실제 감속률과 예상 감속률 (Deceleration rate)을 비교합니다.
만약 이 파라미터를 0 %로 설정하면 최대 정지 시간은 파라미터 31.38에 설정합니다. 그렇지 않으면 파라미터 23.11…23.19에서 계산된 예상 감속률의 최대 허용 편차를 이 파라미터에 정의합니다.
만약 현재의 감속률 (01.29)이 예상 감속률을 벗어나게 되면 06.17 Drive status word 2의 비트 14가 1로 세트되고 드라이브는 트립 정지 (73B1 Stop failed)할 것입니다. 이 기능은 31.37이 0 %이고 31.38이 0 s로 설정된 경우에 동작하지 않습니다. |
| 31.38 | Ramp stop supervision delay | 만약 파라미터 31.37 Ramp stop supervision을 0 %로 설정한 경우에는 이 파라미터는 램프 정지가 끝날 때까지의 시간을 정의합니다. 이 시간이 경과되고도 모터가 정지하지 않으면 06.17 Drive status word 2의 비트 14가 1로 세트되고 드라이브는 트립 정지 (73B1 Stop failed)할 것입니다. 반면에 31.37이 0 %가 아닌 경우에 이 파라미터는 비상 정지 명령과 감속 동작 사이의 지연 시간을 정의합니다. 이 파라미터는 안정된 속도 변화율 감시하기 위해 가능한 짧게 설정하는 것이 좋습니다. |
| 31.40 | Disable warning messages | 원하지 않는 경고 메시지의 발생을 금지합니다. 아래 비트를 1로 세트한 경우에 해당 경고가 표시되지 않습니다. |

Bit Fault

<table>
<thead>
<tr>
<th>Bit</th>
<th>Fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Overvoltage (과전압 폴트).</td>
</tr>
<tr>
<td>1</td>
<td>예약된 영역.</td>
</tr>
<tr>
<td>2</td>
<td>Encoder 1 (엔코더 1 폴트).</td>
</tr>
<tr>
<td>3</td>
<td>Encoder 2 (엔코더 2 폴트).</td>
</tr>
<tr>
<td>4</td>
<td>CU battery (제어 유닛 배터리 폴트).</td>
</tr>
<tr>
<td>5…15</td>
<td>예약된 영역.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000b…1101b</th>
<th>경고 금지 워드.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 1</td>
<td></td>
</tr>
</tbody>
</table>

31.42 Overcurrent fault limit

모터 고장 전류를 설정합니다.
드라이브의 하드웨어를 기반으로 출력 전류의 상한값을 설정합니다.
이 값은 대부분의 경우에 적절하지만, 영구자석 동기 모터의 경우에는 감자 흐름을 막기 위해 수동으로 제한값을 설정할 수 있습니다.
Note: 이 값은 한 상전류의 피크치이며, 이를 0.0 A로 설정하면 내부 제한값이 적용됩니다.

<p>| 0.00 ... 30000.00 A | 모터 고장 전류. | See par. 46.05 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.120</td>
<td>LSU earth fault</td>
<td>(95.20에서 IGBT 셀프라이 유닛 제어를 허용한 경우에 표시됨.) 셀프라이 유닛에서 지각 또는 전류 불평형이 검출된 경우에 어떻게 반응할 것인지 선택합니다.</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td>No action</td>
<td>동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>드라이브 경고 동작(AE02 Earth leakage).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>드라이브 트립 정지(2E01 Earth leakage).</td>
<td>2</td>
</tr>
<tr>
<td>31.121</td>
<td>LSU supply phase loss</td>
<td>(95.20에서 IGBT 셀프라이 유닛 제어를 허용한 경우에 표시됨.) 셀프라이 유닛에서 입력 결함이 검출된 경우에 어떻게 반응할 것인지 선택합니다.</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td>No action</td>
<td>동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>드라이브 트립 정지(3E00 Input phase loss).</td>
<td>1</td>
</tr>
</tbody>
</table>

32 Supervision

신호 감시 기능 1...3 구성. 3가지 값을 모니터링할 수 있습니다. 사전 정의된 제한값을 초과할 경우 경고 또는 풀트를 발생합니다. 자세한 사항은 신호 감시(페이지 87) 절을 참고하십시오.

32.01 Supervision status

신호 감시 상태 설정입니다. 이 감시 기능에서 모니터링된 값이 각각의 한계치를 초과한 경우에 해당 비트가 1로 세트됩니다.

Note: 이 워드는 파라미터 32.06, 32.16 및 32.26에 정의된 드라이브 동작과는 별도입니다.

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
<th>0000b</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Supervision 1 active</td>
<td>1 = 파라미터 32.07의 선택 신호가 한계치를 초과하였습니다.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Supervision 2 active</td>
<td>1 = 파라미터 32.17의 선택 신호가 한계치를 초과하였습니다.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Supervision 3 active</td>
<td>1 = 파라미터 32.27의 선택 신호가 한계치를 초과하였습니다.</td>
<td></td>
</tr>
<tr>
<td>3...15</td>
<td>예약된 영역.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000...0111b</td>
<td>신호 감시 상태코드.</td>
<td>1 = 1</td>
<td></td>
</tr>
</tbody>
</table>

32.05 Supervision 1 function

신호 감시 기능 1의 모드를 선택합니다. 모니터링 신호(32.07)가 하한값 및 상한값(각각 32.09 및 32.10)과 어떻게 비교되는지 결정합니다.

Disabled

<table>
<thead>
<tr>
<th></th>
<th>설명</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>신호 감시 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>신호가 하한값 미만인 경우에 동작.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>신호가 상한값을 초과한 경우에 동작.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Abs low</td>
<td>신호의 절댓값이 하한값 미만인 경우에 동작.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Abs high</td>
<td>신호의 절댓값이 상한값을 초과한 경우에 동작.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Both</td>
<td>신호가 상한값을 초과하거나 하한값 미만인 경우에 모두 동작.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Abs both</td>
<td>신호의 절댓값이 상한값을 초과하거나 하한값 미만인 경우에 모두 동작.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>32.06</td>
<td>Supervision 1 action</td>
<td>신호 감지 1에서 모니터링된 값이 한계지를 초과 할 때 드라이브가 어떻게 반응할지 선택합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 파라미터 32.01 Supervision status의 표시 상태에 영향을 주지 않습니다.</td>
<td>No action</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No action 동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Warning 드라이브 경고 운전 (A8B0 Signal supervision).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fault 드라이브 트립 정지 (80B0 Signal supervision).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fault if running 드라이브 운전중인 경우에만 트립 정지 (80B0 Signal supervision).</td>
<td>3</td>
</tr>
<tr>
<td>32.07</td>
<td>Supervision 1 signal</td>
<td>신호 감지 기능 1로 감시할 대상 신호를 선택합니다.</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zero 선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speed 01.01 Motor speed used (페이지 115 참고).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequency 01.06 Output frequency (페이지 115 참고).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Current 01.07 Motor current (페이지 115 참고).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Torque 01.10 Motor torque (페이지 115 참고).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC voltage 01.11 DC voltage (페이지 115 참고).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output power 01.14 Output power (페이지 116 참고).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AI1 12.11 AI1 actual value (페이지 158 참고).</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AI2 12.21 AI2 actual value (페이지 160 참고).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speed ref ramp input 23.01 Speed ref ramp input (페이지 218 참고).</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speed ref ramp output 23.02 Speed ref ramp output (페이지 218 참고).</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Speed ref used 24.01 Used speed reference (페이지 224 참고).</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Torque ref used 26.02 Torque reference used (페이지 240 참고).</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Freq ref used 28.02 Frequency ref ramp output (페이지 246 참고).</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process PID output 40.01 Process PID output actual (페이지 301 참고).</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Process PID feedback 40.02 Process PID feedback actual (페이지 301 참고).</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other 기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>32.08</td>
<td>Supervision 1 filter time</td>
<td>신호 감지 1에서 모니터링된 신호에 대한 필터 시점수를 합니다.</td>
<td>0.000 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 … 30.000 s 필터 시점수.</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.09</td>
<td>Supervision 1 low</td>
<td>신호 감지 1의 하한값을 정의합니다.</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-21474830.00 … 21474830.00 신호 감지 1의 하한값.</td>
<td>-</td>
</tr>
<tr>
<td>32.10</td>
<td>Supervision 1 high</td>
<td>신호 감지 1의 상한값을 정의합니다.</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-21474830.00 … 21474830.00 신호 감지 1의 상한값.</td>
<td>-</td>
</tr>
<tr>
<td>32.15</td>
<td>Supervision 2 function</td>
<td>신호 감지 기능 2의 모드를 선택합니다. 모니터링 신호 (32.17)가 하한값 및 상한값 (각각 32.19 및 32.20)과 어떻게 비교되는지 결정합니다.</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disabled 신호 감지 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low 신호가 하한값 미만인 경우에 동작.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High 신호가 상한값을 초과한 경우에 동작.</td>
<td>2</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Abs low</td>
<td>신호의 절댓값이 하한값 미만인 경우에 동작.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Abs high</td>
<td>신호의 절댓값이 상한값을 초과한 경우에 동작.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>신호가 상한값을 초과하거나 하한값 미만인 경우에 모두 동작.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Abs both</td>
<td>신호의 절댓값이 상한값을 초과하거나 하한값 미만인 경우에 모두 동작.</td>
<td>6</td>
</tr>
<tr>
<td>32.16</td>
<td>Supervision 2 action</td>
<td>신호 감시 2에서 모니터링된 값이 한계치를 초과 할 때 드라이브가 어떻게 반응할지 선택합니다.</td>
<td>No action</td>
</tr>
<tr>
<td></td>
<td>Note: 파라미터 32.01 Supervision status의 표시 상태에 영향을 주지 않습니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No action</td>
<td>동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>드라이브 경고 운전 (A8B0 Signal supervision).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>드라이브 트립 정지 (80B0 Signal supervision).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Fault if running</td>
<td>드라이브 운전중인 경우에만 트립 정지 (80B0 Signal supervision).</td>
<td>3</td>
</tr>
<tr>
<td>32.17</td>
<td>Supervision 2 signal</td>
<td>신호 감시 기능 2에서 감시할 대상 신호를 선택합니다.</td>
<td>Zero</td>
</tr>
<tr>
<td></td>
<td>Note: 이에 대한 자세한 사항은 파라미터 32.07 Supervision 1 signal을 참고하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.18</td>
<td>Supervision 2 filter time</td>
<td>신호 감시 2에서 모니터링된 신호에 대한 필터 시정수를 합니다.</td>
<td>0.000 s</td>
</tr>
<tr>
<td></td>
<td>0.000 … 30.000 s</td>
<td>필터 시정수.</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.19</td>
<td>Supervision 2 low</td>
<td>신호 감시 2의 하한값을 정의합니다.</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>-21474830.00 … 21474830.00</td>
<td>신호 감시 2의 하한값.</td>
<td>-</td>
</tr>
<tr>
<td>32.20</td>
<td>Supervision 2 high</td>
<td>신호 감시 2의 상한값을 정의합니다.</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>-21474830.00 … 21474830.00</td>
<td>신호 감시 2의 상한값.</td>
<td>-</td>
</tr>
<tr>
<td>32.25</td>
<td>Supervision 3 function</td>
<td>신호 감시 기능 2의 모드를 선택합니다.</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>Note: 모니터링 신호 (32.27)가 하한값 및 상한값 (각각 32.29 및 32.30)과 어떻게 비교되는지 결정합니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Disabled</td>
<td>신호 감시 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>신호가 하한값 미만인 경우에 동작.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>신호가 상한값을 초과한 경우에 동작.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Abs low</td>
<td>신호의 절댓값이 하한값 미만인 경우에 동작.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Abs high</td>
<td>신호의 절댓값이 상한값을 초과한 경우에 동작.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Both</td>
<td>신호가 상한값을 초과하거나 하한값 미만인 경우에 모두 동작.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Abs both</td>
<td>신호의 절댓값이 상한값을 초과하거나 하한값 미만인 경우에 모두 동작.</td>
<td>6</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FBeq16</th>
</tr>
</thead>
</table>
| 32.26 | Supervision 3 action | 신호 감시 3에서 모니터링된 값이 한계치를 초과 할 때 드라이브가 어떻게 반응할지 선택합니다.
Note: 파라미터 32.01 Supervision status의 표시 상태에 영향을 주지 않습니다. | No action |

		동작 없음.	0
Warning		드라이브 경고 운전 (A8B0 Signal supervision).	1
Fault		드라이브 트립 정지 (80B0 Signal supervision).	2
Fault if running		드라이브 운전중인 경우에만 트립 정지 (80B0 Signal supervision).	3

| 32.27 | Supervision 3 signal | 신호 감시 기능 3에서 감시할 대상 신호를 선택합니다. 이에 대한 자세한 사항은 파라미터 32.07 Supervision 1 signal을 참고하십시오. | Zero |

| 32.28 | Supervision 3 filter time | 신호 감시 3에서 모니터링된 신호에 대한 필터 시정수를 합니다. | 0.000 s |

| | | 필터 시정수. | 1000 = 1 s |

| 32.29 | Supervision 3 low | 신호 감시 3의 하한값을 정의합니다. | 0.00 |
| -21474830.00 | | 21474830.00 | - |

| 32.30 | Supervision 3 high | 신호 감시 3의 상한값을 정의합니다. | 0.00 |
| -21474830.00 | | 21474830.00 | - |

<table>
<thead>
<tr>
<th>33 Generic timer & counter</th>
<th>설명</th>
<th>유지 보수 타이머/카운터 구성. 자세한 사항은 유지 보수 타이머 및 카운터(페이지 87)를 참고하십시오.</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.01 Counter status</td>
<td>설명</td>
<td>유지 보수 타이머/카운터가 설정된 한계치에 도달한 경우에 해당 비트가 1로 세트됩니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>On-time1</td>
<td>1 = 온 타이머 1이 설정된 한계치에 도달하였습니다.</td>
</tr>
<tr>
<td>1</td>
<td>On-time2</td>
<td>1 = 온 타이머 2 설정된 한계치에 도달하였습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Edge 1</td>
<td>1 = 신호 에지 카운터 1이 설정된 한계치에 도달하였습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Edge 2</td>
<td>1 = 신호 에지 카운터 2가 설정된 한계치에 도달하였습니다.</td>
</tr>
<tr>
<td>4</td>
<td>Value 1</td>
<td>1 = 블류 카운터 1이 설정된 한계치에 도달하였습니다.</td>
</tr>
<tr>
<td>5</td>
<td>Value 2</td>
<td>1 = 블류 카운터 2가 설정된 한계치에 도달하였습니다.</td>
</tr>
<tr>
<td>6...15</td>
<td></td>
<td>예약된 영역.</td>
</tr>
</tbody>
</table>

<p>| | | 유지 보수 타이머/카운터의 상태 워드. | 1 = 1 |
| 0000 0000b | | | |
| 0011 1111b | | | |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.10</td>
<td>On-time 1 actual</td>
<td>온 타이머 1의 현재값을 표시합니다. 이 타이머는 33.13 On-time 1 source에서 선택된 신호가 온되어 있을 때 실행되며, 파라미터 33.11 On-time 1 warn limit에 도달한 경우에 33.01 Counter status의 비트 0이 1로 세트됩니다. 이때 33.12 On-time 1 function에서 경고가 허용되었다면 33.14 On-time 1 warn message에 정의한 경고 메시지가 표시됩니다. 이 값을 Drive composer PC 툴에서 0으로 설정하거나 제어 패널의 리셋 버튼을 3 초 이상 유지한 경우에 클리어됩니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…4294967295 s 온 타이머 1의 현재값.</td>
<td>-</td>
</tr>
<tr>
<td>33.11</td>
<td>On-time 1 warn limit</td>
<td>온 타이머 1의 경고값을 설정합니다.</td>
<td>0 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…4294967295 s 온 타이머 1의 경고값.</td>
<td>-</td>
</tr>
<tr>
<td>33.12</td>
<td>On-time 1 function</td>
<td>온 타이머 1의 구성 워드입니다.</td>
<td>0000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>가능</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2...15 메약된 영역.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>33.13 On-time 1 source</td>
<td>온 타이머 1에 의해 모니터링되는 신호를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>RO1</td>
<td>10.21 RO status의 비트 0 (페이지 149).</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td></td>
<td>33.14 On-time 1 warn message</td>
<td>온 타이머 1의 경고 메시지를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>On-time 1 exceeded</td>
<td>A886 On-time 1. 이 메시지는 제어 패널의 Menu – Settings – Edit texts 항목에서 편집할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>Clean device</td>
<td>A88C Device clean.</td>
</tr>
<tr>
<td></td>
<td>Maintain additional cooling fan</td>
<td>A890 Additional cooling.</td>
</tr>
<tr>
<td></td>
<td>Maintain cabinet fan</td>
<td>A88E Cabinet fan.</td>
</tr>
<tr>
<td></td>
<td>Maintain DC capacitors</td>
<td>A88D DC capacitor.</td>
</tr>
<tr>
<td></td>
<td>Maintain motor bearing</td>
<td>A880 Motor bearing.</td>
</tr>
</tbody>
</table>
278 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.20</td>
<td>On-time 2 actual</td>
<td>온 타이머 2의 현재값을 표시합니다. 이 타이머는 33.23 On-time 2 source에서 선택된 신호가 온되어 있을 때 실행되며, 파라미터 33.21 On-time 2 warn limit에 도달한 경우에 33.01 Counter status의 비트 1이 1로 세트됩니다. 이때 33.22 On-time 2 function에서 경고가 허용되었다면 33.24 On-time 2 warn message에 정의한 경고 메시지가 표시됩니다. 이 값은 Drive composer PC 환경에서 0으로 설정하거나 제어 패널의 리셋 버튼을 3 초 이상 유지한 경우에 클리어됩니다.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>비트</th>
<th>기능</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>캐운터 모드</td>
<td>0 = 캐운터는 경고값에 도달할 때마다 0으로 클리어됩니다. 이때 캐운터 상태 (33.01의 비트 0)는 1초 동안 1로 세트되며, 경고 메시지는 최소 10초 동안 유지됩니다. 1 = 캐운터가 경고값에 도달할 때, 캐운터 상태 (33.01의 비트 0)는 33.20이 클리어될 때까지 1로 세트되며, 이때 경고 메시지가 표시됩니다.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>경고 메시지 허용</td>
<td>0 = 경고 메시지 없음. 1 = 캐운터가 경고값에 도달할 때, 경고 메시지를 표시합니다.</td>
<td></td>
</tr>
<tr>
<td>2...15</td>
<td>예약된 영역</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0000b...0011b</td>
<td>온 타이머 1 구성 월드.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.23</td>
<td>On-time 2 source</td>
<td>온 타이머 1에 의해 모니터링되는 신호를 선택합니다.</td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>RO1</td>
<td>10.21 RO status의 비트 0 (페이지 149).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>33.24</td>
<td>On-time 2 warn message</td>
<td>온 타이머 1의 경고 메시지를 선택합니다.</td>
<td>On-time 2 exceeded</td>
</tr>
<tr>
<td></td>
<td>On-time 2 exceeded</td>
<td>A887 On-time 2. 이 메시지는 제어 패널의 Menu – Settings – Edit texts 항목에서 편집할 수 있습니다.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Clean device</td>
<td>A88C Device clean.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Maintain additional cool fan</td>
<td>A889 Additional cooling.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Maintain cabinet fan</td>
<td>A88E Cabinet fan.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Maintain DC capacitors</td>
<td>A88D DC capacitor.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Maintain motor bearing</td>
<td>A880 Motor bearing.</td>
<td>10</td>
</tr>
</tbody>
</table>
비트 기능

0 카운터 모드.
 0 = 카운터는 경고값에 도달할 때마다 0으로 클리어됩니다. 이때 카운터 상태 (33.01의 비트 2)는 경고값에 다시 도달할 때까지 1로 세트됩니다. 경고 메시지는 최소 10초 동안 유지됩니다.
 1 = 카운터가 경고값에 도달할 때, 카운터 상태 (33.01의 비트 2)는 33.30이 클리어될 때까지 1로 세트되며, 이때 경고 메시지가 표시됩니다.

1 경고 메시지 허용.
 0 = 경고 메시지 없음.
 1 = 카운터가 경고값에 도달할 때, 경고 메시지를 표시합니다.

2 상승 예지 카운트.
 0 = 상승 예지 카운트 금지.
 1 = 상승 예지 카운트 허용.

3 하강 예지 카운트.
 0 = 하강 예지 카운트 금지.
 1 = 하강 예지 카운트 허용.

4...15 예약된 영역.

0000b...1111b 에지 카운터 1 구성 워드.
 1 = 1

33.33 Edge counter 1 source 에지 카운터 1에 의해 모니터링되는 신호를 선택합니다.
 False
 True 1.

10.21 RO status의 비트 0 (페이지 149).

Other [bit] 기타 소스 선택.

33.34 Edge counter 1 divider 에지 카운터 1을 나누어 주는 막수를 정의합니다.
 이로부터 카운터를 1씩 증가시키는 예지 수를 결정할 수 있습니다.
 1...4294967295 에지 카운터 1의 액수.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.35</td>
<td>Edge counter 1 warn message</td>
<td>에지 카운터 1의 경고 메시지를 선택합니다.</td>
<td>Edge counter 1 exceeded</td>
</tr>
<tr>
<td></td>
<td>Edge counter 1 exceeded</td>
<td>A888 Edge counter 1. 이 메시지는 제어 패널의 Menu – Settings – Edit texts 항목에서 편집할 수 있습니다.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Counted main contactor</td>
<td>A884 Main contactor.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Counted output relay</td>
<td>A881 Output relay.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Counted motor starts</td>
<td>A882 Motor starts.</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Counted power ups</td>
<td>A883 Power ups.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Counted DC charges</td>
<td>A885 DC charge.</td>
<td>15</td>
</tr>
<tr>
<td>33.40</td>
<td>Edge counter 2 actual</td>
<td>에지 카운터 2의 현재값을 표시합니다. 카운터는 파라미터 33.43 Edge counter 2 source에서 선택된 신호가 33.42 Edge counter 2 function의 설정에 따라 끈 또는 오프로 전환할 때마다 증가합니다. 이 값은 33.44 Edge counter 2 divider에 정의한 액수로 나눌 수 있으며, 33.41 Edge counter 2 warn limit를 초과한 경우에 33.01 Counter status의 비트 3이 1로 세트됩니다. 이때 33.42 Edge counter 2 function에서 경고가 하용되었다면 33.45 Edge counter 2 warn message에 정의한 경고 메시지가 표시됩니다. 이 값은 Drive composer PC 풀에서 0으로 설정하거나 제어 패널의 리셋 버튼을 3 초 이상 유지한 경우에 클리어됩니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...4294967295 에지 카운터 2의 현재값.</td>
<td>-</td>
</tr>
<tr>
<td>33.41</td>
<td>Edge counter 2 warn limit</td>
<td>에지 카운터 2의 경고값을 설정합니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...4294967295 에지 카운터 2의 경고값.</td>
<td>-</td>
</tr>
<tr>
<td>33.42</td>
<td>Edge counter 2 function</td>
<td>에지 카운터 2의 구성 워드입니다.</td>
<td>0000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>가능</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>카운트 모드. 0 = 카운터는 경고값에 도달할 때마다 0으로 클리어됩니다. 이때 카운터 상태 (33.01의 비트 2)는 경고값에 다시 도달할 때까지 1로 세트됩니다. 경고 메시지는 최소 10초 동안 유지됩니다. 1 = 카운터가 경고값에 도달할 때, 카운터 상태 (33.01의 비트 2)는 33.40이 클리어될 때까지 1로 세트되며, 이때 경고 메시지가 표시됩니다.</td>
</tr>
<tr>
<td>1</td>
<td>경고 메시지 허용. 0 = 경고 메시지 없음. 1 = 경고 메시지가 도달될 때 경고 메시지를 표시합니다.</td>
</tr>
<tr>
<td>2</td>
<td>상승 예지 카운트. 0 = 상승 예지 카운트 길지. 1 = 상승 예지 카운트 허용.</td>
</tr>
<tr>
<td>3</td>
<td>하강 예지 카운트. 0 = 하강 예지 카운트 길지. 1 = 하강 예지 카운트 허용.</td>
</tr>
<tr>
<td>4...15</td>
<td>예약된 영역.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000b...1111b</th>
<th>에지 카운터 2 구성 워드.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
</tr>
<tr>
<td>33.43</td>
<td>Edge counter 2 source</td>
</tr>
<tr>
<td></td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>RO1</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
</tr>
<tr>
<td>33.44</td>
<td>Edge counter 2 divider</td>
</tr>
<tr>
<td></td>
<td>1…4294967295</td>
</tr>
<tr>
<td>33.45</td>
<td>Edge counter 2 warn message</td>
</tr>
<tr>
<td></td>
<td>Edge counter 2 exceeded</td>
</tr>
<tr>
<td></td>
<td>Counted main contactor</td>
</tr>
<tr>
<td></td>
<td>Counted output relay</td>
</tr>
<tr>
<td></td>
<td>Counted motor starts</td>
</tr>
<tr>
<td></td>
<td>Counted power ups</td>
</tr>
<tr>
<td></td>
<td>Counted DC charges</td>
</tr>
<tr>
<td>33.50</td>
<td>Value counter 1 actual</td>
</tr>
<tr>
<td></td>
<td>-2147483008 … 2147483008</td>
</tr>
<tr>
<td>33.51</td>
<td>Value counter 1 warn limit</td>
</tr>
<tr>
<td></td>
<td>-2147483008 … 2147483008</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>33.52</td>
<td>Value counter 1 function</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>기능</th>
</tr>
</thead>
</table>
| 0 | 카운터 모드.
0 = 카운터는 경고값에 도달할 때마다 0으로 클리어됩니다. 이때 카운터 상태 (33.01의 비트 4)는 1초 동안 1로 세트되며, 경고 메시지는 최소 10초 동안 유지됩니다.
1 = 카운터가 경고값에 도달할 때, 카운터 상태 (33.01의 비트 4)는 33.50이 클리어될 때까지 1로 세트되며, 이때 경고 메시지가 표시됩니다. |
| 1 | 경고 메시지 허용.
0 = 경고 메시지 없음.
1 = 카운터가 경고값에 도달할 때, 경고 메시지를 표시합니다. |
| 2…15 | 예약된 영역. |

<table>
<thead>
<tr>
<th>0000b…0011b</th>
<th>범주 카운터 1 구성 워드.</th>
<th>1 = 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.53</td>
<td>Value counter 1 source</td>
<td>범주 카운터 1에 의해 모니터링되는 신호를 선택합니다.</td>
</tr>
<tr>
<td>Not selected</td>
<td>카운터 없음.</td>
<td>0</td>
</tr>
<tr>
<td>Motor speed</td>
<td>01.01 Motor speed used (파라미터 115 참고).</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>33.54</td>
<td>Value counter 1 divider</td>
<td>범주 카운터 1을 나누어 주는 약수를 정의합니다.</td>
</tr>
<tr>
<td>0.001 ... 2147483.000</td>
<td>범주 카운터 1의 약수.</td>
<td>-</td>
</tr>
<tr>
<td>33.55</td>
<td>Value counter 1 warn message</td>
<td>범주 카운터 1의 경고 메시지를 선택합니다.</td>
</tr>
<tr>
<td>Value counter 1 exceeded</td>
<td>A88A Value counter 1. 이 메시지는 제어 패널의 Menu – Settings – Edit texts 항목에서 편집할 수 있습니다.</td>
<td>4</td>
</tr>
<tr>
<td>Maintain motor bearing</td>
<td>A880 Motor bearing.</td>
<td>10</td>
</tr>
</tbody>
</table>
| 33.60 | Value counter 2 actual | 범주 카운터 2와 함께 값을 표시합니다.
카운터는 파라미터 33.63 Value counter 2 source에서 선택된 신호를 1초 간격으로 누적합합니다. 이 값은 33.64 Value counter 2 divider에 정의한 약수로 나눌 수 있으며, 33.61 Value counter 2 warn limit를 초과한 경우에 33.01 Counter status의 비트 5가 1로 세트됩니다.
이때 33.62 Value counter 2 function에 정의한 경고 메시지가 표시됩니다.
이 값은 Drive composer PC 트리에서 0으로 설정하거나 제어 패널의 리셋 버튼을 3 초 이상 유지한 경우에 클리어됩니다. | - |
<p>| 2147483008 ... 2147483008 | 범주 카운터 2의 현재값. | - |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.61</td>
<td>Value counter 2 warn limit</td>
<td>브레이크 커운터 2의 경고값을 설정합니다. 이 값이 양수인 경우에는 커운터가 경고값 이상에서 33.01 Counter status의 비트 5가 1로 세트되며, 반대로 음수인 경우에는 커운터가 경고값 이하에서 33.01 Counter status의 비트 5가 1로 세트됩니다. 0 = 커운터 금지.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2147483008 ... 2147483008</td>
<td>브레이크 커운터 2의 경고값.</td>
<td>-</td>
</tr>
<tr>
<td>33.62</td>
<td>Value counter 2 function</td>
<td>브레이크 커운터 2의 구성 워드입니다.</td>
<td>0000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>가능</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>카운터 모드. 0 = 카운터는 경고값에 도달할 때마다 0으로 클리어됩니다. 이때 카운터 상태 (33.01의 비트 4)는 1초 동안 1로 세트되며, 경고 메시지는 최소 10초 동안 유지됩니다. 1 = 카운터가 경고값에 도달할 때, 카운터 상태 (33.01의 비트 4)는 33.60이 클리어될 때까지 1로 세트되며, 이때 경고 메시지가 표시됩니다.</td>
</tr>
<tr>
<td>1</td>
<td>경고 메시지 허용. 0 = 경고 메시지 없음. 1 = 카운터가 경고값에 도달할 때, 경고 메시지를 표시합니다.</td>
</tr>
<tr>
<td>2...15</td>
<td>예약된 영역.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.63</td>
<td>Value counter 2 source</td>
<td>브레이크 커운터 2에 의해 모니터링되는 신호를 선택합니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>카운터 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Motor speed</td>
<td>01.01 Motor speed used (파라미터 115 참고).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>33.64</td>
<td>Value counter 2 divider</td>
<td>브레이크 커운터 2를 나누어 주는 약수를 정의합니다.</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>0.001 ... 2147483.000</td>
<td>브레이크 커운터 2의 약수.</td>
<td>-</td>
</tr>
<tr>
<td>33.65</td>
<td>Value counter 2 warn message</td>
<td>브레이크 커운터 2의 경고 메시지를 선택합니다.</td>
<td>Value counter 2 exceeded</td>
</tr>
<tr>
<td></td>
<td>Value counter 2 exceeded</td>
<td>A88B Value counter 2. 이 메시지는 제어 패널의 Menu – Settings – Edit texts 항목에서 편집할 수 있습니다.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Maintain motor bearing</td>
<td>A880 Motor bearing.</td>
<td>10</td>
</tr>
</tbody>
</table>
35 Motor thermal protection

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.01</td>
<td>Motor estimated temperature</td>
<td>모터의 열모델 (파라미터 35.50…35.55 참고)에 의해 추정된 모터 온도를 표시합니다. 이것은 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
<tr>
<td>-60 ... 1000 °C or °F</td>
<td>모터 온도 추정값.</td>
<td>1 = 1°</td>
</tr>
<tr>
<td>35.02</td>
<td>Measured temperature 1</td>
<td>파라미터 35.11 Temperature 1 source에 선택한 소스로부터 얻어진 모터 온도를 표시합니다. 이것은 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다. 이 파라미터는 읽기 전용입니다. Note: PTC 센서의 단위는 온 (Ohm)입니다.</td>
</tr>
<tr>
<td>-60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm</td>
<td>모터 온도 1 측정값.</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.03</td>
<td>Measured temperature 2</td>
<td>파라미터 35.21 Temperature 2 source에 선택한 소스로부터 얻어진 모터 온도를 표시합니다. 이것은 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다. 이 파라미터는 읽기 전용입니다. Note: PTC 센서의 단위는 온 (Ohm)입니다.</td>
</tr>
<tr>
<td>-60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm</td>
<td>모터 온도 2 측정값.</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.04</td>
<td>FPTC status word</td>
<td>FPTC-xx 서미스터 보호 옵션 모듈의 상태를 표시합니다. 예를 들어, 이 상태 워드는 외부 이벤트 소스로 사용될 수 있습니다. 이 파라미터는 읽기 전용입니다. Note: "module found" 비트는 해당 모듈의 허용 여부에 관계없이 검색되지만, "fault active"와 "warning active" 비트는 모듈을 허용하지 않는 한 검색되지 않습니다. 여기서 모듈은 파라미터 35.30 FPTC configuration word에서 허용될 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Module found in slot 1</td>
<td>1 = FPTC-xx 모듈이 슬롯 1에서 검출되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Fault active in slot 1</td>
<td>1 = 슬롯 1의 모듈에서 폴트 (4991)가 발생하였습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Warning active in slot 1</td>
<td>1 = 슬롯 1의 모듈에서 경고 (4497)가 발생하였습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Module found in slot 2</td>
<td>1 = FPTC-xx 모듈이 슬롯 2에서 검출되었습니다.</td>
</tr>
<tr>
<td>4</td>
<td>Fault active in slot 2</td>
<td>1 = 슬롯 2의 모듈에서 폴트 (4992)가 발생하였습니다.</td>
</tr>
<tr>
<td>5</td>
<td>Warning active in slot 2</td>
<td>1 = 슬롯 2의 모듈에서 경고 (4498)가 발생하였습니다.</td>
</tr>
<tr>
<td>6</td>
<td>Module found in slot 3</td>
<td>1 = FPTC-xx 모듈이 슬롯 3에서 검출되었습니다.</td>
</tr>
<tr>
<td>7</td>
<td>Fault active in slot 3</td>
<td>1 = 슬롯 3의 모듈에서 폴트 (4993)가 발생하였습니다.</td>
</tr>
<tr>
<td>8</td>
<td>Warning active in slot 3</td>
<td>1 = 슬롯 3의 모듈에서 경고 (4499)가 발생하였습니다.</td>
</tr>
<tr>
<td>9…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h...FFFFh</td>
<td>FPTC-xx 상태 워드.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>35.11</td>
<td>Temperature 1 source</td>
<td>모터 온도 1을 읽어 들일 소스를 선택합니다. 이것은 통상 모터 온도를 읽어 들이기 위해 사용되지만, 필요에 따라서는 다른 부분의 온도를 측정하는데 사용할 수도 있습니다.</td>
</tr>
<tr>
<td></td>
<td>Estimated temperature</td>
<td>드라이브의 내부 계산으로 모터 온도를 추정합니다. 이것은 파라미터 35.50 Motor ambient temperature에서 모터의 주변 온도를 정확하게 설정하는 것이 중요합니다.</td>
</tr>
</tbody>
</table>
| KTY84 analog I/O | 아날로그 입력에 연결한 KTY84 센서에서 온도를 측정합니다. 여기서 입력 소스는 35.14 Temperature 1 AI source에서 선택합니다. 이것은 다음과 같은 설정이 필요합니다.
 - 전원이 차단된 상태에서 드라이브 제어 유닛의 아날로그 입력 점퍼 또는 스위치를 U (전압)로 설정하고 재부팅합니다.
 - 단위 선택 파라미터를 전압으로 설정합니다.
 - 아날로그 출력을 "Force KTY84 excitation"으로 설정합니다.
 - 파라미터 35.14에서 아날로그 입력을 선택합니다. 여기서 입력이 I/O 환경 모듈에 있는 경우에는 Other에서 실제 입력값 (예: 14.26 All actual value)을 설정합니다. 아날로그 출력은 센서에 일정한 전류를 공급하며, 센서의 저항값에 의한 온도에 따라 증가 또는 감소하면 센서의 양단 전압이 변하게 됩니다. 이 전압을 아날로그 입력으로 읽어 들여 온도값으로 환산합니다. |
<p>| KTY84 encoder module 1 | 엔코더 인터페이스 1에 연결한 KTY84 센서에서 온도를 측정합니다. 자세한 사항은 파라미터 91.21 Module 1 temp sensor type 및 91.22 Module 1 temp filter time를 참고하십시오. |
| KTY84 encoder module 2 | 엔코더 인터페이스 2에 연결한 KTY84 센서에서 온도를 측정합니다. 자세한 사항은 파라미터 91.24 Module 2 temp sensor type 및 91.25 Module 2 temp filter time를 참고하십시오. |
| 1 × Pt100 analog I/O | 아날로그 입력에 연결한 Pt100 센서에서 온도를 측정합니다. 여기서 입력 소스는 35.14 Temperature 1 AI source에서 선택합니다. 이것의 기본 설정은 KTY84 analog I/O와 같지만, 아날로그 출력을 Force Pt100 excitation으로 설정하십시오. |
| 2 × Pt100 analog I/O | 아날로그 입력에 연결한 Pt100 센서 (2개)에서 온도를 측정합니다. 2개를 직렬로 사용하면 측정값이 정확도가 향상됩니다. |
| 3 × Pt100 analog I/O | 아날로그 입력에 연결한 Pt100 센서 (3개)에서 온도를 측정합니다. 3개를 직렬로 사용하면 측정값에 정확도가 향상됩니다. |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq</th>
</tr>
</thead>
</table>
| 286 | PTC DI6 | 디지털 입력 DI6에 연결한 PTC 센서로부터 모터를 보호합니다. (센서의 연결 방법은 페이지 80을 참고하십시오).
 Note: 0 온(정상) 또는 4000 온(과열) 중 하나가 35.02 Measured temperature 1에 표시되며, 4000 온에서 경고를 발생시킵니다.
 만약 경고 대신에 폴트를 원한다면 35.12 Temperature 1 fault limit을 4000 온으로 설정하십시오. | 8 |
| | PTC analog I/O | 아날로그 입력출력에 연결한 PTC 센서에서 온도를 측정합니다.
 여기서 입력 소스는 35.14 Temperature 1 Al source에서 선택합니다.
 이것은 기본 설정은 KTY84 analog I/O와 같지만, 아날로그 출력을 Force PTC excitation으로 설정하십시오. | 20 |
| | PTC encoder module 1 | 엔코더 인터페이스 1에 연결한 PTC 센서에서 온도를 측정합니다.
 자세한 사항은 파라미터 91.21 Module 1 temp sensor type 및 91.22 Module 1 temp filter time를 참고하십시오. | 9 |
| | PTC encoder module 2 | 엔코더 인터페이스 2에 연결한 PTC 센서에서 온도를 측정합니다.
 자세한 사항은 파라미터 91.21 Module 1 temp sensor type 및 91.22 Module 1 temp filter time를 참고하십시오. | 10 |
| | Direct temperature | 파라미터 35.14 Temperature 1 Al source에서 선택된 소스에서 온도를 측정합니다. 이것은 단위는 파라미터 96.16 Unit selection에서 선택한 단위입니다. | 11 |
| | 1 x Pt1000 analog I/O | 아날로그 입력출력에 연결한 Pt1000 센서에서 온도를 측정합니다.
 여기서 입력 소스는 35.14 Temperature 1 Al source에서 선택합니다.
 이것은 기본 설정은 KTY84 analog I/O와 같지만, 아날로그 출력을 Force Pt1000 excitation으로 설정하십시오. | 13 |
| | 2 x Pt1000 analog I/O | 아날로그 입력출력에 연결한 Pt1000 센서 (2개)에서 온도를 측정합니다.
 2개를 직접로 사용하면 측정값에 정확도가 향상됩니다. | 14 |
| | 3 x Pt1000 analog I/O | 아날로그 입력출력에 연결한 Pt1000 센서 (3개)에서 온도를 측정합니다.
 3개를 직접로 사용하면 측정값에 정확도가 향상됩니다. | 15 |
| | 35.12 Temperature 1 fault limit | 온도 모니터링 기능 1의 폴트값을 정의합니다.
 이 값을 초과하면 드라이브는 트립 정지 (4981 External temperature 1) 할 것입니다. 이것은 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다.
 Note: PTC 센서의 단위는 온도입니다. | 130 °C, 266 °F or 4500 ohm |
| | -60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm | 온도 모니터링 기능 1의 폴트값. | 1 = 1 unit |
| | 35.13 Temperature 1 warning limit | 온도 모니터링 기능 1의 경고값을 정의합니다.
 이 값을 초과하면 드라이브는 경고 운전 (A491 External temperature 1) 할 것입니다. 이것은 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다.
 Note: PTC 센서의 단위는 온도입니다. | 110 °C, 230 °F or 4000 ohm |
<p>| | -60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm | 온도 모니터링 기능 1의 경고값. | 1 = 1 unit |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/BEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.14</td>
<td>Temperature 1 AI source</td>
<td>파라미터 35.11 Temperature 1 source에 필요한 아날로그 입력을 선택합니다.
Note: 만약 입력이 I/O 확장 모듈에 있다면 Other에서 해당 아날로그 입력 (파라미터 그룹 14, 15, 16)을 선택하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A11 actual value</td>
<td>제어 유닛의 아날로그 입력 AI1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A12 actual value</td>
<td>제어 유닛의 아날로그 입력 AI2.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>35.21</td>
<td>Temperature 2 source</td>
<td>모터 온도 2를 읽어 들일 소스를 선택합니다.
이것은 통상 모터 온도를 읽어 들이기 위해 사용되지만, 필요에 따라 다른 부분의 온도를 측정하는데 사용할 수도 있습니다.</td>
<td>Disabled</td>
</tr>
<tr>
<td></td>
<td>Disabled</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Estimated temperature</td>
<td>드라이브의 내부 계산으로 모터 온도를 추정합니다.
이는 파라미터 35.50 Motor ambient temperature에서 모터의 주변 온도를 정확하게 설정하는 것이 중요합니다.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KTY84 analog I/O</td>
<td>아날로그 입력 출력에 연결한 KTY84 센서에서 온도를 측정합니다.
이것은 다음과 같은 설정이 필요합니다.
• 전원이 차단된 상태에서 드라이브 제어 유닛의 아날로그 입력 점퍼 또는 스위치를 U (전압)로 설정하고 재부팅합니다.
• 단위 선택 파라미터를 전압으로 설정합니다.
• 아날로그 출력을 "Force KTY84 excitation"으로 설정합니다.
• 파라미터 35.24에서 아날로그 입력을 선택합니다. 여기서 입력이 I/O 확장 모듈에 있는 경우에는 Other에서 실제 입력값 (예: 14.26 A1 actual value)를 설정합니다.
아날로그 출력은 센서에 입력한 전류를 공급하며, 센서의 저항값이 온도에 따라 증가 또는 감소하면 센서의 양단 전압이 변하게 됩니다. 이 전압을 아날로그 입력으로 읽어 들여 온도값으로 환산합니다.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>KTY84 encoder module 1</td>
<td>엔코더 인터페이스 1에 연결한 KTY84 센서에서 온도를 측정합니다.
자세한 사항은 파라미터 91.21 Module 1 temp sensor type 및 91.22 Module 1 temp filter time을 참고하십시오.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>KTY84 encoder module 2</td>
<td>엔코더 인터페이스 2에 연결한 KTY84 센서에서 온도를 측정합니다.
자세한 사항은 파라미터 91.24 Module 2 temp sensor type 및 91.25 Module 2 temp filter time을 참고하십시오.</td>
<td>4</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>1 x Pt100 analog I/O</td>
<td>아날로그 입출력에 연결한 Pt100 센서에서 온도를 측정합니다. 여기서 입력 소스는 35.24 Temperature 2 Al source에서 선택합니다. 이것의 기본 설정은 KTY84 analog I/O와 같지만, 아날로그 출력을 Force Pt100 excitation으로 설정하십시오.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2 x Pt100 analog I/O</td>
<td>아날로그 입출력에 연결한 Pt100 센서 (2개)에서 온도를 측정합니다. 2개를 직렬로 사용하면 측정값에 정확도가 향상됩니다.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3 x Pt100 analog I/O</td>
<td>아날로그 입출력에 연결한 Pt100 센서 (3개)에서 온도를 측정합니다. 3개를 직렬로 사용하면 측정값에 정확도가 향상됩니다.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>PTC Di6</td>
<td>디지털 입력 Di6에 연결한 PTC 센서로부터 모터를 보호합니다. (센서의 연결 방법은 페이지 80을 참고하십시오). Note: 0 온 (정상) 또는 4000 옴 (과열) 중 하나가 35.03 Measured temperature 2에 표시되며, 4000 옴에서 경고를 발생시킵니다. 만약 경고 대신에 폴트를 원한다면 35.22 Temperature 2 fault limit를 4000 옴으로 설정하십시오.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>PTC analog I/O</td>
<td>아날로그 입출력에 연결한 PTC 센서에서 온도를 측정합니다. 여기서 입력 소스는 35.24 Temperature 2 Al source에서 선택합니다. 이것은 기본 설정은 KTY84 analog I/O와 같지만, 아날로그 출력을 Force PTC excitation으로 설정하십시오.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>PTC encoder module 1</td>
<td>엔코더 인터페이스 1에 연결한 PTC 센서에서 온도를 측정합니다. 자세한 사항은 파라미터 91.21 Module 1 temp sensor type 및 91.22 Module 1 temp filter time을 참고하십시오.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>PTC encoder module 2</td>
<td>엔코더 인터페이스 2에 연결한 PTC 센서에서 온도를 측정합니다. 자세한 사항은 파라미터 91.21 Module 1 temp sensor type 및 91.22 Module 1 temp filter time을 참고하십시오.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Direct temperature</td>
<td>파라미터 35.24 Temperature 2 Al source에서 선택된 소스에서 온도를 측정합니다. 이것의 단위는 파라미터 96.16 Unit selection에 선택한 단위입니다.</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>1 x Pt1000 analog I/O</td>
<td>아날로그 입출력에 연결한 Pt1000 센서에서 온도를 측정합니다. 여기서 입력 소스는 35.24 Temperature 2 Al source에서 선택합니다. 이것은 기본 설정은 KTY84 analog I/O와 같지만, 아날로그 출력을 Force Pt1000 excitation으로 설정하십시오.</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>2 x Pt1000 analog I/O</td>
<td>아날로그 입출력에 연결한 Pt1000 센서 (2개)에서 온도를 측정합니다. 2개를 직렬로 사용하면 측정값에 정확도가 향상됩니다.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>3 x Pt1000 analog I/O</td>
<td>아날로그 입출력에 연결한 Pt1000 센서 (3개)에서 온도를 측정합니다. 3개를 직렬로 사용하면 측정값에 정확도가 향상됩니다.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>35.22</td>
<td>Temperature 2 fault limit</td>
<td>온도 모니터링 기능 2의 울트값을 정의합니다. 이 값을 초과하면 드라이브는 트립 정지 (4981 External temperature 1) 할 것입니다. 이것은 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다.</td>
<td>130 °C, 266 °F or 4500 ohm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: PTC 센서의 단위는 총입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm</td>
<td>온도 모니터링 기능 2의 울트값.</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.23</td>
<td>Temperature 2 warning limit</td>
<td>온도 모니터링 기능 2의 경고값을 정의합니다. 이 값을 초과하면 드라이브는 경고 운전 (A491 External temperature 1) 할 것입니다. 이것은 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다.</td>
<td>110 °C, 230 °F or 4000 ohm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: PTC 센서의 단위는 총입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm</td>
<td>온도 모니터링 기능 2의 경고값.</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.24</td>
<td>Temperature 2 AI source</td>
<td>파라미터 35.21 Temperature 2 source에 필요한 아날로그 입력을 선택합니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 만약 입력이 I/O 확장 모듈에 있다면 Other에서 해당 아날로그 입력 (파라미터 그룹 14, 15, 16)을 선택하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>A1 actual value</td>
<td>제어 유닛의 아날로그 입력 A1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>A2 actual value</td>
<td>제어 유닛의 아날로그 입력 A2.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>35.30</td>
<td>FPTC configuration word</td>
<td>FPTC-xx 서미터 열 보호 모듈의 구성 워드입니다.</td>
<td>0010 1010b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Module in slot 1</td>
<td>1 = 모듈을 슬롯 1에 설치하였습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Disable slot 1 warning</td>
<td>1 = 슬롯 1의 모듈 경고를 표시하지 않습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Module in slot 2</td>
<td>1 = 모듈을 슬롯 2에 설치하였습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Disable slot 2 warning</td>
<td>1 = 슬롯 2의 모듈 경고를 표시하지 않습니다.</td>
</tr>
<tr>
<td>4</td>
<td>Module in slot 3</td>
<td>1 = 모듈을 슬롯 3에 설치하였습니다.</td>
</tr>
<tr>
<td>5</td>
<td>Disable slot 3 warning</td>
<td>1 = 슬롯 3의 모듈 경고를 표시하지 않습니다.</td>
</tr>
<tr>
<td>6...15</td>
<td>예약된 영역</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000b ... 0011 1111b</td>
<td>FPTC-xx 모듈 구성 워드.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

35.50	Motor ambient temperature	모터 열모델에 적용할 모터의 주변 온도를 정의합니다. 이것은 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다. 모터 열모델은 파라미터 35.50...35.55를 기반으로 모터 온도를 추정합니다. 부하 곡선 위의 영역에서 운전하는 경우에는 모터 온도가 상승하고 아래 영역에서 운전하는 경우에는 모터 온도가 감소합니다.	20 °C or 68 °F
		WARNING! 단, 이 모델은 먼저나 오물 등으로 인해 모터가 제대로 냉각되지 않는 경우에 모터를 보호할 수 없습니다.	
	-60 ... 100 °C or -75 ... 212 °F	주변 온도.	1 = 1 °C
290 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.51</td>
<td>Motor load curve</td>
<td>모터에서 허용하는 최대 부하를 정의합니다. 이 값은 35.52 Zero speed load 및 35.53 Break point와 함께 모터의 부하 곡선을 결정합니다. 이 파라미터가 100%로 설정되면 최대 부하는 파라미터 99.06 Motor nominal current와 같아집니다. 만약 파라미터 35.50 Motor ambient temperature의 설정값이 주변 온도와 다르다면 부하 곡선의 레벨을 조절해야 합니다. 이 곡선은 모터 온도를 추정하기 위한 열모델에 적용됩니다.</td>
<td>100%</td>
</tr>
</tbody>
</table>

![Diagram](image-url)

\[
\begin{align*}
I &= \text{모터 전류} \\
I_N &= \text{모터 정격 전류}
\end{align*}
\]

<table>
<thead>
<tr>
<th>50 ... 150%</th>
<th>부하 곡선에서의 최대 부하.</th>
<th>1 = 1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.52 Zero speed load</td>
<td>영속도에서의 최대 부하를 정의합니다. 이 값은 35.51 Motor load curve 및 35.53 Break point와 함께 모터의 부하 곡선을 결정합니다. 만약 태양식 모터의 경우에도 동일한 값을 설정할 수 있습니다. 모터 제조업체의 권장 사양을 참고하십시오. 파라미터 35.51 Motor load curve의 부하 곡선을 참고하십시오.</td>
<td>100%</td>
</tr>
<tr>
<td>50 ... 150%</td>
<td>부하 곡선에서의 영속도 부하.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>35.53 Break point</td>
<td>파라미터 35.51 Motor load curve에서 35.52 Zero speed load로 감소하기 시작하는 중단점 (Break point)을 정의합니다. 이 값은 35.51 Motor load curve 및 35.52 Zero speed load와 함께 모터의 부하 곡선을 결정합니다. 파라미터 35.51 Motor load curve의 부하 곡선을 참고하십시오.</td>
<td>45.00 Hz</td>
</tr>
<tr>
<td>1.00 ... 500.00 Hz</td>
<td>부하 곡선에서의 중단점.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>35.54</td>
<td>Motor nominal temperature rise</td>
<td>정격 부하 상태 (정격 전류)에서 주변 온도를 초과하여 상승하는 모터 온도를 정의합니다. 이것의 단위는 파라미터 96.16 Unit selection에서 선택할 수 있습니다. 모터 제조업체의 권장 사양을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0...300 °C or 32...572 °F</td>
<td>모터의 상승 온도.</td>
<td>1 = 1°</td>
</tr>
<tr>
<td>35.55</td>
<td>Motor thermal time constant</td>
<td>모터의 열 시정수를 정의합니다. 이것은 열모델에 사용되며 모터 온도가 허용 온도의 63 %에 도달하는 시간을 나타냅니다. 모터 제조업체의 사양서를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 ... 10000 s</td>
<td>모터의 열 시정수.</td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>

![모터 온도 상승 시그마](image_url)
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.60</td>
<td>Cable temperature</td>
<td>모터 케이블 온도의 추정값을 표시합니다. 자세한 사항은 모터 케이블 온도 보호 (페이지 83) 절을 참고하십시오. 이 파라미터는 읽기 전용입니다. 102 % = 과열 경고 운전 (A480 Motor cable overload). 106 % = 과열 트립 정지 (4000 Motor cable overload).</td>
</tr>
<tr>
<td>0.0 ... 200.0%</td>
<td>모터 케이블 온도의 추정값.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>35.61</td>
<td>Cable nominal current</td>
<td>모터 케이블의 연속 허용 전류를 정의합니다. WARNING! 이 파라미터는 가능한 케이블의 주변 온도 및 케이블 포설과 같이 허용 전류에 직접적인 영향을 미치는 모든 요소들이 반영되어야 합니다. 케이블 제조업체의 기술 사양서를 참고하십시오.</td>
</tr>
<tr>
<td>0.00 ... 10000.00 A</td>
<td>모터 케이블의 연속 허용 전류.</td>
<td>1 = 1 A</td>
</tr>
<tr>
<td>35.62</td>
<td>Cable thermal rise time</td>
<td>모터 케이블의 열 시정수를 정의합니다. 이것은 열모델에 사용되며 케이블에 연속 허용 전류가 흐르는 시 잔차 핵심 시절의 온도에 63 %의 온도가 허용 온도의 63 %에 도달하는 시간을 나타냅니다. 0 s = 모터 케이블의 열모델 금지. 케이블 제조업체의 사양서를 참고하십시오.</td>
</tr>
<tr>
<td>1 s</td>
<td>모터 케이블의 열시정수.</td>
<td>1 = 1 s</td>
</tr>
</tbody>
</table>

![Diagram](attachment:chart.png)

<table>
<thead>
<tr>
<th>시간</th>
<th>온도</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 s</td>
<td>모터 케이블의 열모델 금지.</td>
</tr>
<tr>
<td>5000 s</td>
<td>모터 케이블의 열 시정수.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
</tbody>
</table>
| 35.100 | DOL starter control source | 파라미터 35.100...35.106은 모터 팬의 기동/정지 로직을 구성합니다. 이 파라미터는 모터 팬을 기동하고 정지시키는 신호를 선택합니다. 0 = 정지, 1 = 기동. 팬 구동용 접촉기를 동작시키는 출력 신호는 파라미터 35.105의 비트 1에 연결하며, 피드백 신호는 35.103에 선택된 입력에 접속합니다. 또한 피드백 신호가 입력되지 않는 경우에 어떻게 반응할지 35.104 및 35.106에 설정할 수 있습니다. 그리고 팬 동작시키는 온/오프 조건은 각각 파라미터 35.101 및 35.102에 설정합니다. | Off: 06.16 b6 (95.20 b6)
| Off | 0. | 0 |
| On | 1. | 1 |
| Running | 06.16 Drive status word 1의 비트 6 (페이지 130 참고). | 2 |
| Other [bit] | 기타 소스 선택. | - |
| 35.101 DOL starter on delay | 모터 팬의 기동 시간을 정의합니다. 파라미터 35.100에 의해 선택된 제어 소스가 온일 때는, 특정 타이머가 동작하여 시간 지연 후에 35.105의 비트 1이 1로 설정됩니다. | 0 s |
| 0...42949673 s | 모터 팬의 기동 시간. | 1 = 1 s |
| 35.102 DOL starter off delay | 모터 팬의 정지 시간을 정의합니다. 파라미터 35.100에 의해 선택된 제어 소스가 오프일 때는, 특정 타이머가 동작하여 시간 지연 후에 35.105의 비트 1이 0으로 클리어됩니다. | 20 min |
| 0...715828 min | 모터 팬의 정지 시간. | 1 = 1 min |
| 35.103 DOL starter feedback source | 모터 팬 피드백 신호의 입력을 선택합니다. 0 = 정지, 1 = 운전. 기동 후 피드백 신호는 설정 시간 (35.104) 이내에 입력되어야 합니다. | Not selected; DI5 (95.20 b6) |
| Not selected | 0. | 0 |
| Selected | 1. | 1 |
| DI1 | 디지털 입력 DI1 (10.02 DI delayed status, 비트 0). | 2 |
| DI2 | 디지털 입력 DI2 (10.02 DI delayed status, 비트 1). | 3 |
| DI3 | 디지털 입력 DI3 (10.02 DI delayed status, 비트 2). | 4 |
| DI4 | 디지털 입력 DI4 (10.02 DI delayed status, 비트 3). | 5 |
| DI5 | 디지털 입력 DI5 (10.02 DI delayed status, 비트 4). | 6 |
| DI6 | 디지털 입력 DI6 (10.02 DI delayed status, 비트 5). | 7 |
| DIO1 | 디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0). | 10 |
| DIO2 | 디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1). | 11 |
| Other [bit] | 기타 소스 선택. | - |

Parameters 293
35 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.104</td>
<td>DOL starter feedback delay</td>
<td>모터 편의 피드백 사용 시간을 정의합니다. 파라미터 35.105의 비트 1이 1로 세팅될 때, 모터의 동작과 이 시간을 경과할 때까지 어떠한 피드백도 받지 못한다는 35.106에 선택한 동작을 수행할 것입니다. Note: 이 타이머는 가동시에만 적용되며, 운전 중에 감지자가 피드백 신호가 제거되면 즉시 35.106에 선택 동작을 수행합니다.</td>
<td>0 s; 5 s (95.20 b6)</td>
</tr>
<tr>
<td>0…42949673 s</td>
<td>모터 편의 동작 피드백 사용 시간.</td>
<td>1 = 1 s</td>
<td></td>
</tr>
<tr>
<td>35.105</td>
<td>DOL starter status word</td>
<td>모터 편 제어 로직의 상태로드입니다. 여기서 비트 1은 모터 편 동작 명령으로 디지털 또는 릴레이 출력에 접속되어야 하며, 나머지 비트들은 제어 상태나 동작 피드백 상태를 표시합니다. 이 파라미터는 일기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Start command</td>
<td>파라미터 35.100에서 선택된 모터 제어 소스의 상태를 표시합니다. 0 = 정지 명령. 1 = 기동 명령.</td>
</tr>
<tr>
<td>1</td>
<td>Delayed start command</td>
<td>시간 지연이 반영된 이 비트를 편을 제어하는 출력 소스로 사용하십시오. 0 = 정지. 1 = 기동.</td>
</tr>
<tr>
<td>2</td>
<td>DOL feedback</td>
<td>파라미터 35.100에서 선택된 피드백 신호의 상태를 표시합니다. 0 = 정지. 1 = 운전.</td>
</tr>
<tr>
<td>3</td>
<td>DOL fault (-1)</td>
<td>0 = 풀트, 파라미터 35.106의 선택에 따라 동작합니다. 1 = 정상.</td>
</tr>
<tr>
<td>4…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

0000b…1111b | 모터 편 제어 로직의 상태 워드. | 1 = 1 |
35.106	DOL starter event type	모터 편의 동작 피드백 신호가 제거된 경우에 드라이브가 어떻게 반응할지 선택합니다. Fault
No action	동작 없음.	0
Warning	드라이브 경고 운전 (A781 Motor fan).	1
Fault	드라이브 트립 정지 (71B1 Motor fan).	2

36 Load analyzer

<table>
<thead>
<tr>
<th>설명</th>
<th>36 Load analyzer</th>
</tr>
</thead>
<tbody>
<tr>
<td>파크값 및 전폭 로저 설정. 자세한 사항은 부록 분석기 (페이지 88) 절을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td>36.01 PVL signal source</td>
<td>파크값 로저에 의해 모니터링되는 신호를 선택합니다. 이 신호는 파라미터 36.02 PVL filter time로 필터링할 수 있습니다. 이 값은 미리 선택된 신호와 함께 36.10…36.15에 저장되며 파크값이 변경될 때마다 갱신될 것입니다. 여기에 저장된 값들은 36.09 Reset loggers에서 클리어할 수 있으며, 가장 최근에 리셋시킨 날짜와 시간이 각각 파라미터 36.16과 36.17에 저장됩니다.</td>
</tr>
<tr>
<td>Zero</td>
<td>파크값 로저 금지.</td>
</tr>
<tr>
<td>Motor speed used</td>
<td>01.01 Motor speed used (페이지 115 참고).</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>Output frequency</td>
<td>01.06 Output frequency</td>
</tr>
<tr>
<td>Motor current</td>
<td>01.07 Motor current</td>
</tr>
<tr>
<td>Motor torque</td>
<td>01.10 Motor torque</td>
</tr>
<tr>
<td>DC voltage</td>
<td>01.11 DC voltage</td>
</tr>
<tr>
<td>Power in/out</td>
<td>01.14 Output power</td>
</tr>
<tr>
<td>Speed ref ramp in</td>
<td>23.01 Speed ref ramp input</td>
</tr>
<tr>
<td>Speed ref ramped</td>
<td>23.02 Speed ref ramp output</td>
</tr>
<tr>
<td>Speed ref used</td>
<td>24.01 Used speed reference</td>
</tr>
<tr>
<td>Torq ref used</td>
<td>26.02 Torque reference used</td>
</tr>
<tr>
<td>Freq ref used</td>
<td>28.02 Frequency ref ramp output</td>
</tr>
<tr>
<td>Process PID out</td>
<td>40.01 Process PID output actual</td>
</tr>
<tr>
<td>Process PID fbk</td>
<td>40.02 Process PID feedback actual</td>
</tr>
<tr>
<td>Process PID act</td>
<td>40.03 Process PID setpoint actual</td>
</tr>
<tr>
<td>Process PID dev</td>
<td>40.04 Process PID deviation actual</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>36.02 PVL filter time</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>36.06 AL2 signal source</td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td></td>
</tr>
<tr>
<td>Motor speed used</td>
<td>01.01 Motor speed used</td>
</tr>
<tr>
<td>Output frequency</td>
<td>01.06 Output frequency</td>
</tr>
<tr>
<td>Motor current</td>
<td>01.07 Motor current</td>
</tr>
<tr>
<td>Motor torque</td>
<td>01.10 Motor torque</td>
</tr>
<tr>
<td>DC voltage</td>
<td>01.11 DC voltage</td>
</tr>
<tr>
<td>Power in/out</td>
<td>01.14 Output power</td>
</tr>
<tr>
<td>Speed ref ramp in</td>
<td>23.01 Speed ref ramp input</td>
</tr>
<tr>
<td>Speed ref ramped</td>
<td>23.02 Speed ref ramp output</td>
</tr>
<tr>
<td>Speed ref used</td>
<td>24.01 Used speed reference</td>
</tr>
<tr>
<td>Torq ref used</td>
<td>26.02 Torque reference used</td>
</tr>
<tr>
<td>Freq ref used</td>
<td>28.02 Frequency ref ramp output</td>
</tr>
<tr>
<td>Process PID out</td>
<td>40.01 Process PID output actual</td>
</tr>
<tr>
<td>Process PID fbk</td>
<td>40.02 Process PID feedback actual</td>
</tr>
<tr>
<td>Process PID act</td>
<td>40.03 Process PID setpoint actual</td>
</tr>
<tr>
<td>Process PID dev</td>
<td>40.04 Process PID deviation actual</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>36.07</td>
<td>AL2 signal scaling</td>
</tr>
<tr>
<td>36.09</td>
<td>Reset loggers</td>
</tr>
<tr>
<td>36.10</td>
<td>PVL peak value</td>
</tr>
<tr>
<td>36.11</td>
<td>PVL peak date</td>
</tr>
<tr>
<td>36.12</td>
<td>PVL peak time</td>
</tr>
<tr>
<td>36.13</td>
<td>PVL current at peak</td>
</tr>
<tr>
<td>36.14</td>
<td>PVL DC voltage at peak</td>
</tr>
<tr>
<td>36.15</td>
<td>PVL speed at peak</td>
</tr>
<tr>
<td>36.20</td>
<td>AL1 below 10%</td>
</tr>
<tr>
<td>36.21</td>
<td>AL1 10 to 20%</td>
</tr>
<tr>
<td>36.22</td>
<td>AL1 20 to 30%</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>36.23</td>
<td>AL1 30 to 40%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.24</td>
<td>AL1 40 to 50%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.25</td>
<td>AL1 50 to 60%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.26</td>
<td>AL1 60 to 70%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.27</td>
<td>AL1 70 to 80%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.28</td>
<td>AL1 80 to 90%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.29</td>
<td>AL1 over 90%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.40</td>
<td>AL2 below 10%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.41</td>
<td>AL2 10 to 20%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.42</td>
<td>AL2 20 to 30%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.43</td>
<td>AL2 30 to 40%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.44</td>
<td>AL2 40 to 50%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.45</td>
<td>AL2 50 to 60%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.46</td>
<td>AL2 60 to 70%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
<tr>
<td>36.47</td>
<td>AL2 70 to 80%</td>
</tr>
<tr>
<td></td>
<td>0.00 ... 100.00%</td>
</tr>
</tbody>
</table>
37 User load curve

사용자 부하 곡선 설정.
자세한 사항은 사용자 부하 곡선 (페이지 83) 절을 참고하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.01</td>
<td>ULC output status word</td>
<td>모니터링 신호의 상태를 표시합니다. 단, 이 상태 워드는 37.03, 37.04, 37.41, 37.42에 설정한 동작 및 시간 경과와는 관계없이 독립적으로 표시됩니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Under load limit</td>
<td>1 = 모니터링 신호가 부족부하 곡선 아래에 있습니다.</td>
</tr>
<tr>
<td>1</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Over load limit</td>
<td>1 = 모니터링 신호가 과부하 곡선 위에 있습니다.</td>
</tr>
<tr>
<td>3…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

| 000b ... 101b | 모니터링 신호의 상태. | 1 = 1 |

| 37.02 | ULC supervision signal | 모니터링할 신호를 선택합니다. 이 기능은 모니터링 신호의 절댓값과 부하 곡선을 비교합니다. | Not selected |

Not selected
-\nMotor current % 01.07 Motor current (페이지 115 참고).
Motor torque % 01.10 Motor torque (페이지 115 참고).
Output power % of motor nominal 01.15 Output power % of motor nom (페이지 116 참고).
Other 기타 소스 선택. |

| 37.03 | ULC overload actions | 모니터링 신호의 절댓값이 파라미터 37.41 ULC overload timer보다 선정시간 동안 과부하 곡선 위에 있는 경우에 드라이브가 어떻게 반응할지를 선택합니다. | Disabled |

Disabled
-\nWarning 드라이브 경고 운전 (A8BE ULC overload warning). |
Fault 드라이브 트립 정지 (8002 ULC overload fault). |
Warning/Fault 모니터링 신호가 파라미터 37.41 ULC overload timer에 정의한 절반의 시간 동안 과부하 곡선 위에 있는 경우에 드라이브는 경고 (A8BE ULC overload warning)를 발생하고 정의한 시간보다 긴 경우에는 트립 정지 (8002 ULC overload fault) 합니다. | 3 |
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.04</td>
<td>ULC underload actions</td>
<td>모니터링 신호의 절닫값이 파라미터 37.42 ULC underload timer보다 장시간 동안 부족부하 곡선 아래에 있는 경우에 드라이브가 어떻게 반응할지 선택합니다.</td>
<td>Disabled</td>
</tr>
<tr>
<td>Disabled</td>
<td>동작 없음.</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Warning</td>
<td>드라이브 경고 운전 (ABBF ULC underload warning).</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fault</td>
<td>드라이브 트립 정지 (8001 ULC underload fault).</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Warning/Fault</td>
<td>모니터링 신호가 파라미터 37.42 ULC underload timer에 정의한 절반의 시간 동안 부족부하 곡선 아래에 있는 경우에 드라이브는 경고 (ABBF ULC underload warning)를 발생하고 정의한 시간보다 긴 경우에는 트립 정지 (8001 ULC underload fault)합니다.</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>37.11</td>
<td>ULC speed table point 1</td>
<td>사용자 부하 곡선의 X축 1구간 모터 속도를 정의합니다. 이 속도 구간은 DTC 모드 또는 스컬라 모드에서 기준 속도로 제어될 때 사용됩니다. 총 5구간은 가장 낮은 속도에서 높은 속도 순서로 설정되어야 합니다. 각 구간은 양수값으로 정의하며, 음수값도 대칭 동작합니다.</td>
<td>150.0 rpm</td>
</tr>
<tr>
<td>0.0 … 30000.0 rpm</td>
<td>1구간 모터 속도.</td>
<td>1 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>37.12</td>
<td>ULC speed table point 2</td>
<td>사용자 부하 곡선의 X축 2구간 모터 속도를 정의합니다.</td>
<td>750.0 rpm</td>
</tr>
<tr>
<td>0.0 … 30000.0 rpm</td>
<td>2구간 모터 속도.</td>
<td>1 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>37.13</td>
<td>ULC speed table point 3</td>
<td>사용자 부하 곡선의 X축 3구간 모터 속도를 정의합니다.</td>
<td>1290.0 rpm</td>
</tr>
<tr>
<td>0.0 … 30000.0 rpm</td>
<td>3구간 모터 속도.</td>
<td>1 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>37.14</td>
<td>ULC speed table point 4</td>
<td>사용자 부하 곡선의 X축 4구간 모터 속도를 정의합니다.</td>
<td>1500.0 rpm</td>
</tr>
<tr>
<td>0.0 … 30000.0 rpm</td>
<td>4구간 모터 속도.</td>
<td>1 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>37.15</td>
<td>ULC speed table point 5</td>
<td>사용자 부하 곡선의 X축 5구간 모터 속도를 정의합니다.</td>
<td>1800.0 rpm</td>
</tr>
<tr>
<td>0.0 … 30000.0 rpm</td>
<td>5구간 모터 속도.</td>
<td>1 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>37.16</td>
<td>ULC frequency table point 1</td>
<td>사용자 부하 곡선의 X축 1구간 모터 주파수를 정의합니다. 이 주파수 구간은 스컬라에서 기준 주파수로 제어될 때 사용됩니다. 총 5구간은 가장 낮은 주파수에서 높은 주파수 순서로 설정되어야 합니다. 각 구간은 양수값으로 정의하며, 음수값도 대칭 동작합니다.</td>
<td>5.0 Hz</td>
</tr>
<tr>
<td>0.0 … 500.0 Hz</td>
<td>1구간 모터 주파수.</td>
<td>1 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>37.17</td>
<td>ULC frequency table point 2</td>
<td>사용자 부하 곡선의 X축 2구간 모터 주파수를 정의합니다.</td>
<td>25.0 Hz</td>
</tr>
<tr>
<td>0.0 … 500.0 Hz</td>
<td>2구간 모터 주파수.</td>
<td>1 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>37.18</td>
<td>ULC frequency table point 3</td>
<td>사용자 부하 곡선의 X축 3구간 모터 주파수를 정의합니다.</td>
<td>43.0 Hz</td>
</tr>
<tr>
<td>0.0 … 500.0 Hz</td>
<td>3구간 모터 주파수.</td>
<td>1 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>37.19</td>
<td>ULC frequency table point 4</td>
<td>사용자 부하 곡선의 X축 4구간 모터 주파수를 정의합니다.</td>
<td>50.0 Hz</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 500.0 Hz</td>
<td>4 구간 모터 주파수.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>37.20</td>
<td>ULC frequency table point 5</td>
<td>사용자 부하 곡선의 X축 5구간 모터 주파수를 정의합니다.</td>
<td>60.0 Hz</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 500.0 Hz</td>
<td>5 구간 모터 주파수.</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>37.21</td>
<td>ULC underload point 1</td>
<td>부족부하 곡선의 1구간을 정의합니다. 부족부하 곡선의 각 구간은 과부하 구간에 비해 낮은 값으로 가져야 합니다.</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>부족부하 1 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.22</td>
<td>ULC underload point 2</td>
<td>부족부하 곡선의 2구간을 정의합니다.</td>
<td>15.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>부족부하 2 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.23</td>
<td>ULC underload point 3</td>
<td>부족부하 곡선의 3구간을 정의합니다.</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>부족부하 3 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.24</td>
<td>ULC underload point 4</td>
<td>부족부하 곡선의 4구간을 정의합니다.</td>
<td>30.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>부족부하 4 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.25</td>
<td>ULC underload point 5</td>
<td>부족부하 곡선의 5구간을 정의합니다.</td>
<td>30.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>부족부하 5 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.31</td>
<td>ULC overload point 1</td>
<td>과부하 곡선의 1구간을 정의합니다. 과부하 곡선의 각 구간은 부족부하 구간에 비해 높은 값으로 가져야 합니다.</td>
<td>300.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>과부하 1 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.32</td>
<td>ULC overload point 2</td>
<td>과부하 곡선의 2구간을 정의합니다.</td>
<td>300.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>과부하 2 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.33</td>
<td>ULC overload point 3</td>
<td>과부하 곡선의 3구간을 정의합니다.</td>
<td>300.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>과부하 3 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.34</td>
<td>ULC overload point 4</td>
<td>과부하 곡선의 4구간을 정의합니다.</td>
<td>300.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>과부하 4 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.35</td>
<td>ULC overload point 5</td>
<td>과부하 곡선의 5구간을 정의합니다.</td>
<td>300.0%</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1600.0%</td>
<td>과부하 5 구간.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>37.41</td>
<td>ULC overload timer</td>
<td>드라이브가 파라미터 37.03 ULC overload actions에 선택한 동작을 수행하기 전에 모니터링 신호가 지속적으로 과부하 곡선 이상으로 유지되어야 하는 시간을 정의합니다.</td>
<td>20.0 s</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 10000.0 s</td>
<td>과부하 타이머.</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>37.42</td>
<td>ULC underload timer</td>
<td>드라이브가 파라미터 37.04 ULC underload actions에 선택한 동작을 수행하기 전에 모니터링 신호가 지속적으로 부족부하 곡선 이하로 유지되어야 하는 시간을 정의합니다.</td>
<td>20.0 s</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 10000.0 s</td>
<td>부족부하 타이머.</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>40 Process PID set 1</td>
<td>프로세스 PID 제어를 위한 파라미터 세트 1. 드라이브에는 속도 제어를 위한 속도 PID 제어기가 내장되어 있지만, 이와 별개로 2개의 프로세스 PID 제어기를 포함하고 있습니다. PID 세트 1은 파라미터 40.07...40.56에 설정하며, 세트 2는 별도로 파라미터 41.07...41.56에 설정합니다. 그리고 이 파라미터 그룹에 있는 나머지 파라미터들은 2개의 PID 세트에 공통으로 적용됩니다. 어떤 세트가 사용되느냐에 정의하는 2진수 소스는 파라미터 40.57 PID set1/set2 selection에서 선택합니다. 페이지 578 및 579의 제어 제한 블록도를 확인하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.01 Process PID output actual</td>
<td>프로세스 PID 제어기의 출력을 표시합니다. 이것의 단위는 파라미터 40.12 Set 1 unit selection에서 선택할 수 있습니다. 이 파라미터는 임기 전용입니다. 페이지 579의 제어 제한 블록도를 확인하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.02 Process PID feedback actual</td>
<td>소스 선택, 연산 가능 (파라미터 40.10 Set 1 feedback function) 및 필터링 후에 실제 피드백하는 값을 표시합니다. 이것의 단위는 파라미터 40.12 Set 1 unit selection에서 선택할 수 있습니다. 이 파라미터는 임기 전용입니다. 페이지 579의 제어 제한 블록도를 확인하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.03 Process PID setpoint actual</td>
<td>소스 선택, 연산 가능 (40.18 Set 1 setpoint function), 제한 설정 및 램프 가능 인에 따라 프로세스 PID 제어기의 셋포인트를 표시합니다. 이것의 단위는 파라미터 40.12 Set 1 unit selection에서 선택할 수 있습니다. 이 파라미터는 임기 전용입니다. 페이지 579의 제어 제한 블록도를 확인하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.04 Process PID deviation actual</td>
<td>소스 선택, 연산 가능 (40.31 Set 1 deviation inversion), 제한 설정 및 램프 가능 인에 따라 프로세스 PID 제어기의 오차를 표시합니다. 이것은 기본적으로 셋포인트 - (실제값)이지만, 파라미터 40.31 Set 1 deviation inversion에서 전환시킬 수 있습니다. 이것은 단위는 파라미터 40.12 Set 1 unit selection에서 선택할 수 있습니다. 이 파라미터는 임기 전용입니다. 페이지 579의 제어 제한 블록도를 확인하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.05 Process PID trim output actual</td>
<td>트리밍된 기준 출력 (Trimmed reference output)을 표시합니다. 이것은 단위는 파라미터 40.12 Set 1 unit selection에서 선택할 수 있습니다. 이 파라미터는 임기 전용입니다. 페이지 579의 제어 제한 블록도를 확인하십시오.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Process PID status word

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.06</td>
<td>Process PID status word</td>
<td>프로세스 PID 제어기의 상태 워드입니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>PID active</td>
<td>1 = 프로세스 PID 제어기가 동작하고 있습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Setpoint frozen</td>
<td>1 = 프로세스 PID 제어기의 세포포트가 고정되었습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Output frozen</td>
<td>1 = 프로세스 PID 제어기의 출력이 고정되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>PID sleep mode</td>
<td>1 = 슬립 모드로 진입하였습니다.</td>
</tr>
<tr>
<td>4</td>
<td>Sleep boost</td>
<td>1 = 슬립 부스트 모드로 동작하고 있습니다.</td>
</tr>
<tr>
<td>5</td>
<td>Trim mode</td>
<td>1 = 트림 모드로 동작하고 있습니다.</td>
</tr>
<tr>
<td>6</td>
<td>Tracking mode</td>
<td>1 = 트래킹 모드로 동작하고 있습니다.</td>
</tr>
<tr>
<td>7</td>
<td>Output limit high</td>
<td>1 = PID 제어기의 출력이 파라미터 40.37에 의해 제한되었습니다.</td>
</tr>
<tr>
<td>8</td>
<td>Output limit low</td>
<td>1 = PID 제어기의 출력이 파라미터 40.38에 의해 제한되었습니다.</td>
</tr>
<tr>
<td>9</td>
<td>Deadband active</td>
<td>1 = 데드밴드 안에서 동작하고 있습니다. (파라미터 40.39 참고)</td>
</tr>
<tr>
<td>10</td>
<td>PID set</td>
<td>0 = 파라미터 세트 1 사용, 1 = 파라미터 세트 2 사용.</td>
</tr>
<tr>
<td>11</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Internal setpoint active</td>
<td>1 = 내부 설정값을 사용하고 있습니다. (파라미터 40.16…40.17 확인)</td>
</tr>
<tr>
<td>13…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>Set 1 PID operation mode</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.07</td>
<td>Set 1 PID operation mode</td>
<td>프로세스 PID 제어기를 허용 또는 급지시킵니다. 또한 파라미터 40.60 Set 1 PID activation source를 확인하십시오. Note: 프로세스 PID 제어기는 외부 제어에서만 유 효합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>상태</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>프로세스 PID 제어 길지.</td>
</tr>
<tr>
<td>On</td>
<td>프로세스 PID 제어 허용.</td>
</tr>
<tr>
<td>On when drive running</td>
<td>드라이브가 시작될 때나 프로세스 PID 제어 허용.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>Set 1 feedback 1 source</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.08</td>
<td>Set 1 feedback 1 source</td>
<td>프로세스 PID 제어기의 1번 피드백 소스를 선택합니다. 페이지 578의 제어 체인 볼록도를 확인하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>상태</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not selected</td>
<td>선택 없음.</td>
</tr>
<tr>
<td>All1 scaled</td>
<td>12.12 All1 scaled value (페이지 158 참고).</td>
</tr>
<tr>
<td>All2 scaled</td>
<td>12.22 All2 scaled value (페이지 160 참고).</td>
</tr>
<tr>
<td>Freq in scaled</td>
<td>11.39 Freq in 1 scaled (페이지 154 참고).</td>
</tr>
<tr>
<td>Motor current</td>
<td>01.07 Motor current (페이지 115 참고).</td>
</tr>
<tr>
<td>Power in out</td>
<td>01.14 Output power (페이지 116 참고).</td>
</tr>
<tr>
<td>Motor torque</td>
<td>01.10 Motor torque (페이지 115 참고).</td>
</tr>
<tr>
<td>Feedback data storage</td>
<td>40.91 Feedback data storage (페이지 313 참고).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>상태</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>Set 1 feedback 2 source</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.09</td>
<td>Set 1 feedback 2 source</td>
<td>프로세스 PID 제어기의 2번 피드백 소스를 선택합니다. 자세한 사항은 40.08 Set 1 feedback 1 source를 참고하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>상태</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not selected</td>
<td>선택 없음.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>40.10</td>
<td>Set 1 feedback function</td>
</tr>
<tr>
<td></td>
<td>ln1</td>
</tr>
<tr>
<td></td>
<td>ln1+ln2</td>
</tr>
<tr>
<td></td>
<td>ln1-ln2</td>
</tr>
<tr>
<td></td>
<td>ln1*ln2</td>
</tr>
<tr>
<td></td>
<td>ln1/ln2</td>
</tr>
<tr>
<td></td>
<td>MIN(ln1,ln2)</td>
</tr>
<tr>
<td></td>
<td>MAX(ln1,ln2)</td>
</tr>
<tr>
<td></td>
<td>AVE(ln1,ln2)</td>
</tr>
<tr>
<td></td>
<td>sqrt(ln1)</td>
</tr>
<tr>
<td></td>
<td>sqrt(ln1-ln2)</td>
</tr>
<tr>
<td></td>
<td>sqrt(ln1+ln2)</td>
</tr>
<tr>
<td></td>
<td>sqrt(ln1+ln2)</td>
</tr>
<tr>
<td>40.11</td>
<td>Set 1 feedback filter time</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>40.12</td>
<td>Set 1 unit selection</td>
</tr>
<tr>
<td></td>
<td>rpm</td>
</tr>
<tr>
<td></td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Hz</td>
</tr>
<tr>
<td></td>
<td>PID user unit</td>
</tr>
<tr>
<td>40.14</td>
<td>Set 1 setpoint scaling</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>40.15</td>
<td>Set 1 output scaling</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>40.16</td>
<td>Set 1 setpoint 1 source</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/Bfeq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control panel</td>
<td>03.01 Panel reference (페이지 119 참고).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Internal setpoint</td>
<td>내부 셋포인트. 파라미터 40.19 Set 1 internal setpoint sel1을 참고하십시오.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AI1 scaled</td>
<td>12.12 AI1 scaled value (페이지 158 참고).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>AI2 scaled</td>
<td>12.22 AI2 scaled value (페이지 160 참고).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Motor potentiometer</td>
<td>22.80 Motor potentiometer ref act (모터 포텐셔미터의 출력).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Freq in scaled</td>
<td>11.39 Freq in 1 scaled (페이지 154 참고).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Setpoint data storage</td>
<td>40.92 Setpoint data storage (페이지 313 참고).</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40.17 Set 1 setpoint 2 source</td>
<td>프로세스 PID 제어기의 2번 셋포인트 소스를 선택합니다. 파라미터 40.25 Set 1 setpoint selection에서 이 값을 선택한 경우에 사용됩니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>40.18 Set 1 setpoint function</td>
<td>파라미터 40.16 Set 1 setpoint 1 source 및 40.17 Set 1 setpoint 2 source에서 선택된 2개의 셋포인트로부터 실제 셋포인트를 어떻게 구성할 것인지 선택합니다.</td>
<td>In1 or In2</td>
</tr>
<tr>
<td></td>
<td>In1 or In2</td>
<td>연산 기능 없음. 파라미터 40.25 Set 1 setpoint selection에서 선택한 소스를 사용합니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>In1+In2</td>
<td>1번과 2번의 합을 셋포인트로 사용.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>In1-In2</td>
<td>1번과 2번의 차를 셋포인트로 사용.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>In1*In2</td>
<td>1번과 2번의 곱을 셋포인트로 사용.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>In1/In2</td>
<td>1번을 2번으로 나누어 셋포인트로 사용.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>MIN(In1,In2)</td>
<td>작은 값을 셋포인트로 사용.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>MAX(In1,In2)</td>
<td>큰 값을 셋포인트로 사용.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>AVE(In1,In2)</td>
<td>평균값을 셋포인트로 사용.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>sqrt(In1)</td>
<td>1번의 제곱근을 셋포인트로 사용.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>sqrt(In1-In2)</td>
<td>1번과 2번의 차에 대한 제곱근을 셋포인트로 사용.</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>sqrt(In1+In2)</td>
<td>1번과 2번의 합에 대한 제곱근을 셋포인트로 사용.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>sqrt(In1)+sqrt(In2)</td>
<td>1번 제곱근과 2번 제곱근의 합을 셋포인트로 사용.</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>40.19 Set 1 internal setpoint sel1</td>
<td>이 파라미터는 40.20 Set 1 internal setpoint sel2와 함께 미리 정해진 내부 셋포인트 (40.21...40.24)를 선택합니다.</td>
<td>Not selected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>40.19 선택 소스</th>
<th>40.20 선택 소스</th>
<th>내부 셋포인트</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1 (파라미터 40.21)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2 (파라미터 40.22)</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3 (파라미터 40.23)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4 (파라미터 40.24)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>40.19 선택 소스</th>
<th>40.20 선택 소스</th>
<th>내부 셋포인트</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1 (파라미터 40.21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1</td>
<td>3 (파라미터 40.23)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
<td>2 (파라미터 40.22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>4 (파라미터 40.24)</td>
</tr>
</tbody>
</table>

<p>| | | Not selected | 0. | 0 |
| | | Selected | 1. | 1 |
| | | DI1 | 10.02 DI delayed status, 비트 0. | 2 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Other[bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Not selected

| 40.20 | Set 1 internal setpoint sel2 | 이 파라미터는 40.19 Set 1 internal setpoint sel1와 함께 미리 정해진 내부 셋포인트 (40.21...40.24)를 선택합니다. 파라미터 40.19 Set 1 internal setpoint sel1의 표를 참고하십시오. | Not selected |

| 40.21 | Set 1 internal setpoint 1 | 내부 프로세스 셋포인트 1을 정의합니다. 파라미터 40.19 Set 1 internal setpoint sel1을 참고하십시오. 이것의 단위는 40.12 Set 1 unit selection에서 선택할 수 있습니다. | 0.00 |

- 32768.00 ... 32767.00 내부 프로세스 셋포인트 1. | 1 = 1 unit |

| 40.22 | Set 1 internal setpoint 2 | 내부 프로세스 셋포인트 2를 정의합니다. 파라미터 40.19 Set 1 internal setpoint sel1을 참고하십시오. 이것의 단위는 40.12 Set 1 unit selection에서 선택할 수 있습니다. | 0.00 |

- 32768.00 ... 32767.00 내부 프로세스 셋포인트 2. | 1 = 1 unit |

| 40.23 | Set 1 internal setpoint 3 | 내부 프로세스 셋포인트 3을 정의합니다. 파라미터 40.19 Set 1 internal setpoint sel1을 참고하십시오. 이것의 단위는 40.12 Set 1 unit selection에서 선택할 수 있습니다. | 0.00 |

- 32768.00 ... 32767.00 내부 프로세스 셋포인트 3. | 1 = 1 unit |

| 40.24 | Set 1 internal setpoint 4 | 내부 프로세스 셋포인트 4를 정의합니다. 파라미터 40.19 Set 1 internal setpoint sel1을 참고하십시오. 이것의 단위는 40.12 Set 1 unit selection에서 선택할 수 있습니다. | 0.00 |

- 32768.00 ... 32767.00 내부 프로세스 셋포인트 4. | 1 = 1 unit |
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.25</td>
<td>Set 1 setpoint selection</td>
<td>프로세스 샛포인트 소스 1 (40.16) 또는 2 (40.17)을 선택합니다. 이 파라미터는 40.18 Set 1 setpoint function을 In1 or In2로 설정한 경우에만 유효합니다. 0 = 샛포인트 소스 1. 1 = 샛포인트 소스 2.</td>
<td>Setpoint source 1</td>
</tr>
<tr>
<td></td>
<td>Setpoint source 1</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Setpoint source 2</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>40.26</td>
<td>Set 1 setpoint min</td>
<td>프로세스 PID 제어기의 샛포인트에 대한 하한값을 정의합니다.</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>-32768.00 ... -32767.00</td>
<td>프로세스 PID 제어기의 샛포인트 하한값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.27</td>
<td>Set 1 setpoint max</td>
<td>프로세스 PID 제어기의 샛포인트에 대한 상한값을 정의합니다.</td>
<td>32767.00</td>
</tr>
<tr>
<td></td>
<td>-32768.00 ... -32767.00</td>
<td>프로세스 PID 제어기의 샛포인트 상한값.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.28</td>
<td>Set 1 setpoint increase time</td>
<td>샛포인트를 0 % ~ 100 %까지 증가시키는 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1800.0 s</td>
<td>샛포인트의 증가 시간.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.29</td>
<td>Set 1 setpoint decrease time</td>
<td>샛포인트를 100 % ~ 0 %까지 감소시키는 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
<tr>
<td></td>
<td>0.0 ... 1800.0 s</td>
<td>샛포인트의 감소 시간.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.30</td>
<td>Set 1 setpoint freeze enable</td>
<td>프로세스 PID 제어기의 샛포인트를 고정시키는 소스를 선택합니다. 1 = 프로세스 PID 제어기의 샛포인트 고정. 또한 파라미터 40.38 Set 1 output freeze enable을 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Selected</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
</tbody>
</table>
Set 1 deviation inversion

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIO1</td>
<td>디지털 입/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택,</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40.31</td>
<td>Set 1 deviation inversion</td>
<td>프로세스 PID 제어기의 입력을 비반전 또는 반전시킵니다. 0 = 오차 비반전 (오차 = 센트포인트 - 피드백) 1 = 오차 반전 (오차 = 피드백 - 센트포인트) 프로세스 PID 제어기의 슬립 기능 (페이지 67)을 참고하십시오.</td>
<td>Not inverted (Ref - Fbk)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Not inverted (Ref - Fbk)</th>
<th>Inverted (Fbk - Ref)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

| Other [bit] | 기타 소스 선택, | - |

Set 1 gain

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.32</td>
<td>Set 1 gain</td>
<td>프로세스 PID 제어기의 비례 이득을 정의합니다.</td>
<td>1.00</td>
</tr>
<tr>
<td>0.10 ... 100.00</td>
<td>비례 이득,</td>
<td>100 = 1</td>
<td></td>
</tr>
</tbody>
</table>

Set 1 integration time

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.33</td>
<td>Set 1 integration time</td>
<td>프로세스 PID 제어기의 적분 시간을 정의합니다. 이 시간은 프로세스의 반응 시간과 동일한 크기여야 하는데, 만약 그렇지 않은 경우에는 시스템이 불안정해지는 요인이 됩니다.</td>
<td>60.0 s</td>
</tr>
</tbody>
</table>

```
시간
```

I = 제어기 입력 (오차)
O = 제어기 출력
G = 비례 이득
Ti = 적분 시간

Note: 이 값을 0으로 설정하면 I 제어기는 사용되지 않으며, PID 제어기는 PD 제어기로만 동작합니다.

<table>
<thead>
<tr>
<th></th>
<th>적분 시간,</th>
<th>1 = 1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.34</td>
<td>Set 1 derivation time</td>
<td>프로세스 PID 제어기의 미분 시간을 정의합니다. 여기서 미분항은 다음과 같이 이전 샘플링 주기의 오차 (E_K-1)와 현재 샘플링 주기의 오차 (E_K)를 기반으로 계산하게 됩니다.</td>
</tr>
<tr>
<td></td>
<td>PID 미분 시간 × (E_K - E_K-1)/Ts</td>
<td>T_s = 2 ms 샘플링 시간.</td>
</tr>
<tr>
<td></td>
<td>E = 오차 = 프로세스 센트포인트 - 프로세스 피드백.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>미분 시간,</th>
<th>1000 = 1 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.34</td>
<td>Set 1 derivation time</td>
<td>프로세스 PID 제어기의 미분 시간을 정의합니다. 여기서 미분항은 다음과 같이 이전 샘플링 주기의 오차 (E_K-1)와 현재 샘플링 주기의 오차 (E_K)를 기반으로 계산하게 됩니다.</td>
</tr>
<tr>
<td></td>
<td>PID 미분 시간 × (E_K - E_K-1)/Ts</td>
<td>T_s = 2 ms 샘플링 시간.</td>
</tr>
<tr>
<td></td>
<td>E = 오차 = 프로세스 센트포인트 - 프로세스 피드백.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>미분 시간,</th>
<th>1000 = 1 s</th>
</tr>
</thead>
</table>

Note: 이 값을 0으로 설정하면 I 제어기는 사용되지 않으며, PID 제어기는 PD 제어기로만 동작합니다.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/Eq</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.35</td>
<td>Set 1 derivation filter time</td>
<td>프로세스 PID 제어기의 오차에 대한 필터링 시간을 정의합니다.</td>
<td>0.0 s</td>
</tr>
</tbody>
</table>

![Diagram](image)

\[O = I \times (1 - e^{-t/T}) \]

\[I = \text{스텝 입력} \]
\[O = \text{필터 출력} \]
\[t = \text{시간} \]
\[T = \text{필터 시정수} \]

<table>
<thead>
<tr>
<th></th>
<th>필터 시간</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ... 10.0 s</td>
<td>필터 시간.</td>
<td>10 = 1 s</td>
<td></td>
</tr>
<tr>
<td>40.36</td>
<td>Set 1 output min</td>
<td>프로세스 PID 제어기 출력의 하한값을 정의합니다.</td>
<td>0.0</td>
</tr>
<tr>
<td>-32768.0 ... 32767.0</td>
<td>프로세스 PID 제어기 출력의 하한값.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>40.37</td>
<td>Set 1 output max</td>
<td>프로세스 PID 제어기 출력의 상한값을 정의합니다.</td>
<td>1500.0; 1800.0 (95.20 b0)</td>
</tr>
<tr>
<td>-32768.0 ... 32767.0</td>
<td>프로세스 PID 제어기 출력의 상한값.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>40.38</td>
<td>Set 1 output freeze enable</td>
<td>프로세스 PID 제어기 출력을 고정시키는 소스를 선택합니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not selected</td>
<td>0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected</td>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>40.39</td>
<td>Set 1 deadband range</td>
<td>프로세스 PID 제어기의 셋포인트에 대한 데드밴드를 정의합니다. 프로세스 피드백이 데드밴드 안에 들어가지 않아서 시간 지연 타이머가 동작을 시작합니다. 만약 파라미터 40.40 Set 1 deadband delay에 설정한 시간보다 짧시간 동안 데드밴드 안에 머물러 있다면 프로세스 PID 제어기의 출력은 고정될 것입니다. 이때 피드백 값이 데드밴드를 벗어나면 정상적인 운전을 다시 시작합니다.</td>
<td>0.0</td>
</tr>
</tbody>
</table>

| 40.40 | Set 1 deadband delay | 데드밴드 영역에서의 지연 시간을 정의합니다. 자세한 사항은 40.39 Set 1 deadband range를 참고하십시오. | 0.0 s |
| | | 데드밴드 영역에서의 지연 시간. | 1 = 1 s |

| 40.41 | Set 1 sleep mode | 슬립 모드를 선택합니다. 자세한 사항은 프로세스 PID 제어기의 슬립 기능 (페이지 67)을 참고하십시오. | Not selected |

		슬립 기능 금지.	0
		슬립 모드는 파라미터 40.43 Set 1 sleep level과 비교되며, 만약 슬립 지연 시간 (40.44 Set 1 sleep delay)보다 장시간 동안 슬립 레벨 아래에 머물러 있다면 드라이브는 슬립 모드로 전환할 것입니다.	1
		슬립 모드는 파라미터 40.42 Set 1 sleep enable에 선택한 소스에 의해 동작합니다. 파라미터 40.44…40.48가 이 설정에 사용됩니다.	2

| | | 슬립 모드는 파라미터 40.41 Set 1 sleep mode를 External로 설정한 경우에 슬립 기능을 허용 또는 금지시키는 소스를 선택합니다. | Not selected |
| | | 0 = 슬립 기능 금지. 1 = 슬립 기능 허용. | |

| | | 슬립 모드는 파라미터 40.41 Set 1 sleep mode를 External로 설정한 경우에 슬립 기능을 허용 또는 금지시키는 소스를 선택합니다. | Not selected |
| | | 0 = 슬립 기능 금지. 1 = 슬립 기능 허용. | |

		0.0…32767.0 데드밴드 범위.	1 = 1
		0.0…3600.0 s 데드밴드 영역에서의 지연 시간.	1 = 1 s
Not selected		슬립 모드를 선택합니다. 자세한 사항은 프로세스 PID 제어기의 슬립 기능 (페이지 67)을 참고하십시오.	Not selected
Internal		슬립 모드는 파라미터 40.43 Set 1 sleep level과 비교되며, 만약 슬립 지연 시간 (40.44 Set 1 sleep delay)보다 장시간 동안 슬립 레벨 아래에 머물러 있다면 드라이브는 슬립 모드로 전환할 것입니다.	1
External		슬립 모드는 파라미터 40.42 Set 1 sleep enable에 선택한 소스에 의해 동작합니다. 파라미터 40.44…40.46 및 40.48가 이 설정에 사용됩니다.	2

| 40.42 | Set 1 sleep enable | 파라미터 40.41 Set 1 sleep mode를 External로 설정한 경우에 슬립 기능을 허용 또는 금지시키는 소스를 선택합니다. | Not selected |

		0 = 슬립 기능 금지. 1 = 슬립 기능 허용.	
Not selected		0.0…32767.0 데드밴드 범위.	1 = 1
Selected		0.0…3600.0 s 데드밴드 영역에서의 지연 시간.	1 = 1 s
DI1		디지털 입력 DI1 (10.02 DI delayed status, 비트 0).	2
DI2		디지털 입력 DI2 (10.02 DI delayed status, 비트 1).	3
DI3		디지털 입력 DI3 (10.02 DI delayed status, 비트 2).	4
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입력/ 출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입력/ 출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>40.43 Set 1 sleep level</td>
<td>파라미터 40.41 Set 1 sleep mode를 Internal로 설정한 경우에 슬립 모드로 진입하는 레벨을 정의합니다.</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.0 ... 32767.0</td>
<td>슬립 모드의 진입 레벨.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>40.44 Set 1 sleep delay</td>
<td>실제 슬립 모드로 진입하기 전에 지연 시간을 정의합니다. 시간 지연 타이머는 40.41 Set 1 sleep mode에 선택한 슬립 조건을 만족한 경우에 시작하고 그렇지 않은 경우에 리셋됩니다.</td>
<td>60.0 s</td>
<td></td>
</tr>
<tr>
<td>0.0 ... 3600.0 s</td>
<td>슬립 모드의 지연 시간.</td>
<td>1 = 1 s</td>
<td></td>
</tr>
<tr>
<td>40.45 Set 1 sleep boost time</td>
<td>슬립 부스트 시간을 정의합니다. 자세한 사항은 40.46 Set 1 sleep boost step을 참고하십시오.</td>
<td>0.0 s</td>
<td></td>
</tr>
<tr>
<td>0.0 ... 3600.0 s</td>
<td>슬립 부스트 시간.</td>
<td>1 = 1 s</td>
<td></td>
</tr>
<tr>
<td>40.46 Set 1 sleep boost step</td>
<td>슬립 모드로 진입할 때, 파라미터 40.45 Set 1 sleep boost time에 설정한 시간 동안 프로세스 셋포인트와 피드백 사이의 오차를 초과할 때 40.48 Set 1 wake-up delay 이후에 슬립 모드가 해제됩니다. 슬립 모드가 해제되면 슬립 부스트 기능이 중단됩니다.</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>0.0 ... 32767.0</td>
<td>슬립 부스트 스텝.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>40.47 Set 1 wake-up deviation</td>
<td>파라미터 40.41 Set 1 sleep mode를 Internal로 설정한 경우에 슬립 모드를 해제하는 레벨을 정의합니다. 이 값이 프로세스 셋포인트와 피드백 사이의 오차를 초과할 때 40.48 Set 1 wake-up delay 이후에 슬립 모드가 해제됩니다. 이것은 단위는 파라미터 40.12 Set 1 unit selection에서 선택할 수 있습니다. 또한 파라미터 40.31 Set 1 deviation inversion을 참고하십시오.</td>
<td>0.00 rpm, % or Hz</td>
<td></td>
</tr>
<tr>
<td>-32768.00 ... 32767.00 rpm, % 또는 Hz</td>
<td>슬립 모드의 해제 레벨.</td>
<td>1 = 1 unit</td>
<td></td>
</tr>
<tr>
<td>40.48 Set 1 wake-up delay</td>
<td>실제 슬립 모드가 해제되기 전에 지연 시간을 정의합니다. 자세한 사항은 40.47 Set 1 wake-up deviation을 참고하십시오. 시간 지연 타이머는 40.47 Set 1 wake-up deviation에 정의한 해제 레벨을 초과한 경우에 시작하고 그렇지 않은 경우에 리셋됩니다.</td>
<td>0.50 s</td>
<td></td>
</tr>
<tr>
<td>0.00 ... 60.00 s</td>
<td>슬립 모드의 해제 지연 시간.</td>
<td>1 = 1 s</td>
<td></td>
</tr>
<tr>
<td>40.49 Set 1 tracking mode</td>
<td>트래킹 모드를 허용 또는 금지시키는 소스를 선택합니다. 이 모드에서 프로세스 PID 제어의 출력은 파라미터 40.50 Set 1 tracking ref selection에 선택한 값으로 대체됩니다. 자세한 사항은 트래킹 (페이지 60)을 참고하십시오.</td>
<td>Not selected</td>
<td></td>
</tr>
<tr>
<td>Not selected</td>
<td>0.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Selected</td>
<td>1.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

40.50 Set 1 tracking ref selection

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not selected</td>
<td>선택 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A11 scaled</td>
<td>12.12 A11 scaled value (페이지 158 참고).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>A12 scaled</td>
<td>12.22 A12 scaled value (페이지 160 참고).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>FB A ref1</td>
<td>03.05 FB A reference 1 (페이지 119 참고).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>FB A ref2</td>
<td>03.06 FB A reference 2 (페이지 120 참고).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

40.51 Set 1 trim mode

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>트림 기능 금지.</td>
<td>0</td>
</tr>
<tr>
<td>Direct</td>
<td>트림 기능 허용.</td>
<td>1</td>
</tr>
<tr>
<td>Proportional</td>
<td>트링 기능 허용.</td>
<td>2</td>
</tr>
<tr>
<td>Combined</td>
<td>트링 기능 허용.</td>
<td>3</td>
</tr>
</tbody>
</table>

40.52 Set 1 trim selection

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque</td>
<td>기준 토크 트링.</td>
<td>1</td>
</tr>
<tr>
<td>Speed</td>
<td>기준 속도 트링.</td>
<td>2</td>
</tr>
<tr>
<td>Frequency</td>
<td>기준 주파수 트링.</td>
<td>3</td>
</tr>
</tbody>
</table>

40.53 Set 1 trimmed ref pointer

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not selected</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td>A11 scaled</td>
<td>12.12 A11 scaled value (페이지 158 참고).</td>
<td>1</td>
</tr>
<tr>
<td>A12 scaled</td>
<td>12.22 A12 scaled value (페이지 160 참고).</td>
<td>2</td>
</tr>
<tr>
<td>FB A ref1</td>
<td>03.05 FB A reference 1 (페이지 119 참고).</td>
<td>3</td>
</tr>
<tr>
<td>FB A ref2</td>
<td>03.06 FB A reference 2 (페이지 120 참고).</td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>40.54</td>
<td>Set 1 trim mix</td>
<td>파라미터 40.51 *Set 1 trim mode가 Combined으로 선택된 경우에 최종 트리밍 계수로 사용할 비율을 정의합니다. 0.000 = 100% 비례 트리밍, 0.500 = 50% 비례 트리밍, 1.000 = 100% 직접 트리밍.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 1.000 트리밍 사용 비율.</td>
</tr>
<tr>
<td>40.55</td>
<td>Set 1 trim adjust</td>
<td>트리밍 계수의 배율 (Multiplier)을 정의합니다. 이 값은 파라미터 40.51 *Set 1 trim mode의 결과값에 곱해집니다. 최종적으로 이 곱셈 결과는 40.56 *Set 1 trim source에 반영됩니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-100.000 ... 100.000 트리밍 계수의 배율.</td>
</tr>
<tr>
<td>40.56</td>
<td>Set 1 trim source</td>
<td>트림 기능이 적용되는 최종 기준값을 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>PID ref</td>
<td>PID 셋포인트.</td>
</tr>
<tr>
<td></td>
<td>PID output</td>
<td>PID 제어기 출력.</td>
</tr>
<tr>
<td>40.57</td>
<td>PID set1/set2 selection</td>
<td>프로세스 PID 제어기의 파라미터 세트 1 (파라미터 40.07...40.56) 또는 세트 2 (41 Process PID set 2)를 선택하는 소스를 설정합니다. 0 = 프로세스 PID 제어기의 파라미터 세트 1 사용. 1 = 프로세스 PID 제어기의 파라미터 세트 2 사용.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not selected 0.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1 디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2 디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI3 디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI4 디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI5 디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI6 디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO1 디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2 디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other [bit] 기타 소스 선택.</td>
</tr>
<tr>
<td>40.60</td>
<td>Set 1 PID activation</td>
<td>프로세스 PID 제어기의 허용 또는 금지시기는 소스를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>source</td>
<td>프로세스 PID 제어기가 허용 또는 금지시키는 소스를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>또한 파라미터 40.07 *Set 1 PID operation mode를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = 프로세스 PID 제어기 금지.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = 프로세스 PID 제어기 허용.</td>
</tr>
<tr>
<td></td>
<td>Off</td>
<td>0.</td>
</tr>
<tr>
<td></td>
<td>On</td>
<td>1.</td>
</tr>
<tr>
<td></td>
<td>Follow Ext1/Ext2</td>
<td>프로세스 PID 제어기는 EXT1에서 급지되고 EXT2에서 허용됩니다.</td>
</tr>
<tr>
<td></td>
<td>selection</td>
<td>또한 파라미터 19.11 Ext1/Ext2 selection를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1 디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2 디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI3 디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI4 디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI5 디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>40.16</td>
<td>Set point 1 source</td>
<td>프로세스 세트 1의 입력값을 선택할 수 있는 파라미터입니다. 이 값은 모드버스 I/O 데이터로부터 전송될 수 있습니다.</td>
</tr>
<tr>
<td>40.17</td>
<td>Set point 2 source</td>
<td>프로세스 세트 2의 입력값을 선택할 수 있는 파라미터입니다. 이 값은 모드버스 I/O 데이터로부터 전송될 수 있습니다.</td>
</tr>
</tbody>
</table>

41 Process PID set 2

프로세스 PID 제어를 위한 파라미터 세트 2.
여기서 40.01...40.06, 40.01, 40.09는 세트 1과 2에 공통으로 사용됩니다.
페이지 578 및 579의 제어 체인 블록도를 확인하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.07</td>
<td>Set 2 PID operation mode</td>
<td>파라미터 40.07 Set 2 PID operation mode를 참고하십시오.</td>
<td>Off</td>
</tr>
<tr>
<td>41.08</td>
<td>Set 2 feedback 1 source</td>
<td>파라미터 40.08 Set 2 feedback 1 source를 참고하십시오.</td>
<td>All scaled</td>
</tr>
<tr>
<td>41.09</td>
<td>Set 2 feedback 2 source</td>
<td>파라미터 40.09 Set 2 feedback 2 source를 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.10</td>
<td>Set 2 feedback function</td>
<td>파라미터 40.10 Set 2 feedback function를 참고하십시오.</td>
<td>In1</td>
</tr>
<tr>
<td>41.11</td>
<td>Set 2 feedback filter time</td>
<td>파라미터 40.11 Set 2 feedback filter time를 참고하십시오.</td>
<td>0.000 s</td>
</tr>
<tr>
<td>41.12</td>
<td>Set 2 unit selection</td>
<td>파라미터 41.21...41.24 및 41.47의 단위를 선택합니다.</td>
<td>%</td>
</tr>
<tr>
<td>rpm</td>
<td>rpm</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Hz</td>
<td>Hz</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>PID user unit 2</td>
<td>사용자 정의 단위 2. 여기서 단위평은 제어 패널의 Menu – Settings – Edit text에서 편집할 수 있습니다.</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>41.14</td>
<td>Set 2 setpoint scaling</td>
<td>파라미터 40.14 Set 2 setpoint scaling를 참고하십시오.</td>
<td>100.00</td>
</tr>
<tr>
<td>41.15</td>
<td>Set 2 output scaling</td>
<td>파라미터 40.15 Set 2 output scaling를 참고하십시오.</td>
<td>1500.00; 1800.00 (95.20 b0)</td>
</tr>
<tr>
<td>41.16</td>
<td>Set 2 setpoint 1 source</td>
<td>파라미터 40.16 Set 2 setpoint 1 source를 참고하십시오.</td>
<td>Internal setpoint</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FeEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>41.17</td>
<td>Set 2 setpoint 2 source</td>
<td>파라미터 40.17 Set 1 setpoint 2 source를 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.18</td>
<td>Set 2 setpoint function</td>
<td>파라미터 40.18 Set 1 setpoint function을 참고하십시오.</td>
<td>In1 or In2</td>
</tr>
<tr>
<td>41.19</td>
<td>Set 2 internal setpoint sel1</td>
<td>파라미터 40.19 Set 1 internal setpoint sel1을 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.20</td>
<td>Set 2 internal setpoint sel2</td>
<td>파라미터 40.20 Set 1 internal setpoint sel2을 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.21</td>
<td>Set 2 internal setpoint 1</td>
<td>파라미터 40.21 Set 1 internal setpoint 1을 참고하십시오.</td>
<td>0.00</td>
</tr>
<tr>
<td>41.22</td>
<td>Set 2 internal setpoint 2</td>
<td>파라미터 40.22 Set 1 internal setpoint 2을 참고하십시오.</td>
<td>0.00</td>
</tr>
<tr>
<td>41.23</td>
<td>Set 2 internal setpoint 3</td>
<td>파라미터 40.23 Set 1 internal setpoint 3을 참고하십시오.</td>
<td>0.00</td>
</tr>
<tr>
<td>41.24</td>
<td>Set 2 internal setpoint 4</td>
<td>파라미터 40.24 Set 1 internal setpoint 4을 참고하십시오.</td>
<td>0.00</td>
</tr>
<tr>
<td>41.25</td>
<td>Set 2 setpoint selection</td>
<td>파라미터 40.25 Set 1 setpoint selection을 참고하십시오.</td>
<td>Setpoint source 1</td>
</tr>
<tr>
<td>41.26</td>
<td>Set 2 setpoint min</td>
<td>파라미터 40.26 Set 1 setpoint min을 참고하십시오.</td>
<td>0.00</td>
</tr>
<tr>
<td>41.27</td>
<td>Set 2 setpoint max</td>
<td>파라미터 40.27 Set 1 setpoint max를 참고하십시오.</td>
<td>32767.00</td>
</tr>
<tr>
<td>41.28</td>
<td>Set 2 setpoint increase time</td>
<td>파라미터 40.28 Set 1 setpoint increase time을 참고하십시오.</td>
<td>0.0 s</td>
</tr>
<tr>
<td>41.29</td>
<td>Set 2 setpoint decrease time</td>
<td>파라미터 40.29 Set 1 setpoint decrease time을 참고하십시오.</td>
<td>0.0 s</td>
</tr>
<tr>
<td>41.30</td>
<td>Set 2 setpoint freeze enable</td>
<td>파라미터 40.30 Set 1 setpoint freeze enable을 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.31</td>
<td>Set 2 deviation inversion</td>
<td>파라미터 40.31 Set 1 deviation inversion을 참고하십시오.</td>
<td>Not inverted (Ref - Fbk)</td>
</tr>
<tr>
<td>41.32</td>
<td>Set 2 gain</td>
<td>파라미터 40.32 Set 1 gain을 참고하십시오.</td>
<td>1.00</td>
</tr>
<tr>
<td>41.33</td>
<td>Set 2 integration time</td>
<td>파라미터 40.33 Set 1 integration time을 참고하십시오.</td>
<td>60.0 s</td>
</tr>
<tr>
<td>41.34</td>
<td>Set 2 derivation time</td>
<td>파라미터 40.34 Set 1 derivation time을 참고하십시오.</td>
<td>0.000 s</td>
</tr>
<tr>
<td>41.35</td>
<td>Set 2 derivation filter time</td>
<td>파라미터 40.35 Set 1 derivation filter time을 참고하십시오.</td>
<td>0.0 s</td>
</tr>
<tr>
<td>41.36</td>
<td>Set 2 output min</td>
<td>파라미터 40.36 Set 1 output min을 참고하십시오.</td>
<td>0.0</td>
</tr>
<tr>
<td>41.37</td>
<td>Set 2 output max</td>
<td>파라미터 40.37 Set 1 output max를 참고하십시오.</td>
<td>1500.0; 1800.0 (95.20 b0)</td>
</tr>
<tr>
<td>41.38</td>
<td>Set 2 output freeze enable</td>
<td>파라미터 40.38 Set 1 output freeze enable을 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.39</td>
<td>Set 2 deadband range</td>
<td>파라미터 40.39 Set 1 deadband range를 참고하십시오.</td>
<td>0.0</td>
</tr>
<tr>
<td>41.40</td>
<td>Set 2 deadband delay</td>
<td>파라미터 40.40 Set 1 deadband delay를 참고하십시오.</td>
<td>0.0 s</td>
</tr>
<tr>
<td>41.41</td>
<td>Set 2 sleep mode</td>
<td>파라미터 40.41 Set 1 sleep mode를 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.42</td>
<td>Set 2 sleep enable</td>
<td>파라미터 40.42 Set 1 sleep enable을 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.43</td>
<td>Set 2 sleep level</td>
<td>파라미터 40.43 Set 1 sleep level을 참고하십시오.</td>
<td>0.0</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>41.44</td>
<td>Set 2 sleep delay</td>
<td>파라미터 40.44 Set 1 sleep delay를 참고하십시오.</td>
<td>60.0 s</td>
</tr>
<tr>
<td>41.45</td>
<td>Set 2 sleep boost time</td>
<td>파라미터 40.45 Set 1 sleep boost time를 참고하십시오.</td>
<td>0.0 s</td>
</tr>
<tr>
<td>41.46</td>
<td>Set 2 sleep boost step</td>
<td>파라미터 40.46 Set 1 sleep boost step를 참고하십시오.</td>
<td>0.0</td>
</tr>
<tr>
<td>41.47</td>
<td>Set 2 wake-up deviation</td>
<td>파라미터 40.47 Set 1 wake-up deviation를 참고하십시오.</td>
<td>0.00 rpm, % or Hz</td>
</tr>
<tr>
<td>41.48</td>
<td>Set 2 wake-up delay</td>
<td>파라미터 40.48 Set 1 wake-up delay를 참고하십시오.</td>
<td>0.50 s</td>
</tr>
<tr>
<td>41.49</td>
<td>Set 2 tracking mode</td>
<td>파라미터 40.49 Set 1 tracking mode를 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.50</td>
<td>Set 2 tracking ref selection</td>
<td>파라미터 40.50 Set 1 tracking ref selection을 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.51</td>
<td>Set 2 trim mode</td>
<td>파라미터 40.51 Set 1 trim mode를 참고하십시오.</td>
<td>Off</td>
</tr>
<tr>
<td>41.52</td>
<td>Set 2 trim selection</td>
<td>파라미터 40.52 Set 1 trim selection를 참고하십시오.</td>
<td>Torque</td>
</tr>
<tr>
<td>41.53</td>
<td>Set 2 trimmed ref pointer</td>
<td>파라미터 40.53 Set 1 trimmed ref pointer를 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td>41.54</td>
<td>Set 2 trim mix</td>
<td>파라미터 40.54 Set 1 trim mix를 참고하십시오.</td>
<td>0.000</td>
</tr>
<tr>
<td>41.55</td>
<td>Set 2 trim adjust</td>
<td>파라미터 40.55 Set 1 trim adjust를 참고하십시오.</td>
<td>1.000</td>
</tr>
<tr>
<td>41.56</td>
<td>Set 2 trim source</td>
<td>파라미터 40.56 Set 1 trim source를 참고하십시오.</td>
<td>PID ref</td>
</tr>
<tr>
<td>41.60</td>
<td>Set 2 PID activation source</td>
<td>파라미터 40.60 Set 1 PID activation source를 참고하십시오.</td>
<td>On</td>
</tr>
</tbody>
</table>

43 Brake chopper

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.01</td>
<td>Braking resistor temperature</td>
<td>제동저항의 추정 온도를 백분율로 표시합니다. 여기서 100 %는 제동저항의 최대 부하 (43.09 Brake resistor Pmax cont)로 정시간 동안 부하가 인가되었을 때의 최종 온도입니다. 이 값은 저장기 제조업체에서 권장하는데도 불구하고 실제 환경에서 파라미터 43.08...43.10의 설정을 기반으로 온도를 추정합니다. 이 값은 익기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

0.0 ... 120.0%

제동저항의 추정 온도. 1 = 1%

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
</table>
| 43.06 | Brake chopper function | 제동조차 제어를 허용 또는 급지시키거나 과부하 보호 방식을 선택합니다. Note: 제동조차 기능을 허용하기 전에 다음을 확인하십시오.
• 제동저항을 올바르게 설치하십시오.
• 과전압 제어 기능 (30.30 Overvoltage control)을 급지시키십시오.
• 전압 범위 (95.01 Supply voltage) 설정이 올바른지 확인하십시오. | Disabled |

Disabled 제동조차 제어 금지. 0

Enabled with thermal model 제동조차 제어를 허용하고 열모델을 기반으로 제동저항을 보호합니다. 제동저항의 사양서를 참고하여 43.08...43.12를 정확히 입력하십시오. 1
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enabled without thermal model</td>
<td>제동초퍼 제어를 허용하지만, 열모델은 이용하지 않습니다. 예를 들어, 제동저항이 과열되면 드라이브를 정지시키기 위한 별도의 열동 제전기가 설치된 경우에 사용할 수 있습니다. 과전압 제어 기능 (30.30 Overvoltage control)을 금지시키십시오.</td>
<td>2</td>
</tr>
</tbody>
</table>
| | Overvoltage peak protection | 과전압 상태에서만 제동초퍼 제어를 허용합니다. 이 설정은 주로 다음과 같은 시스템에 적용합니다.
- 정상 운전 중에는 급제동이 필요하지 않습니다.
- 비상 정지 또는 사용자 부주의로 갑자기 출력이 차단된 경우에 모터 권선에 의한 저지 전압으로부터 드라이브를 보호해야 합니다. 위와 같은 상황에서 모터는 정상에 저장된 자기 에너지 (Magnetic energy)를 빠른 시간 동안 드라이브로 방출합니다. 이 에너지로 인해 드라이브의 과전압 해지를 초래할 수 있으므로 제동저항으로 이를 보호하는 것이 바람직합니다. 단, 제동저항은 관성 에너지가 아닌 자기 에너지를 감량하므로 적절한 용량을 사용할 수 있습니다. | 3 |
| 43.07 | Brake chopper run enable | 제동초퍼를 순간적으로 온/오프시키는 소스를 선택합니다.
0 = 브레이크 초퍼 차단.
1 = 브레이크 초퍼 동작.
단, 이 파라미터는 화염형 드라이브에서 입력이 차단되어 네트워크로 에너지 전달이 불가능한 경우에만 사용할 수 있습니다. | On |
| | Off | 0. | 0 |
| | On | 1. | 1 |
| | Other [bit] | 기타 소스 선택. | - |
| 43.08 | Brake resistor thermal tc | 제동저항의 열 시정수를 정의합니다. 이것은 제동저항의 열모델에 사용되며 온도가 허용온도의 63 %에 도달하는 시간을 나타냅니다. | 0 s |
| | 0 … 10000 s | 제동저항의 열 시정수. | 1 = 1 s |
| 43.09 | Brake resistor Pmax cont | 제동저항의 최대 연속 부하 (저항의 열 방출 용량 kW)를 정의합니다. 이 값은 제동저항의 열모델에 사용됩니다. 자세한 사항은 파라미터 43.06 Brake chopper function 및 제동저항 제조업체의 사양서를 참고하십시오. | 0.00 kW |
| | 0.00 … 10000.00 kW | 제동저항의 최대 연속 부하. | 1 = 1 kW |
| 43.10 | Brake resistance | 제동저항의 저항 값을 정의합니다. 이 값은 제동저항의 열모델에 사용됩니다. 자세한 사항은 파라미터 43.06 Brake chopper function을 참고하십시오. | 0.0 ohm |
| | 0.0 … 1000.0 ohm | 제동저항의 저항값. | 1 = 1 ohm |
번호 이름/값 설명
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.11</td>
<td>Brake resistor fault limit</td>
<td>열모델 기반의 제동저항 보호 기능의 폴트값을 정의합니다. 이 값을 초과한 경우에 드라이브는 트립 정지 (7183 BR excess temperature) 합합니다. 이 값은 파라미터 43.09 Brake resistor Pmax cont에 정의한 최대 연속 부하가 인가되었을 때의 온도를 백분율로 표시합니다.</td>
</tr>
<tr>
<td></td>
<td>0 … 150%</td>
<td>제동저항의 온도 폴트값.</td>
</tr>
<tr>
<td>43.12</td>
<td>Brake resistor warning limit</td>
<td>열모델 기반의 제동저항 보호 기능의 경고값을 정의합니다. 이 값을 초과한 경우에 드라이브는 경고 운전 (A793 BR excess temperature) 합입니다. 이 값은 파라미터 43.09 Brake resistor Pmax cont에 정의한 최대 연속 부하가 인가되었을 때의 온도를 백분율로 표시합니다.</td>
</tr>
<tr>
<td></td>
<td>0 … 150%</td>
<td>제동저항의 온도 경고값.</td>
</tr>
</tbody>
</table>

44 Mechanical brake control

44.01 Brake control status

기계 브레이크 제어 상태 워드를 표시합니다.
이 파라미터는 읽기 전용입니다.

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Open command</td>
<td>브레이크의 열림/닫힘 명령 (0 = 닫힘, 1 = 열림) 이 비트를 브레이크 출력 소프트웨어 선택하시십시오.</td>
</tr>
<tr>
<td>1</td>
<td>Opening torque request</td>
<td>1 = 드라이브 로직에서 브레이크 열림이 요청되었습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Hold stopped request</td>
<td>1 = 드라이브 로직에서 정지 홀드가 요청되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Ramp to stopped</td>
<td>1 = 드라이브 로직에서 램프 정지가 요청되었습니다.</td>
</tr>
<tr>
<td>4</td>
<td>Enabled</td>
<td>1 = 브레이크 제어가 활성화되었습니다.</td>
</tr>
<tr>
<td>5</td>
<td>Closed</td>
<td>1 = 브레이크 제어 로직이 브레이크 닫힘 상태입니다.</td>
</tr>
<tr>
<td>6</td>
<td>Opening</td>
<td>1 = 브레이크 제어 로직이 브레이크 열림 동작 상태입니다.</td>
</tr>
<tr>
<td>7</td>
<td>Open</td>
<td>1 = 브레이크 제어 로직이 브레이크 열림 상태입니다.</td>
</tr>
<tr>
<td>8</td>
<td>Closing</td>
<td>1 = 브레이크 제어 로직이 브레이크 닫힘 동작 상태입니다.</td>
</tr>
<tr>
<td>9…15</td>
<td>예약된 영역</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h…FFFFh | 기계 브레이크의 제어 상태 워드. | 1 = 1 |

44.02 Brake torque memory

브레이크가 닫힌 시점에서의 순간 토크를 표시합니다. 이 값은 브레이크가 열리는 순간에 기준 토크로 사용될 수 있습니다. 자세한 사항은 파라미터 44.09 Brake open torque source 및 44.10 Brake open torque를 참고하십시오.

-1600.0 … 1600.0% 브레이크가 닫힌 시점에서의 순간 토크,

44.03 Brake open torque reference

브레이크가 열리는 시점에서의 순간 토크를 표시합니다. 자세한 사항은 파라미터 44.09 Brake open torque source 및 44.10 Brake open torque를 참고하십시오.

-1600.0 … 1600.0% 브레이크가 열리는 시점에서의 순간 토크,

See par. 46.03

See par. 46.03
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>DefBfEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.06</td>
<td>Brake control enable</td>
<td>기계 브레이크의 제어 로직을 허용 또는 금지시키는 소스를 선택합니다. 0 = 브레이크 제어 금지. 1 = 브레이크 제어 허용.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not selected 0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected 1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1 디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2 디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI3 디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI4 디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI5 디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI6 디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO1 디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2 디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>44.07</td>
<td>Brake acknowledge selection</td>
<td>브레이크의 동작 상태를 감시하는 소스를 선택합니다. 브레이크 동작 확인 신호가 손실된 경우에 어떻게 반응할지 파라미터 44.07 Brake fault selection에서 선택합니다. 0 = 브레이크 닫힘. 1 = 브레이크 열림.</td>
<td>No acknowledge</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Off 0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On 1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>No acknowledge</td>
<td>브레이크 감시 없음.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1 디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2 디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI3 디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI4 디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI5 디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI6 디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO1 디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2 디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>44.08</td>
<td>Brake open delay</td>
<td>브레이크 열림 지연 시간을 정의합니다. 지연 타이머는 모터가 자화되고 부하가 요구하는 수준으로 모터 토크 (44.03 Brake open torque reference)가 증가할 때 시작됩니다. 타이머 시작과 동시에 브레이크 제어 로직이 브레이크 동작 신호를 출력하고 이때 브레이크가 열리기 시작합니다. 브레이크 제조업체에서 권장하는 열림 지연 시간을 설정하십시오.</td>
<td>0.00 s</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 ... 5.00 s 브레이크 열림 지연 시간.</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>44.09</td>
<td>Brake open torque source</td>
<td>브레이크가 열리는 시점에서의 토크 소스를 선택합니다. 이 파라미터는 다음과 같은 경우에만 기준 토크로 사용됩니다. • 젤릿값이 파라미터 44.10 Brake open torque의 설정값보다 큽니다. • 파라미터 44.10 Brake open torque의 설정값과 부호가 같습니다. 자세한 사항은 파라미터 44.10 Brake open torque를 참고하십시오.</td>
<td>Brake open torque</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zero 선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A11 scaled 12.12 A11 scaled value (페이지 158 참고).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A12 scaled 12.22 A12 scaled value (페이지 160 참고).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FBA ref1 03.05 FB A reference 1 (페이지 119 참고).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FBA ref2 03.06 FB A reference 2 (페이지 120 참고).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brake torque memory 파라미터 44.02 Brake torque memory 사용.</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Brake open torque 파라미터 44.10 Brake open torque 사용.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other 기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>44.10</td>
<td>Brake open torque</td>
<td>브레이크가 열리는 시점에서의 최소 토크 및 부호를 정의합니다. 파라미터 44.09 Brake open torque source에서 선택한 토크 소스는 젤릿값이 이 파라미터보다 크고 부호가 같은 경우에만 브레이크가 열리는 시점에서의 기준 토크로 사용됩니다. Note: 이 파라미터는 스칼라 제어 모드에서 유호하지 않습니다.</td>
<td>0.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1600.0 ... 1600.0% 브레이크가 열리는 시점에서의 최소 토크.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>44.11</td>
<td>Keep brake closed</td>
<td>브레이크가 열리지 않도록 방지하는 소스를 선택합니다. 0 = 브레이크 정상 동작. 1 = 브레이크 닫힘 유지. Note: 이 파라미터는 드라이브가 운전 중인 경우에 변경할 수 없습니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not selected 0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected 1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1 디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2 디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI3 디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI4 디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI5 디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI6 디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO1 디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2 디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other [bit] 기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>44.12</td>
<td>Brake close request</td>
<td>외부 브레이크 닫힘 요청 신호의 소스를 선택합니다. 이 파라미터가 1로 세트되면 내부 로직보다 우선하여 브레이크를 닫습니다. 0 = 브레이크 정상 동작. 1 = 브레이크 닫힘.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 엔코더스 제어에서 드라이브가 모듈레이팅을 시작하였지만, 만약 이 파라미터에 의해 브레이크가 5s초 이상 닫힘 상태로 유지되고 있다면 드라이브는 강제로 브레이크를 닫고 트립 정지 (71A5 Mechanical brake opening not allowed)할 것입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 이 파라미터는 드라이브가 운전 중인 경우에 변경할 수 없습니다.</td>
<td></td>
</tr>
</tbody>
</table>

	Not selected	0.	
	Selected	1.	
D11	디지털 입력 D1 (10.02 DI delayed status, 비트 0).	2	
D12	디지털 입력 D2 (10.02 DI delayed status, 비트 1).	3	
D13	디지털 입력 D3 (10.02 DI delayed status, 비트 2).	4	
D14	디지털 입력 D4 (10.02 DI delayed status, 비트 3).	5	
D15	디지털 입력 D5 (10.02 DI delayed status, 비트 4).	6	
D16	디지털 입력 D6 (10.02 DI delayed status, 비트 5).	7	
DIO1	디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).	10	
DIO2	디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).	11	
Other [bit]	기타 소스 선택.	-	

| 44.13 | Brake close delay | 브레이크 닫힘 지연 시간을 정의합니다. 이 파라미터는 브레이크 제조업체에서 권장하는 기계적인 동작 상태에 따라 설정하십시오. 이때 모터는 실제로 브레이크가 닫히는지까지 운전 상태를 유지합니다. |

| 0.00 ... 60.00 s | 브레이크 닫힘 지연 시간. | 100 = 1 s | |

| 44.14 | Brake close level | 브레이크 닫기 시작하는 속도를 정의합니다. 모터 속도가 이 파라미터의 설정값 이하로 브레이크 닫힘 미리 지연 시간 (44.15 Brake close level delay)동안 유지되면 드라이브는 브레이크 닫힘 명령을 요청합니다. Note: 정지 모드 (21.03 Stop mode)가 Ramp인지 확인하십시오. |

| 0.00 ... 1000.00 rpm | 브레이크를 닫기 시작하는 속도. | See par. 46.01 | |

| 44.15 | Brake close level delay | 브레이크 닫힘 미리 지연 시간을 정의합니다. 차세한 사항은 파라미터 44.14 Brake close level를 참고하십시오. |

| 0.00 ... 10.00 s | 브레이크 닫힘 미리 지연 시간. | 100 = 1 s | |

| 44.16 | Brake reopen delay | 브레이크가 닫히는 상태에서 다시 열림을 시도할 때의 지연 시간을 정의합니다. |

<p>| 0.00 ... 10.00 s | 브레이크 재열림 지연 시간. | 100 = 1 s | |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/Fbeq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.17</td>
<td>Brake fault function</td>
<td>기계 브레이크의 오류가 발생한 경우에 드라이브가 어떻게 반응할지 선택합니다.
Note: 만약 파라미터 44.07 Brake acknowledge selection가 No acknowledge로 선택되었다면 동작 확인은 금지되며, 경고 및 필트가 발생하지 않습니다. 단, 브레이크 열림 상태는 항상 감사합니다.</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>브레이크를 열거나 닫을 때, 동작 확인 신호가 브레이크 제어 로직과 일치하지 않는 경우에 드라이브는 트립 정지 (71A2 Mechanical brake closing failed / 71A3 Mechanical brake opening failed) 합니다. 또는 모터의 기동 조건을 만족 (예: 필요한 기동 토크를 달성하지 못한 경우)시키지 못해 브레이크의 열림 조건을 충족할 수 없는 경우에 드라이브는 트립 정지 (71A5 Mechanical brake opening not allowed) 합니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>브레이크를 열거나 닫을 때, 동작 확인 신호가 브레이크 제어 로직과 일치하지 않는 경우에 드라이브는 경고 운전 (71A1 Mechanical brake closing failed / 71A2 Mechanical brake opening failed) 합니다. 또는 모터의 기동 조건을 만족시키지 못해 브레이크의 열림 조건을 충족할 수 없는 경우에 드라이브는 경고 운전 (71A5 Mechanical brake opening not allowed) 합니다.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Open fault</td>
<td>브레이크를 닫을 때, 동작 확인 신호가 브레이크 제어 로직과 일치하지 않는 경우에 드라이브는 경고 운전 (71A1 Mechanical brake closing failed) 합니다.
브레이크를 열 때, 동작 확인 신호가 브레이크 제어 로직과 일치하지 않는 경우에 드라이브는 트립 정지 (71A3 Mechanical brake opening failed) 합니다. 또는 모터의 기동 조건을 충족시키지 못해 브레이크의 열림 조건을 만족할 수 없는 경우에 드라이브는 트립 정지 (71A5 Mechanical brake opening not allowed) 합니다.</td>
<td>2</td>
</tr>
<tr>
<td>44.18</td>
<td>Brake fault delay</td>
<td>드라이브가 브레이크 닫힘 동작을 수행하는 동안에 폴트 지연 시간을 정의합니다. 정지 상태 또는 열림 동작에서 폴트 지연이 아닙니다.</td>
<td>0.00 s 0.00 ... 60.00 s 브레이크 닫힘 폴트 지연 시간.</td>
</tr>
</tbody>
</table>

45 Energy efficiency

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/Fbeq</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.01</td>
<td>Saved GW hours</td>
<td>에너지 절약 계산기 구성. See also section Energy saving calculators (page 88). 온전과 비교하여 절약된 전력량을 GWh 단위로 표시합니다. 이 파라미터는 45.02 Saved MW hours가 0으로 경신될 때마다 1씩 증가하며, 45.21 Energy calculations reset에서 0으로 클리어할 수 있습니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0...65535 GWh</td>
<td>절약된 GWh 단위의 전력량. 1 = 1 GWh</td>
<td></td>
</tr>
<tr>
<td>45.02</td>
<td>Saved MW hours</td>
<td>드라이브 온전을 DOL (Direct-On-Line) 운전과 비교하여 절약된 전력량을 MWh 단위로 표시합니다. 이 파라미터는 45.03 Saved kW hours가 0으로 경신될 때마다 1씩 증가하며, 45.21 Energy calculations reset에서 0으로 클리어할 수 있습니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0...999 MWh</td>
<td>절약된 MWh 단위의 전력량. 1 = 1 MWh</td>
<td></td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.03</td>
<td>Saved kW hours</td>
<td>드라이브 운전을 DOL (Direct-On-Line) 운전과 비교하여 절약된 전력량은 MWh 단위로 표시합니다. 내부 제동초퍼를 허용한 경우에 모터의 발전 에너지는 열로 소모된 것으로 간주되지만, 제동초퍼를 금지시킨 경우에는 발전 에너지도 여기에 포함됩니다. 이 값은 파라미터 45.21 Energy calculations reset에서 0으로 클리어할 수 있습니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

| 0.0 ... 999.9 kWh | 절약된 kWh 단위의 전력량. | 10 = 1 kWh |

| 45.05 | Saved money x1000 | 드라이브 운전을 DOL (Direct-On-Line) 운전과 비교하여 절약된 에너지를 1000 단위 금액으로 표시합니다. 이 값은 45.06 Saved money가 0으로 경신될 때마다 1씩 증가하며, 45.21 Energy calculations reset에서 0으로 클리어할 수 있습니다. 이것의 화폐 단위는 파라미터 45.17 Tariff currency unit에서 선택할 수 있습니다. 이 파라미터는 읽기 전용입니다. | - |

| 0...4294967295 thousands | 1000 단위 절약 금액. | - |

| 45.06 | Saved money | 드라이브 운전을 DOL (Direct-On-Line) 운전과 비교하여 절약된 에너지를 금액으로 표시합니다. 이 값은 45.14 Tariff selection에서 선택한 kWh당 전기 요금으로 절약 금액을 계산하며, 45.21 Energy calculations reset에서 0으로 클리어할 수 있습니다. 이것의 화폐 단위는 파라미터 45.17 Tariff currency unit에서 선택할 수 있습니다. 이 파라미터는 읽기 전용입니다. | - |

| 0.00 ... 999.99 units | 절약 금액. | 1 = 1 unit |

| 45.08 | CO2 reduction in kilotons | 드라이브 운전을 DOL (Direct-On-Line) 운전과 비교하여 감소된 이산화탄소 배출량은 kt (Metric kiloton) 단위로 표시합니다. 이 값은 45.09 CO2 reduction in tons가 0으로 경신될 때마다 1씩 증가하며, 45.21 Energy calculations reset에서 0으로 클리어할 수 있습니다. 이 파라미터는 읽기 전용입니다. | - |

| 0...65535 metric kilotons | 감소된 kt 단위의 이산화탄소 배출량. | 1 = 1 metric kiloton |

| 45.09 | CO2 reduction in tons | 드라이브 운전을 DOL (Direct-On-Line) 운전과 비교하여 감소된 이산화탄소 배출량은 t 단위로 표시합니다. 이 값은 45.18 CO2 conversion factor에 정의한 MWh당 절약 에너지로 감소된 이산화탄소 배출량 (기본값은 0.5 t/MWh)을 계산하며, 45.21 Energy calculations reset에서 0으로 클리어할 수 있습니다. 이 파라미터는 읽기 전용입니다. | - |

<p>| 0.0 ... 999.9 metric tons | 감소된 t 단위의 이산화탄소 배출량. | 1 = 1 metric ton |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/Fbeq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.11</td>
<td>Energy optimizer</td>
<td>에너지 최적화 기능을 허용 또는 금지시킵니다. 이 기능은 모터가 경부하에서 운전 중인 경우에 모터의 자화 전류를 감소시켜 입력되는 에너지를 절약합니다. 이렇게하면 부하 토크와 속도에 따라 전체 시스템 효율이 1...20 % 정도 증가할 것입니다.</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Enable</td>
<td>에너지 최적화 허용.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kWh 당 전기 요금 1을 정의합니다. 이들은 파라미터 45.14 Tariff selection에 따라 이 값 또는 45.13 Energy tariff 2로 선택될 수 있으며, 화폐 단위는 파라미터 45.17 Tariff currency unit에서 선택할 수 있습니다.</td>
<td></td>
</tr>
<tr>
<td>45.12</td>
<td>Energy tariff 1</td>
<td>kWh 당 전기 요금 1을 정의합니다. 자세한 사항은 파라미터 45.12 Energy tariff 1을 참고하십시오.</td>
<td>1.000 units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 4294967.295 units</td>
<td>-</td>
</tr>
<tr>
<td>45.13</td>
<td>Energy tariff 2</td>
<td>kWh 당 전기 요금 1을 정의합니다. 자세한 사항은 파라미터 45.12 Energy tariff 1을 참고하십시오.</td>
<td>2.000 units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 4294967.295 units</td>
<td>-</td>
</tr>
<tr>
<td>45.14</td>
<td>Tariff selection</td>
<td>에너지 절약 계산기에 적용할 전기 요금을 선택합니다. 0 = 45.12 Energy tariff 1 1 = 45.13 Energy tariff 2</td>
<td>Energy tariff 1</td>
</tr>
<tr>
<td></td>
<td>Energy tariff 1</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Energy tariff 2</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DI1</td>
<td>디지털 입력 DI1 (10.02 DI delayed status, 비트 0).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DI2</td>
<td>디지털 입력 DI2 (10.02 DI delayed status, 비트 1).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>DI3</td>
<td>디지털 입력 DI3 (10.02 DI delayed status, 비트 2).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>DI4</td>
<td>디지털 입력 DI4 (10.02 DI delayed status, 비트 3).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>DI5</td>
<td>디지털 입력 DI5 (10.02 DI delayed status, 비트 4).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>DI6</td>
<td>디지털 입력 DI6 (10.02 DI delayed status, 비트 5).</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>DIO1</td>
<td>디지털 입력/출력 DIO1 (11.02 DIO delayed status, 비트 0).</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>DIO2</td>
<td>디지털 입력/출력 DIO2 (11.02 DIO delayed status, 비트 1).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>45.17</td>
<td>Tariff currency unit</td>
<td>에너지 절약 계산기에 적용할 화폐 단위를 선택합니다.</td>
<td>EUR</td>
</tr>
<tr>
<td></td>
<td>Local currency</td>
<td>국내 통화. 화폐 단위는 제어 패널의 Menu – Settings – Edit texts 항목에서 편집할 수 있습니다.</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>EUR</td>
<td>유로.</td>
<td>101</td>
</tr>
<tr>
<td></td>
<td>USD</td>
<td>미국 달러.</td>
<td>102</td>
</tr>
<tr>
<td>45.18</td>
<td>CO2 conversion factor</td>
<td>절약된 에너지를 이산화탄소 배출량으로 환산하기 위한 변환 계수를 정의합니다.</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 65.535 tn/MWh</td>
<td>tn/MWh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>절약 에너지를 이산화탄소 배출량으로 환산하는 계수.</td>
<td>1 = 1 tn/MWh</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>45.19</td>
<td>Comparison power</td>
<td>DOL (Direct-On-Line) 운전에서의 소비 전력을 정의합니다. 현재 구동 시스템의 부하 용량을 설정하십시오. 이 값은 에너지 절약 계산기의 비교값으로 사용됩니다. Note: 절약된 에너지는 이 값에 따라 점화도가 결정됩니다. 이 값을 입력하지 않으면 모터의 정격 용량이 적용되지만, 실제 운용에서는 정격 부하에서 운전되는 경우가 거의 없으므로 실제 시스템의 설계 용량을 입력해야 합니다.</td>
<td>0.0 kW</td>
</tr>
<tr>
<td>45.21</td>
<td>Energy calculations reset</td>
<td>파라미터 45.01...45.09를 0으로 클리어시킵니다. Done</td>
<td>See par. 46.04</td>
</tr>
<tr>
<td></td>
<td>Reset</td>
<td>리셋 완료.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 값은 리셋 후에 Done으로 자동 복귀됩니다.</td>
<td>1</td>
</tr>
</tbody>
</table>

46 Monitoring/scaling settings
속도 감시 설정, 실제 신호 필터링, 신호 스케일링 설정.

<table>
<thead>
<tr>
<th>46.01</th>
<th>Speed scaling</th>
<th>속도에 대한 �프 시간 (파라미터 그룹 23 Speed reference ramp)을 결정하는 최종 속도를 정의합니다. 즉, �프 시간은 30.12 Maximum speed가 아닌 이 파라미터와 관련이 있습니다. 특히 이 값은 속도와 관련된 파라미터의 16비트 스케일링 값이며, 필드버스 및 마스터/말로워 등의 통신에서 20000에 해당됩니다.</th>
<th>1500.00 rpm; 1800.00 rpm (95.20 b0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>속도 �프 시간을 결정하는 최종 속도.</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>46.02</td>
<td>Frequency scaling</td>
<td>주파수에 대한 �프 시간 (파라미터 그룹 28 Frequency reference chain)을 결정하는 최종 주파수를 정의합니다. 즉, �프 시간은 30.14 Maximum frequency가 아닌 이 파라미터와 관련이 있습니다. 특히 이 값은 주파수와 관련된 파라미터의 16비트 스케일링 값이며, 필드버스 및 마스터/말로워 등의 통신에서 20000에 해당됩니다.</td>
<td>50.00 Hz; 60.00 Hz (95.20 b0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>주파수 �프 시간을 결정하는 최종 주파수.</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>46.03</td>
<td>Torque scaling</td>
<td>모터 토크와 관련된 파라미터의 16비트 스케일링 값이며, 필드버스 및 마스터/말로워 등의 통신에서 10000에 해당됩니다. 또한 파라미터 46.42 Torque decimals을 참고하십시오.</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>필드버스 통신에서 10000에 해당하는 토크.</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>46.04</td>
<td>Power scaling</td>
<td>출력 전력과 관련된 파라미터의 16비트 스케일링 값이며, 필드버스 및 마스터/말로워 등의 통신에서 10000에 해당됩니다. 이값의 단위는 96 16 Unit selection에서 선택할 수 있습니다.</td>
<td>1000.00 kW or hp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>필드버스 통신에서 10000에 해당하는 전력.</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>46.05</td>
<td>Current scaling</td>
<td>모터 전류와 관련된 파라미터의 16비트 스케일링 값이며, 필드버스 및 마스터/팔로워 등의 통신에서 10000에 해당됩니다.</td>
<td>10000 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>필드버스 통신에서 10000에 해당하는 전류.</td>
<td>1 = 1 A</td>
</tr>
<tr>
<td>46.06</td>
<td>Speed ref zero scaling</td>
<td>필드버스 통신에서 10진수 0에 해당하는 속도를 정의합니다. 예를 들어, 이 파라미터가 500이면 0...20000 범위는 500...[46.01] rpm이 됩니다. Note: 이 파라미터는 ABB 드라이브 통신 프로파일에서만 유효합니다.</td>
<td>0.00 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>필드버스 통신에서 10진수 0에 해당하는 속도.</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>46.07</td>
<td>Frequency ref zero scaling</td>
<td>필드버스 통신에서 10진수 0에 해당하는 주파수를 정의합니다. 예를 들어, 이 파라미터가 30이면 0...20000 범위는 30...[46.02] Hz가 됩니다. Note: 이 파라미터는 ABB 드라이브 통신 프로파일에서만 유효합니다.</td>
<td>0.00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>필드버스 통신에서 10진수 0에 해당하는 주파수.</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>46.11</td>
<td>Filter time motor speed</td>
<td>파라미터 01.01 Motor speed used, 01.02 Motor speed estimated, 01.04 Encoder 1 speed filtered 및 01.05 Encoder 2 speed filtered의 필터링 시간을 정의합니다.</td>
<td>500 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>모터 속도 필터링 시간.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>46.12</td>
<td>Filter time output frequency</td>
<td>파라미터 01.06 Output frequency의 필터링 시간을 정의합니다.</td>
<td>500 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>출력 주파수 필터링 시간.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>46.13</td>
<td>Filter time motor torque</td>
<td>파라미터 01.10 Motor torque의 필터링 시간을 정의합니다.</td>
<td>100 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>모터 토크 필터링 시간.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>46.14</td>
<td>Filter time power out</td>
<td>파라미터 01.14 Output power의 필터링 시간을 정의합니다.</td>
<td>100 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>출력 전력 필터링 시간.</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>46.21</td>
<td>At speed hysteresis</td>
<td>속도 제어 모드에서 실제 속도가 기준 속도를 추종하여 정상 상태로 진입한 것을 판단하는 히스테리시스 밴드를 정의합니다. 브레이크는 실제 속도 (90.01 Motor speed for control)가 기준 속도 (22.87 Speed reference act 7)를 추종하여 이 파라미터의 밴드 안에 존재하면 정상 상태에 진입한 것으로 간주하고 파라미터 06.11 Main status word의 비트 8을 1로 세트시킵니다.</td>
<td>100.00 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00 ... 30000.00 rpm</td>
<td>속도 제어에서 정상 상태를 판단하는 히스테리시스 밴드.</td>
<td>See par. 46.01</td>
<td></td>
</tr>
<tr>
<td>46.22</td>
<td>At frequency hysteresis</td>
<td>주파수 제어 모드에서 출력 주파수가 기준 주파수를 추종하여 정상 상태로 진입한 것을 판단하는 히스테리시스 밴드를 정의합니다. 브레이크는 출력 주파수 (01.06 Output frequency)가 기준 주파수 (28.96 Frequency ref ramp input)를 추종하여 이 파라미터의 밴드 안에 존재하면 정상 상태에 진입한 것으로 간주하고 파라미터 06.11 Main status word의 비트 8을 1로 세트시킵니다.</td>
<td>10.00 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00 ... 1000.00 Hz</td>
<td>주파수 제어에서 정상 상태를 판단하는 히스테리시스 밴드.</td>
<td>See par. 46.02</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>46.23</td>
<td>At torque hysteresis</td>
<td>토크 제어 모드에서 출력 토크가 기준 토크를 주종하여 정상 상태로 진입한 것을 판단하는 히스테리시스 밴드를 정의합니다. 드라이브는 출력 토크 (01.10 Motor torque)가 기준 토크 (26.73 Torque reference act 4)를 주종하여 이 파라미터의 밴드 안에 존재하면 정상 상태에 진입한 것으로 간주하고 파라미터 06.11 Main status word의 비트 8을 1로 세트시킵니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>히스테리시스 밴드 [(06.11 \text{ 비트 } 8 = 1)]</td>
<td>10.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 300.0% 토크 제어에서 정상 상태를 판단하는 히스테리시스 밴드.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>46.31</td>
<td>Above speed limit</td>
<td>속도 제어 모드에서 실제 속도가 시스템의 위험 속도에 도달했는지 판단하는 한계 속도를 정의합니다. 만약 실제 속도가 이 값을 초과한 경우에 06.17 Drive status word 2의 비트 10이 1로 세트됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>위험 속도 판단을 위한 한계 속도.</td>
<td>1500.00 rpm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 ... 30000.00 rpm 위험 속도 판단을 위한 한계 속도.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>46.32</td>
<td>Above frequency limit</td>
<td>주파수 제어에서 출력 주파수가 위험 주파수에 도달했는지 판단하는 한계 주파수를 정의합니다. 만약 출력 주파수가 이 값을 초과하면 06.17 Drive status word 2의 비트 10이 1로 세트됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>위험 주파수 판단을 위한 한계 주파수.</td>
<td>50.0 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 ... 1000.00 Hz 위험 주파수 판단을 위한 한계 주파수.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>46.33</td>
<td>Above torque limit</td>
<td>토크 제어 모드에서 실제 토크가 시스템의 위험 토크에 도달했는지 판단하는 한계 토크를 정의합니다. 만약 실제 속도가 이 값을 초과한 경우에 06.17 Drive status word 2의 비트 10이 1로 세트됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>위험 토크 판단을 위한 한계 토크.</td>
<td>300.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0 ... 1600.0% 위험 토크 판단을 위한 한계 토크.</td>
<td>See par. 46.03</td>
</tr>
<tr>
<td>46.42</td>
<td>Torque decimals</td>
<td>토크와 관련된 파라미터의 소수점 자릿수를 정의합니다.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...2 토크 파라미터의 소수점 자릿수.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>47 Data storage</td>
<td>기타 파라미터 소스 및 대상 설정을 설정하여 데이터를 쓰거나 읽을 수 있는 데이터 저장 파라미터. 데이터 탭에 따라 별개의 저장 파라미터가 있습니다. 단, 정수형 파라미터는 실수형 파라미터의 소스로 사용될 수 없습니다. 자세한 사항은 데이터 저장 파라미터 (페이지 91) 절을 참고하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.01 Data storage 1</td>
<td>32비트 실수형 데이터 저장 파라미터 1입니다. 파라미터 47.01…47.08은 기타 파라미터의 소스로 사용될 수 있는 32비트 실수형 파라미터입니다. 그리고 데이터 범위 (47.31…47.38)를 지정하여 16비트 데이터 저장 파라미터로 사용할 수도 있습니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real32</td>
<td>32비트 실수형 데이터 저장 파라미터 1.</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>See par. 47.31</td>
<td>See par. 47.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.02 Data storage 2</td>
<td>32비트 실수형 데이터 저장 파라미터 2입니다. 자세한 사항은 47.01 Data storage 1 real32를 참고하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real32</td>
<td>32비트 실수형 데이터 저장 파라미터 2.</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>See par. 47.32</td>
<td>See par. 47.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.03 Data storage 3</td>
<td>32비트 실수형 데이터 저장 파라미터 3입니다. 자세한 사항은 47.01 Data storage 1 real32를 참고하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real32</td>
<td>32비트 실수형 데이터 저장 파라미터 3.</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>See par. 47.33</td>
<td>See par. 47.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.04 Data storage 4</td>
<td>32비트 실수형 데이터 저장 파라미터 4입니다. 자세한 사항은 47.01 Data storage 1 real32를 참고하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real32</td>
<td>32비트 실수형 데이터 저장 파라미터 4.</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>See par. 47.34</td>
<td>See par. 47.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.05 Data storage 5</td>
<td>32비트 실수형 데이터 저장 파라미터 5입니다. 자세한 사항은 47.01 Data storage 1 real32를 참고하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real32</td>
<td>32비트 실수형 데이터 저장 파라미터 5.</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>See par. 47.35</td>
<td>See par. 47.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.06 Data storage 6</td>
<td>32비트 실수형 데이터 저장 파라미터 6입니다. 자세한 사항은 47.01 Data storage 1 real32를 참고하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real32</td>
<td>32비트 실수형 데이터 저장 파라미터 6.</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>See par. 47.36</td>
<td>See par. 47.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.07 Data storage 7</td>
<td>32비트 실수형 데이터 저장 파라미터 7입니다. 자세한 사항은 47.01 Data storage 1 real32를 참고하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real32</td>
<td>32비트 실수형 데이터 저장 파라미터 7.</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>See par. 47.37</td>
<td>See par. 47.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.08 Data storage 8</td>
<td>32비트 실수형 데이터 저장 파라미터 8입니다. 자세한 사항은 47.01 Data storage 1 real32를 참고하십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>real32</td>
<td>32비트 실수형 데이터 저장 파라미터 8.</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>See par. 47.38</td>
<td>See par. 47.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.11 Data storage 1</td>
<td>32비트 정수형 데이터 저장 파라미터 1입니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>int32</td>
<td>32비트 정수형 데이터 저장 파라미터 1.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>-2147483648 … 2147483647</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>47.12</td>
<td>Data storage 2 int32</td>
<td>32비트 정수형 데이터 저장 파라미터 2입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>32비트 정수형 데이터 저장 파라미터 2.</td>
<td>-</td>
</tr>
<tr>
<td>47.13</td>
<td>Data storage 3 int32</td>
<td>32비트 정수형 데이터 저장 파라미터 3입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>32비트 정수형 데이터 저장 파라미터 3.</td>
<td>-</td>
</tr>
<tr>
<td>47.14</td>
<td>Data storage 4 int32</td>
<td>32비트 정수형 데이터 저장 파라미터 4입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>32비트 정수형 데이터 저장 파라미터 4.</td>
<td>-</td>
</tr>
<tr>
<td>47.15</td>
<td>Data storage 5 int32</td>
<td>32비트 정수형 데이터 저장 파라미터 5입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>32비트 정수형 데이터 저장 파라미터 5.</td>
<td>-</td>
</tr>
<tr>
<td>47.16</td>
<td>Data storage 6 int32</td>
<td>32비트 정수형 데이터 저장 파라미터 6입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>32비트 정수형 데이터 저장 파라미터 6.</td>
<td>-</td>
</tr>
<tr>
<td>47.17</td>
<td>Data storage 7 int32</td>
<td>32비트 정수형 데이터 저장 파라미터 7입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>32비트 정수형 데이터 저장 파라미터 7.</td>
<td>-</td>
</tr>
<tr>
<td>47.18</td>
<td>Data storage 8 int32</td>
<td>32비트 정수형 데이터 저장 파라미터 8입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>32비트 정수형 데이터 저장 파라미터 8.</td>
<td>-</td>
</tr>
<tr>
<td>47.21</td>
<td>Data storage 1 int16</td>
<td>16비트 정수형 데이터 저장 파라미터 1입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768 ... 32767</td>
<td>16비트 정수형 데이터 저장 파라미터 1.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.22</td>
<td>Data storage 2 int16</td>
<td>16비트 정수형 데이터 저장 파라미터 2입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768 ... 32767</td>
<td>16비트 정수형 데이터 저장 파라미터 2.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.23</td>
<td>Data storage 3 int16</td>
<td>16비트 정수형 데이터 저장 파라미터 3입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768 ... 32767</td>
<td>16비트 정수형 데이터 저장 파라미터 3.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.24</td>
<td>Data storage 4 int16</td>
<td>16비트 정수형 데이터 저장 파라미터 4입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768 ... 32767</td>
<td>16비트 정수형 데이터 저장 파라미터 4.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.25</td>
<td>Data storage 5 int16</td>
<td>16비트 정수형 데이터 저장 파라미터 5입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768 ... 32767</td>
<td>16비트 정수형 데이터 저장 파라미터 5.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.26</td>
<td>Data storage 6 int16</td>
<td>16비트 정수형 데이터 저장 파라미터 6입니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>-32768 ... 32767</td>
<td>16비트 정수형 데이터 저장 파라미터 6.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>47.27</td>
<td>Data storage 7 int16</td>
<td>16비트 정수형 데이터 저장 파라미터 7입니다.</td>
<td>0</td>
</tr>
<tr>
<td>47.28</td>
<td>Data storage 8 int16</td>
<td>16비트 정수형 데이터 저장 파라미터 8입니다.</td>
<td>0</td>
</tr>
<tr>
<td>47.31</td>
<td>Data storage 1 real32 type</td>
<td>파라미터 47.01의 16비트 스케일링 값을 정의합니다. 이 파라미터에서 데이터 범위를 지정하여 16비트 저장 파라미터로 사용할 수 있습니다. 이 파라미터의 설정에 따라 해당하는 데이터 저장 파라미터의 범위가 자동으로 변경됩니다.</td>
<td>Unscaled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>참교</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unscaled</td>
<td>스케일링 없음. 데이터 범위: -2147483.264…2147473.264.</td>
<td>0</td>
</tr>
<tr>
<td>Transparent</td>
<td>스케일링: 1 = 1. 데이터 범위: -32768…32767.</td>
<td>1</td>
</tr>
<tr>
<td>General</td>
<td>스케일링: 100 = 1. 데이터 범위: -327.68…327.67.</td>
<td>2</td>
</tr>
<tr>
<td>Torque</td>
<td>파라미터 46.03 Torque scaling 범위로 스케일링. 데이터 범위: -1600.0…1600.0.</td>
<td>3</td>
</tr>
<tr>
<td>Speed</td>
<td>파라미터 46.01 Speed scaling 범위로 스케일링. 데이터 범위: -30000.00…30000.00.</td>
<td>4</td>
</tr>
<tr>
<td>Frequency</td>
<td>파라미터 46.02 Frequency scaling 범위로 스케일링. 데이터 범위: -600.00…600.00.</td>
<td>5</td>
</tr>
</tbody>
</table>

<p>| 47.32 | Data storage 2 real32 type | 파라미터 47.02의 16비트 스케일링 값을 정의합니다. 자세한 사항은 47.31 Data storage 1 real32 type을 참고하십시오. | Unscaled |
| 47.33 | Data storage 3 real32 type | 파라미터 47.03의 16비트 스케일링 값을 정의합니다. 자세한 사항은 47.31 Data storage 1 real32 type을 참고하십시오. | Unscaled |
| 47.34 | Data storage 4 real32 type | 파라미터 47.04의 16비트 스케일링 값을 정의합니다. 자세한 사항은 47.31 Data storage 1 real32 type을 참고하십시오. | Unscaled |
| 47.35 | Data storage 5 real32 type | 파라미터 47.05의 16비트 스케일링 값을 정의합니다. 자세한 사항은 47.31 Data storage 1 real32 type을 참고하십시오. | Unscaled |
| 47.36 | Data storage 6 real32 type | 파라미터 47.06의 16비트 스케일링 값을 정의합니다. 자세한 사항은 47.31 Data storage 1 real32 type을 참고하십시오. | Unscaled |
| 47.37 | Data storage 7 real32 type | 파라미터 47.07의 16비트 스케일링 값을 정의합니다. 자세한 사항은 47.31 Data storage 1 real32 type을 참고하십시오. | Unscaled |
| 47.38 | Data storage 8 real32 type | 파라미터 47.08의 16비트 스케일링 값을 정의합니다. 자세한 사항은 47.31 Data storage 1 real32 type을 참고하십시오. | Unscaled |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.01</td>
<td>Node ID number</td>
<td>드라이브의 노드 ID를 정의합니다. 네트워크에 접속된 모든 제어 유닛은 고유한 노드 ID를 가져야 합니다.</td>
</tr>
<tr>
<td>1...32</td>
<td>노드 ID.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.03</td>
<td>Baud rate</td>
<td>통신 속도를 정의합니다.</td>
</tr>
<tr>
<td>38.4 kbps</td>
<td>38.4 kbit/s.</td>
<td>1</td>
</tr>
<tr>
<td>57.6 kbps</td>
<td>57.6 kbit/s.</td>
<td>2</td>
</tr>
<tr>
<td>86.4 kbps</td>
<td>86.4 kbit/s.</td>
<td>3</td>
</tr>
<tr>
<td>115.2 kbps</td>
<td>115.2 kbit/s.</td>
<td>4</td>
</tr>
<tr>
<td>230.4 kbps</td>
<td>230.4 kbit/s.</td>
<td>5</td>
</tr>
<tr>
<td>49.04</td>
<td>Communication loss time</td>
<td>제어 패널 (또는 PC 통) 통신의 타임아웃 (Timeout) 시간을 설정합니다. 만약 통신이 타임아웃되면 드라이브가 어떻게 반응할지 파라미터 49.05 Communication loss action에서 선택할 수 있습니다.</td>
</tr>
<tr>
<td>0.3 ... 3000.0 s</td>
<td>제어 패널 및 PC 통의 통신 타임아웃 시간.</td>
<td>10.0 s</td>
</tr>
<tr>
<td>49.05</td>
<td>Communication loss action</td>
<td>제어 패널 (또는 PC 통) 통신에서 타임아웃이 발생한 경우에 어떻게 반응할지 선택합니다. 또한 파라미터 49.07 Panel comm supervision force 및 49.08 Secondary comm. loss action을 참고하십시오. 파라미터를 변경한 후에 이 설정을 적용하기 위해서는 제어 유닛을 재부팅하거나 49.06 Refresh settings에서 Refresh를 선택하십시오.</td>
</tr>
<tr>
<td>Fault</td>
<td>Fault</td>
<td>다시 메시지 발생</td>
</tr>
<tr>
<td>Last speed</td>
<td>드라이브는 A7EE Control panel loss 경고를 발생하고 기준값은 현재 운전 중인 기준 속도 또는 주파수로 고정됩니다. 기준 속도/주파수는 850 ms의 저역 통과 필터를 거친 실제 속도를 기반으로 결정됩니다. 이것은 제어 패널을 제어에 이용하거나 파라미터 49.07 Panel comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>Speed ref safe</td>
<td>드라이브는 A7EE Control panel loss 경고를 발생하고 기준값은 운전 모드에 따라 22.41 Speed ref safe (또는 28.41 Frequency ref safe)로 고정됩니다. 이것은 제어 패널을 제어에 이용하거나 파라미터 49.07 Panel comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>49.06</td>
<td>Refresh settings</td>
<td>파라미터 49.01...49.05의 설정을 실제로 적용합니다. Note: Refresh를 설정하면 PC 풀과의 통신이 중단될 수 있으니 드라이브를 다시 연결하십시오.</td>
</tr>
<tr>
<td>49.07</td>
<td>Panel comm supervision force</td>
<td>각 제어 위치에서 별도로 제어 패널의 감시 기능을 허용합니다. (페이지 20의 로컬 제어 vs. 외부 제어를 참고하십시오.) 이 파라미터는 제어 패널이 드라이브 제어용으로 사용되는지 않지만, 제어 패널의 통신 상태를 감시할 필요가 있는 경우에 사용합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ext 1</td>
<td>1 = 제어 위치가 Ext 1인 경우에 제어 패널의 통신 상태를 감시합니다.</td>
<td>제어 패널 감시 선택.</td>
</tr>
<tr>
<td>1</td>
<td>Ext 2</td>
<td>1 = 제어 위치가 Ext 2인 경우에 제어 패널의 통신 상태를 감시합니다.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Local</td>
<td>1 = 제어 위치가 로컬인 경우에 제어 패널의 통신 상태를 감시합니다.</td>
<td></td>
</tr>
<tr>
<td>3...15</td>
<td>예약된 영역.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0000b...0111b</th>
<th>제어 패널 감시 선택.</th>
<th>1 = 1</th>
</tr>
</thead>
</table>

| 49.08 | Secondary comm. loss action | 제어 패널 또는 PC 통신이 중단된 경우에 드라이브가 어떻게 반응할지 선택합니다. 이것은 다음과 같은 경우에 제어 패널의 통신 상태를 감시합니다. • 제어 패널을 제어 소스 및 기준 소스로 사용하지 않았습니다. • 파라미터 49.07 Panel comm supervision force에서 감시 기능을 허용하지 않았습니다. | No action |

| Warning | 드라이브 경고 운전 (A7EE Control panel loss). **WARNING:** 먼저 신호가 중단되어도 운전을 계속하는 것이 안전한지 확인하십시오. |

49.14	Panel speed reference unit	기준 속도를 제어 패널에서 입력할 때의 단위를 선택합니다.	rpm
rpm	rpm.	0	
%	패밀리 46.01 Speed scaling에 대한 백분율.	1	

<p>| 49.15 | Minimum ext speed ref panel | 외부 제어 모드에서 제어 패널로 기준 속도를 입력할 때의 하한값을 정의합니다. 단, 로컬 제어 모드에서는 파라미터 그룹 30 Limits의 설정값으로 제한됩니다. | -30000.00 rpm |
| -30000.00 ... 30000.00 rpm | 기준 속도 하한값. | See par. 46.01 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.16</td>
<td>Maximum ext speed ref panel</td>
<td>외부 제어 모드에서 제어 패널로 기준 속도를 입력할 때의 상한값을 정의합니다. 단, 로컬 제어 모드에서는 파라미터 그룹 30 Limits의 설정값으로 제한됩니다.</td>
<td>30000.00 rpm</td>
</tr>
<tr>
<td></td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>기준 속도 상한값.</td>
<td>See par. 46.01</td>
</tr>
<tr>
<td>49.17</td>
<td>Minimum ext frequency ref panel</td>
<td>외부 제어 모드에서 제어 패널로 기준 주파수를 입력할 때의 하한값을 정의합니다. 단, 로컬 제어 모드에서는 파라미터 그룹 30 Limits의 설정값으로 제한됩니다.</td>
<td>-500.00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500.00 ... 500.00 Hz</td>
<td>기준 주파수 하한값.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>49.18</td>
<td>Maximum ext frequency ref panel</td>
<td>외부 제어 모드에서 제어 패널로 기준 주파수를 입력할 때의 상한값을 정의합니다. 단, 로컬 제어 모드에서는 파라미터 그룹 30 Limits의 설정값으로 제한됩니다.</td>
<td>500.00 Hz</td>
</tr>
<tr>
<td></td>
<td>-500.00 ... 500.00 Hz</td>
<td>기준 주파수 상한값.</td>
<td>See par. 46.02</td>
</tr>
<tr>
<td>49.24</td>
<td>Panel actual source</td>
<td>제어 패널의 오른쪽 상단에 표시할 실제값을 선택합니다. 이 파라미터는 제어 패널이 기준값으로 사용되고 있지 않은 경우에만 유효합니다.</td>
<td>Automatic</td>
</tr>
<tr>
<td></td>
<td>Automatic</td>
<td>사용 중인 기준값 표시.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Process PID setpoint actual</td>
<td>40.03 Process PID setpoint actual (페이지 301 참고).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
</tbody>
</table>

50 Fieldbus adapter (FBA)
필드버스 통신 구성. 자세한 사항은 필드버스 통신 (페이지 551) 장을 참고하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.01</td>
<td>FBA A enable</td>
<td>필드버스 어댑터 A를 허용 또는 금지시키고 설치된 옵션 슬롯을 선택합니다.</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>필드버스 어댑터 A 금지.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Option slot 1</td>
<td>옵션 슬롯 1에 설치된 필드버스 어댑터 A 허용.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Option slot 2</td>
<td>옵션 슬롯 2에 설치된 필드버스 어댑터 A 허용.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Option slot 3</td>
<td>옵션 슬롯 3에 설치된 필드버스 어댑터 A 허용.</td>
<td>3</td>
</tr>
<tr>
<td>50.02</td>
<td>FBA A comm loss func</td>
<td>필드버스 통신에서 타임아웃이 발생한 경우에 드라이브가 어떻게 반응할지 선택합니다. 여기서 동작 지연 시간은 파라미터 50.03 FBA A comm loss t out에 설정합니다. 또한 파라미터 50.26 FBA A comm supervision force를 참고하십시오.</td>
<td>No action</td>
</tr>
<tr>
<td></td>
<td>No action</td>
<td>동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>드라이브 트립 정지 (7510 FBA A communication). 이것은 필드버스 통신을 제어 (시작/정지/기준값)에 이용하거나 파라미터 50.26 FBA A comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
<td>1</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Last speed</td>
<td>드라이브는 A7C1 FBA A communication 경고를 발생하고 기준값은 현재 운전 중인 기준 속도 또는 주파수로 고정됩니다. 이때 기준 속도/주파수는 850 ms의 자역 통과 필터를 거친 실제 속도를 기반으로 결정됩니다. 이것은 필드버스 통신을 제어에 이용하거나 파라미터 50.26 FBA A comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td>3</td>
<td>Speed ref safe</td>
<td>드라이브는 A7C1 FBA A communication 경고를 발생하고 기준값은 운전 모드에 따라 22.41 Speed ref safe (또는 28.41 Frequency ref safe)로 고정됩니다. 이것은 필드버스 통신을 제어에 이용하거나 파라미터 50.26 FBA A comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td>4</td>
<td>Fault always</td>
<td>드라이브 트립 경지 (7510 FBA A communication). 필드버스 통신을 제어에 이용하지 않더라도 폴트를 발생시킵니다.</td>
</tr>
<tr>
<td>5</td>
<td>Warning</td>
<td>드라이브 경고 운전 (A7C1 FBA A communication). 이것은 필드버스 통신을 제어에 이용하거나 파라미터 50.26 FBA A comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td>0.3 s</td>
<td>FBA A comm loss t out</td>
<td>파라미터 FBA 50.02 FBA A comm loss funge 선택한 동작을 수행하기 전에 지연 시간을 정의합니다. 통신 링크에서 새로운 메시지가 업데이트되지 않을 때 타이머가 시작됩니다. 이 파라미터는 통상 마스터의 전송 간격의 3배 이상으로 설정해야 합니다. Note: 전원을 견적후에 약 60초 정도의 부팅 시간 지연이 있습니다. 이 시간 동안에는 통신 감시 기능이 잠시 금지됩니다.</td>
</tr>
<tr>
<td>1 = 1 s</td>
<td>FBA comm loss t out</td>
<td>통신 중단 지연 시간.</td>
</tr>
<tr>
<td>0</td>
<td>FBA A ref1 type</td>
<td>필드버스 어더타 A를 통해 수신할 기준값 1의 16비트 스케일링 값을 정의합니다. Note: 자세한 사항은 필드버스 어더타 매뉴얼을 참고하십시오.</td>
</tr>
<tr>
<td>Auto</td>
<td>FBA A ref1 type</td>
<td>기준값 1이 선택된 제어 모드 (토크 제어, 속도 제어, 주파수 제어)에 따라 자동으로 타입 및 스케일링 값이 적용. 단, 기준값 1이 선택되지 않은 경우에는 Transparent가 됩니다.</td>
</tr>
<tr>
<td>1 = 1. 데이터 범위: -32768...32767.</td>
<td>FBA comm loss t out</td>
<td>Auto</td>
</tr>
<tr>
<td>2</td>
<td>FBA comm loss t out</td>
<td>FBA A ref1 type</td>
</tr>
<tr>
<td>3</td>
<td>FBA comm loss t out</td>
<td>Torque</td>
</tr>
<tr>
<td>4</td>
<td>FBA comm loss t out</td>
<td>Speed</td>
</tr>
<tr>
<td>5</td>
<td>FBA comm loss t out</td>
<td>Frequency</td>
</tr>
</tbody>
</table>

Note

- 필드버스 어더타 A와 통신을 할 때는 16비트 스케일링 값을 입력해야 합니다.
- FBA A comm supervision force를 사용하여 통신 감시 기능을 허용할 수 있습니다.
- FBA A comm loss t out를 사용하여 통신 중단 시간을 설정할 수 있습니다.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.05</td>
<td>FBA A ref2 type</td>
<td>필드버스 어댑터 A를 통해 수신할 기준값 2의 16비트 스케일링 값을 정의합니다. 자세한 사항은 파라미터 50.04 FBA A ref1 type를 참고하십시오.</td>
<td>Auto</td>
</tr>
<tr>
<td>50.07</td>
<td>FBA A actual 1 type</td>
<td>필드버스 어댑터 A를 통해 전송할 실제값 1의 16비트 스케일링 값을 정의합니다. Note: 자세한 사항은 필드버스 어댑터 매뉴얼을 참고하십시오.</td>
<td>Auto</td>
</tr>
<tr>
<td></td>
<td>Auto</td>
<td>파라미터 50.04 FBA A ref1 type에서 선택한 값이 실제값 1로 전송. 스케일링: 1 = 1.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Transparent</td>
<td>파라미터 50.10 FBA A act1 transparent source에서 선택한 값이 실제값 1로 전송. 스케일링: 100 = 1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>파라미터 50.10 FBA A act1 transparent source에서 선택한 값이 실제값 1로 전송. 스케일링: 100 = 1.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Torque</td>
<td>파라미터 01.10 Motor torque이 실제값 1로 전송. 이것은 46.03 Torque scaling 범위로 스케일링됩니다.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
<td>파라미터 01.01 Motor speed used이 실제값 1로 전송. 이것은 46.01 Speed scaling 범위로 스케일링됩니다.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>파라미터 01.06 Output frequency가 실제값 1로 전송. 이것은 46.02 Frequency scaling 범위로 스케일링됩니다.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Position</td>
<td>모터 위치를 실제값 1로 전송. 파라미터 90.06 Motor position scaled를 확인하십시오.</td>
<td>6</td>
</tr>
<tr>
<td>50.08</td>
<td>FBA A actual 2 type</td>
<td>필드버스 어댑터 A를 통해 전송할 실제값 2의 16비트 스케일링 값을 정의합니다. 자세한 사항은 파라미터 50.07 FBA A actual 1 type을 참고하십시오.</td>
<td>Auto</td>
</tr>
<tr>
<td>50.09</td>
<td>FBA A SW transparent source</td>
<td>파라미터 그룹 51 FBA A settings에서 통신 프로파일을 투과형 모드로 선택한 경우에 필드버스 A를 통해 전송할 상태 워드를 선택합니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>선택 없음.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>50.10</td>
<td>FBA A act1 transparent source</td>
<td>파라미터 50.07 FBA A actual 1 type를 Transparent 또는 General로 선택한 경우에 필드버스 A를 통해 전송할 실제값 1을 선택합니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>선택 없음.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>50.11</td>
<td>FBA A act2 transparent source</td>
<td>파라미터 50.08 FBA A actual 2 type을 Transparent 또는 General로 선택한 경우에 필드버스 A를 통해 전송할 실제값 2를 선택합니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>선택 없음.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>50.12</td>
<td>FBA A debug mode</td>
<td>필드버스 A를 통해 송수신된 특정 통신 데이터 (50.13…50.16)를 확인하기 위한 디버깅 모드를 허용 또는 금지시킵니다. 이 기능은 디버깅에만 사용해야 합니다.</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>통신 디버깅 모드 금지.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Fast</td>
<td>통신 디버깅 모드 허용.</td>
<td>1</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.13</td>
<td>FBA A control word</td>
<td>통신 디버깅 모드가 허용된 경우에 필드버스 어댑터 A 통해 제어 워드 번지로 수신된 통신 데이터를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>00000000h ... FFFFFFFFh</td>
<td>필드버스 어댑터 A의 제어 워드.</td>
<td>-</td>
</tr>
<tr>
<td>50.14</td>
<td>FBA A reference 1</td>
<td>통신 디버깅 모드가 허용된 경우에 필드버스 어댑터 A 통해 기준값 1번지로 수신된 통신 데이터를 표시합니다. 단, 이 값은 스케일링되지 않은 순수 데이터입니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>필드버스 어댑터 A의 기준값 1.</td>
<td>-</td>
</tr>
<tr>
<td>50.15</td>
<td>FBA A reference 2</td>
<td>통신 디버깅 모드가 허용된 경우에 필드버스 어댑터 A 통해 기준값 2번지로 수신된 통신 데이터를 표시합니다. 단, 이 값은 스케일링되지 않은 순수 데이터입니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>필드버스 어댑터 A의 기준값 2.</td>
<td>-</td>
</tr>
<tr>
<td>50.16</td>
<td>FBA A status word</td>
<td>통신 디버깅 모드가 허용된 경우에 필드버스 어댑터 A 통해 전송한 상태 워드 데이터를 표시합니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>00000000h ... FFFFFFFFh</td>
<td>필드버스 어댑터 A의 상태 워드.</td>
<td>-</td>
</tr>
<tr>
<td>50.17</td>
<td>FBA A actual value 1</td>
<td>통신 디버깅 모드가 허용된 경우에 필드버스 어댑터 A 통해 전송한 실제값 1을 표시합니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>필드버스 어댑터 A의 실제값 1.</td>
<td>-</td>
</tr>
<tr>
<td>50.18</td>
<td>FBA A actual value 2</td>
<td>통신 디버깅 모드가 허용된 경우에 필드버스 어댑터 A 통해 전송한 실제값 2를 표시합니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>필드버스 어댑터 A의 실제값 2.</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameters 337

50.21 FBA A timelevel sel

필드버스 어댑터 A의 통신 주기를 선택합니다. 아래 표는 각 파라미터 설정에 따른 통신 주기를 나타냅니다.

<table>
<thead>
<tr>
<th>선택</th>
<th>Cyclic high *</th>
<th>Cyclic low **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring</td>
<td>10 ms</td>
<td>2 ms</td>
</tr>
<tr>
<td>Normal</td>
<td>2 ms</td>
<td>10 ms</td>
</tr>
<tr>
<td>Fast</td>
<td>500 µs</td>
<td>2 ms</td>
</tr>
<tr>
<td>Very fast</td>
<td>250 µs</td>
<td>2 ms</td>
</tr>
</tbody>
</table>

* Cyclic high 데이터는 상태 워드, Act 1, Act 2로 구성됩니다.
** Cyclic low 데이터는 파라미터 그룹 52 FBA A data in 및 53 FBA A data out, 및 Acyclic 데이터로 구성됩니다.

여기서 제어 워드, Ref 1 및 Ref 2는 Cyclic high 데이터를 전송할 때마다 인터럽트 (Interrupt)를 발생시켜 처리합니다.

- Normal: 일반 속도. (0)
- Fast: 빠른 속도. (1)
- Very fast: 매우 빠른 속도. (2)
- Monitoring: 느린 속도. (3)

50.26 FBA A comm supervision force

각 제어 위치에서 별도로 필드버스 A의 감시 기능을 허용합니다. (페이지 20의 로컬 제어 vs. 외부 제어를 참고하십시오.) 이 파라미터는 필드버스 A가 드라이브 제어용으로 사용되지 않는 범위, 필드버스 A의 통신 상태를 감시할 필요가 있는 경우에 사용합니다.

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ext 1</td>
<td>1 = 제어 위치가 Ext 1인 경우에 필드버스 A의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Ext 2</td>
<td>1 = 제어 위치가 Ext 2인 경우에 필드버스 A의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>2</td>
<td>Local</td>
<td>1 = 제어 위치가 로컬인 경우에 필드버스 A의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>3...15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0000b...0111b</td>
<td>필드버스 A 감시 선택.</td>
</tr>
</tbody>
</table>

50.31 FBA B enable

필드버스 어댑터 B를 허용 또는 금지시키고 설치된 옵션 슬롯을 선택합니다.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable</td>
<td>필드버스 어댑터 B 금지.</td>
<td>0</td>
</tr>
<tr>
<td>Option slot 1</td>
<td>옵션 슬롯 1에 설치된 필드버스 어댑터 B 허용.</td>
<td>1</td>
</tr>
<tr>
<td>Option slot 2</td>
<td>옵션 슬롯 2에 설치된 필드버스 어댑터 B 허용.</td>
<td>2</td>
</tr>
<tr>
<td>Option slot 3</td>
<td>옵션 슬롯 3에 설치된 필드버스 어댑터 B 허용.</td>
<td>3</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>50.32</td>
<td>FBA B comm loss func</td>
<td>필드버스 통신에서 탐임이동이 발생할 경우에 드라이브가 어떻게 반응할지 선택합니다. 여기서 동작 지연 시간은 파라미터 50.33 FBA B comm loss timeout에 설정합니다. 또한 파라미터 50.56 FBA B comm supervision force를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No action 동작 없음.</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>드라이브 트립 정지 (7520 FBA B communication). 이것은 필드버스 통신을 제어 (시작/정지/기준값)에 이용하거나 파라미터 50.56 FBA B comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td></td>
<td>Last speed</td>
<td>드라이브는 A7C2 FBA B communication 경고를 발생하고 기준값은 현재 운전 중인 기준 속도 또는 주파수로 고정됩니다. 이때 기준 속도/주파수는 850 ms의 저역 통과 필터를 거친 실제 속도를 기반으로 결정됩니다. 이것은 필드버스 통신을 제어에 이용하거나 파라미터 50.56 FBA B comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Speed ref safe</td>
<td>드라이브는 A7C2 FBA B communication 경고를 발생하고 기준값은 운전 모드에 따라 22.41 Speed ref safe (또는 28.41 Frequency ref safe)로 고정됩니다. 이것은 필드버스 통신을 제어에 이용하거나 파라미터 50.56 FBA B comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Fault always</td>
<td>드라이브 트립 정지 (7520 FBA B communication). 필드버스 통신을 제어에 이용하지 않더라도 포트를 발생시킵니다.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>드라이브 경고 운전 (A7C2 FBA B communication). 이것은 필드버스 통신을 제어에 이용하거나 파라미터 50.56 FBA B comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
</tr>
<tr>
<td>50.33</td>
<td>FBA B comm loss timeout</td>
<td>파라미터 50.32 FBA B comm loss func에 선택한 동작을 수행하기 전에 지연 시간을 정의합니다. 통신 링크에서 새로운 메시지가 업데이트되지 않을 때 타이머가 시작됩니다. 이 파라미터는 통상 마스터의 전송 간격의 3배 이상으로 설정해야 합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 전원을 켜 직후에 약 60초 정도의 부팅 시간 지연이 있습니다. 이 시간 동안에는 통신 감시 기능이 잠시 금지됩니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3 ... 6553.5 s 통신 중단 지연 시간.</td>
</tr>
<tr>
<td>50.34</td>
<td>FBA B ref1 type</td>
<td>필드버스 어드터 B를 통해 수신할 기준값 1의 16비트 스케일링 값을 정의합니다. 지세한 사항은 파라미터 50.04 FBA A ref1 type를 참고하십시오.</td>
</tr>
<tr>
<td>50.35</td>
<td>FBA B ref2 type</td>
<td>필드버스 어드터 B를 통해 수신할 기준값 2의 16비트 스케일링 값을 정의합니다. 지세한 사항은 파라미터 50.04 FBA A ref1 type를 참고하십시오.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>50.37</td>
<td>FBA B actual 1 type</td>
<td>필드버스 어댑터 A를 통해 전송할 실제값의 1의 16비트 스케일링 값을 정의합니다. 자세한 사항은 파라미터 50.07 FBA A actual 1 type을 참고하십시오.</td>
</tr>
<tr>
<td>50.38</td>
<td>FBA B actual 2 type</td>
<td>필드버스 어댑터 A를 통해 전송할 실제값의 1의 16비트 스케일링 값을 정의합니다. 자세한 사항은 파라미터 50.07 FBA A actual 1 type을 참고하십시오.</td>
</tr>
<tr>
<td>50.39</td>
<td>FBA B SW transparent source</td>
<td>파라미터 그룹 54 FBA B settings에서 통신 프로파일을 투과형 모드로 선택한 경우에는 필드버스 A를 통해 전송할 상태 워드를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>선택 없음.</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>50.40</td>
<td>FBA B act1 transparent source</td>
<td>파라미터 50.37 FBA actual 1 type을 Transparent 또는 General로 선택한 경우에 필드버스 A를 통해 전송할 실제값의 1을 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>선택 없음.</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>50.41</td>
<td>FBA B act2 transparent source</td>
<td>파라미터 50.38 FBA actual 2 type을 Transparent 또는 General로 선택한 경우에 필드버스 A를 통해 전송할 실제값의 2를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>선택 없음.</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>50.42</td>
<td>FBA B debug mode</td>
<td>필드버스 A를 통해 송수신된 특정 통신 데이터 (50.43…50.48)의 확인하기 위한 디버깅 모드를 허용 또는 금지시킵니다. 이 기능은 디버깅에만 사용해야 합니다.</td>
</tr>
<tr>
<td></td>
<td>Disable</td>
<td>통신 디버깅 모드 금지.</td>
</tr>
<tr>
<td></td>
<td>Fast</td>
<td>통신 디버깅 모드 허용.</td>
</tr>
<tr>
<td>50.43</td>
<td>FBA B control word</td>
<td>통신 디버징 모드가 허용된 경우에 필드버스 어댑터 B를 통해 제어 워드 번호로 수신된 통신 데이터를 표시합니다. 이 파라미터는 원기 전송입니다.</td>
</tr>
<tr>
<td></td>
<td>00000000h …</td>
<td>필드버스 어댑터 B의 제어 워드.</td>
</tr>
<tr>
<td></td>
<td>FFFFFFFFFFFh</td>
<td></td>
</tr>
<tr>
<td>50.44</td>
<td>FBA B reference 1</td>
<td>통신 디버징 모드가 허용된 경우에 필드버스 어댑터 B를 통해 기준값 1번지로 수신된 통신 데이터를 표시합니다. 단, 이 값을 스케일링되지 않은 순수 데이터입니다. 이 파라미터는 원기 전송입니다.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 …</td>
<td>필드버스 어댑터 B의 기준값 1.</td>
</tr>
<tr>
<td></td>
<td>2147483647</td>
<td></td>
</tr>
<tr>
<td>50.45</td>
<td>FBA B reference 2</td>
<td>통신 디버징 모드가 허용된 경우에 필드버스 어댑터 B를 통해 기준값 2번지로 수신된 통신 데이터를 표시합니다. 단, 이 값을 스케일링되지 않은 순수 데이터입니다. 이 파라미터는 원기 전송입니다.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 …</td>
<td>필드버스 어댑터 B의 기준값 2.</td>
</tr>
<tr>
<td></td>
<td>2147483647</td>
<td></td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.46</td>
<td>FBA status word</td>
<td>통신 디버깅 모드가 허용된 경우에 필드버스 어댑터 B를 통해 전송한 상태 워드 데이터를 표시합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00000000h ... FFFFFFFFh</td>
<td>필드버스 어댑터 B의 상태 워드.</td>
<td></td>
</tr>
<tr>
<td>50.47</td>
<td>FBA actual value 1</td>
<td>통신 디버깅 모드가 허용된 경우에 필드버스 어댑터 B를 통해 전송한 실제값 1을 표시합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>필드버스 어댑터 B의 실제값 1.</td>
<td></td>
</tr>
<tr>
<td>50.48</td>
<td>FBA actual value 2</td>
<td>통신 디버깅 모드가 허용된 경우에 필드버스 어댑터 B를 통해 전송한 실제값 2를 표시합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2147483648 ... 2147483647</td>
<td>필드버스 어댑터 B의 실제값 2.</td>
<td></td>
</tr>
<tr>
<td>50.51</td>
<td>FBA timelevel sel</td>
<td>필드버스 어댑터 B의 통신 주기를 선택합니다. 아래 표는 각 파라미터 설정에 따른 통신 주기를 나타냅니다.</td>
<td>Normal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>선택</th>
<th>Cyclic high *</th>
<th>Cyclic low **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring</td>
<td>10 ms</td>
<td>2 ms</td>
</tr>
<tr>
<td>Normal</td>
<td>2 ms</td>
<td>10 ms</td>
</tr>
<tr>
<td>Fast</td>
<td>500 µs</td>
<td>2 ms</td>
</tr>
<tr>
<td>Very fast</td>
<td>250 µs</td>
<td>2 ms</td>
</tr>
</tbody>
</table>

* Cyclic high 데이터는 상태 워드, Act1, Act2로 구성됩니다.
** Cyclic low 데이터는 파라미터 그룹 55 FBA B data in 및 56 FBA B data out, 및 Acyclic 데이터로 구성됩니다.

이러서 제어 워드, Ref1 및 Ref2는 Cyclic high 데이터를 전송할 때마다 인터럽트 (Interrupt)를 발생시켜 처리합니다.

<table>
<thead>
<tr>
<th>선택</th>
<th>속도</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>일반 속도</td>
<td>0</td>
</tr>
<tr>
<td>Fast</td>
<td>빠른 속도</td>
<td>1</td>
</tr>
<tr>
<td>Very fast</td>
<td>매우 빠른 속도</td>
<td>2</td>
</tr>
<tr>
<td>Monitoring</td>
<td>느린 속도</td>
<td>3</td>
</tr>
</tbody>
</table>

PC 통신 또는 모니터링 전용으로 최적화됩니다.
51 FBA A settings

51.01 FBA A type
필드버스 어댑터 모듈의 타입을 표시합니다.
- 0 = 모듈이 없거나 파라미터 50.01 FBA A enable에서 금지시킨 경우.
- 1 = FPBA; 32 = FCAN; 37 = FDNA; 101 = FCNA; 128 = FENA-11/21; 135 = FECA; 136 = FEPL; 485 = FSCA; 이 파라미터로 통신 상태를 확인할 필요가 있는 경우에 사용합니다.

51.02 FBA A Par2
파라미터 51.02…51.26은 설치된 모듈에 따라 구성됩니다.
- 0…65535 필드버스 어댑터 구성 파라미터。

51.26 FBA A Par26
파라미터 51.02 FBA A Par2를 확인해야 합니다.
- 0…65535 필드버스 어댑터 구성 파라미터。

51.27 FBA A par refresh
필드버스 어댑터의 구성 일본에 적용합니다.
- 0…65535 필드버스 어댑터 구성 파라미터。

51.28 FBA A par table ver
필드버스 어댑터의 파라미터 테이블 버전을 표시합니다.
- 0…65535 드라이브 타입 코드.

51.29 FBA A drive type code
필드버스 어댑터 매핑 파일의 드라이브 타입 코드를 표시합니다.
- 0…65535 드라이브 타입 코드.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.30</td>
<td>FBA A mapping file ver</td>
<td>필드버스 어댑터의 매핑 파일 개정번호를 표시합니다. 이것은 드라이브 제어 유닛의 메모리에 저장됩니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>51.31</td>
<td>D2FBA A comm status</td>
<td>필드버스 어댑터의 통신 상태를 표시합니다.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Not configured</td>
<td>구성 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Initializing</td>
<td>어댑터 초기화.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Time out</td>
<td>타임아웃 발생.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Configuration error</td>
<td>어댑터 구성 오류. 드라이브의 파일 시스템에 매핑 파일이 없거나 매핑 파일 업로드를 세 변 이상 실패하였습니다.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Off-line</td>
<td>오프라인 상태.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>On-line</td>
<td>온라인 상태 또는 통신 중단을 검출하지 않도록 구성. 자세한 사항은 필드버스 어댑터의 사용자 매뉴얼을 참조하십시오.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Reset</td>
<td>어댑터 하드웨어 리셋.</td>
<td>6</td>
</tr>
<tr>
<td>51.32</td>
<td>FBA A comm SW ver</td>
<td>필드버스 어댑터의 패치 버전 및 빌드 버전을 표시합니다. 버전 포맷 형식 xxy; xx = 패치 버전; yy = 빌드 버전. 이 파라미터는 읽기 전용입니다. 메: C802 = 200.02 (패치 버전 200, 빌드 버전 02).</td>
<td>-</td>
</tr>
<tr>
<td>51.33</td>
<td>FBA A appl SW ver</td>
<td>필드버스 어댑터의 펌웨어 버전을 표시합니다. 버전 포맷 형식 xxy; x = 메이저 버전; yy = 마이너 버전. 이 파라미터는 읽기 전용입니다. 메: 300 = 3.00 (메이저 버전 3, 마이너 버전 00).</td>
<td>-</td>
</tr>
<tr>
<td>52</td>
<td>FBA A data in</td>
<td>필드버스 어댑터 A의 전송 데이터 매핑 (드라이브 → PLC). Note: 32비트 데이터는 2개의 파라미터가 필요하므로 이 파라미터를 32비트로 선택하면 다음번 파라미터는 자동으로 예약됩니다.</td>
<td></td>
</tr>
<tr>
<td>52.01</td>
<td>FBA A data in1</td>
<td>파라미터 52.01…52.12는 필드버스 어댑터 A를 통해 전송할 데이터를 선택합니다.</td>
<td>None</td>
</tr>
<tr>
<td>52.01</td>
<td>None</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>CW 16bit</td>
<td>제어 워드 (16비트).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ref1 16bit</td>
<td>기준값 REF1 (16비트).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ref2 16bit</td>
<td>기준값 REF2 (16비트).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>SW 16bit</td>
<td>상태 워드 (16비트).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Act1 16bit</td>
<td>실제값 ACT1 (16비트).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Act2 16bit</td>
<td>실제값 ACT2 (16비트).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>CW 32bit</td>
<td>제어 워드 (32비트).</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Ref1 32bit</td>
<td>기준값 REF1 (32비트).</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Ref2 32bit</td>
<td>기준값 REF2 (32비트).</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>SW 32bit</td>
<td>상태 워드 (32비트).</td>
<td>14</td>
</tr>
<tr>
<td>No.</td>
<td>Name/Value</td>
<td>Description</td>
<td>Def/Default</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Act1 32bit</td>
<td>실제값 ACT1 (32비트).</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Act2 32bit</td>
<td>실제값 ACT2 (32비트).</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>SW2 16bit</td>
<td>상태 워드 2 (16비트).</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>52.12 FBA A data in12</td>
<td>필드버스 A 데이터 A의 수신 데이터 매핑 (PLC → 드라이브).</td>
<td></td>
<td>None</td>
</tr>
</tbody>
</table>

53 FBA A data out 필드버스 어댑터 A의 수신 데이터 매핑 (PLC → 드라이브).
Note: 32비트 데이터는 2개의 파라미터가 필요하므로 이 파라미터를 32비트로 선택하면 다음번 파라미터는 자동으로 예약됩니다.

| 53.01 FBA A data out1 | 파라미터 53.01…53.12는 필드버스 어댑터 A를 통해 수신할 데이터를 선택합니다. | None |

None 선택 없음. 0
CW 16bit 제어 워드 (16비트). 1
Ref1 16bit 기준값 REF1 (16비트). 2
Ref2 16bit 기준값 REF2 (16비트). 3
CW 32bit 제어 워드 (32비트). 11
Ref1 32bit 기준값 REF1 (32비트). 12
Ref2 32bit 기준값 REF2 (32비트). 13
CW2 16bit 제어 워드 2 (16비트) 21
Other 기타 소스 선택. |
| 53.12 FBA A data out12 | 파라미터 53.01 FBA A data out1을 참고하십시오. | None |

54 FBA B settings 필드버스 어댑터 B 구성.

| 54.01 FBA B type | 필드버스 어댑터 모듈의 타입을 표시합니다. | |

0 = 모듈이 없거나 파라미터 50.31 FBA B enable에서 급지시킨 경우, 1 = FPBA; 32 = FCAN; 37 = FDNA; 101 = FCNA, 128 = FENA-11/21; 135 = FECA; 136 = FEPL; 485 = FSCA; 이 파라미터는 읽기 전용입니다. |

| 54.02 FBA B Par2 | 파라미터 54.02…54.26은 설치된 모듈에 따라 구성됩니다. 자세한 사항은 필드버스 어댑터 옵션 모듈의 매뉴얼을 참고하십시오. | |

0…65535 필드버스 어댑터 구성 파라미터. 1 = 1
| 54.26 FBA B Par26 | 파라미터 54.02 FBA B Par26를 확인하십시오. | |

0…65535 필드버스 어댑터 구성 파라미터. 1 = 1
| 54.27 FBA B par refresh | 필드버스 어댑터의 구성은 실제로 적용합니다. 새로고침이 완료되면 Done으로 자동 복귀됩니다. |

Note: 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다.

Done 새로고침 완료. 0
54.28 FBA B par table ver
필드버스 어댑터의 파라미터 테이블 버전을 표시합니다.
이것은 드라이브 제어 유닛의 메모리에 저장됩니다.
버전 포맷 형식 axyz; ax = 매개번호; yz = 마이너 버전.
이 파라미터는 읽기 전용입니다.

54.29 FBA B drive type code
필드버스 어댑터 매핑 파일의 드라이브 타입 코드를 표시합니다.
이것은 드라이브 제어 유닛의 메모리에 저장됩니다.
이 파라미터는 읽기 전용입니다.

54.30 FBA B mapping file ver
필드버스 어댑터의 매핑 파일 개정번호를 표시합니다.
이것은 드라이브 제어 유닛의 메모리에 저장됩니다.
이 파라미터는 읽기 전용입니다.

54.31 D2FBA B comm status
필드버스 어댑터의 통신 상태를 표시합니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refresh</td>
<td></td>
<td>파라미터 새로고침.</td>
<td>1</td>
</tr>
<tr>
<td>54.28 FBA B par table ver</td>
<td></td>
<td>필드버스 어댑터의 파라미터 테이블 버전을 표시합니다. 이것은 드라이브 제어 유닛의 메모리에 저장됩니다. 버전 포맷 형식 axyz; ax = 매개번호; yz = 마이너 버전. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>54.29 FBA B drive type code</td>
<td></td>
<td>필드버스 어댑터 매핑 파일의 드라이브 타입 코드를 표시합니다. 이것은 드라이브 제어 유닛의 메모리에 저장됩니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>0…65535</td>
<td>드라이브 타입 코드.</td>
<td></td>
<td>1 = 1</td>
</tr>
<tr>
<td>54.30 FBA B mapping file ver</td>
<td></td>
<td>필드버스 어댑터의 매핑 파일 개정번호를 표시합니다. 이것은 드라이브 제어 유닛의 메모리에 저장됩니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>0…65535</td>
<td>매핑 파일 버전.</td>
<td></td>
<td>1 = 1</td>
</tr>
<tr>
<td>54.31 D2FBA B comm status</td>
<td></td>
<td>필드버스 어댑터의 통신 상태를 표시합니다.</td>
<td>-</td>
</tr>
<tr>
<td>Not configured</td>
<td></td>
<td>구성 없음.</td>
<td>0</td>
</tr>
<tr>
<td>Initializing</td>
<td></td>
<td>어댑터 초기화.</td>
<td>1</td>
</tr>
<tr>
<td>Time out</td>
<td></td>
<td>타임아웃 발생.</td>
<td>2</td>
</tr>
<tr>
<td>Configuration error</td>
<td></td>
<td>어댑터 구성 오류. 드라이브의 파일 시스템에 매핑 파일이 없거나 매핑 파일 엽로드를 세 번 이상 실패하였습니다.</td>
<td>3</td>
</tr>
<tr>
<td>Off-line</td>
<td></td>
<td>오프라인 상태.</td>
<td>4</td>
</tr>
<tr>
<td>On-line</td>
<td></td>
<td>온라인 상태 또는 통신 중단을 검출하지 않도록 구성. 자세한 사항은 필드버스 어댑터의 사용자 매뉴얼을 참조하십시오.</td>
<td>5</td>
</tr>
<tr>
<td>Reset</td>
<td></td>
<td>어댑터 하드웨어 리셋.</td>
<td>6</td>
</tr>
<tr>
<td>54.32 FBA B comm SW ver</td>
<td></td>
<td>필드버스 어댑터의 패치 버전 및 필드 버전을 표시합니다. 버전 포맷 형식 xyy; xx = 패치 버전; yy = 필드 버전. 이 파라미터는 읽기 전용입니다. 예: C802 = 200.02 (패치 버전 200, 필드 버전 02).</td>
<td>-</td>
</tr>
<tr>
<td>54.33 FBA B appl SW ver</td>
<td></td>
<td>필드버스 어댑터의 핸웨어 버전을 표시합니다. 빌드 버전. 이 파라미터는 읽기 전용입니다. 예: 300 = 3.00 (매개번호 3, 마이너 버전 00).</td>
<td>-</td>
</tr>
</tbody>
</table>

55 FBA B data in
필드버스 어댑터 B의 전송 데이터 매핑 (드라이브 → PLC).

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.01 FBA B data in1</td>
<td></td>
<td>파라미터 55.01…55.12는 필드버스 어댑터 A를 통해 전송할 데이터를 선택합니다. None</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td>CW 16bit</td>
<td></td>
<td>제어 워드 (16비트).</td>
<td>1</td>
</tr>
<tr>
<td>Ref1 16bit</td>
<td></td>
<td>기준값 REF1 (16비트).</td>
<td>2</td>
</tr>
<tr>
<td>Ref2 16bit</td>
<td></td>
<td>기준값 REF2 (16비트).</td>
<td>3</td>
</tr>
<tr>
<td>No.</td>
<td>Name/Value</td>
<td>Description</td>
<td>Def</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
<td>-----</td>
</tr>
<tr>
<td>SW 16bit</td>
<td>상태 위치 (16비트).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Act1 16bit</td>
<td>실제 값 ACT1 (16비트).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Act2 16bit</td>
<td>실제 값 ACT2 (16비트).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>CW 32bit</td>
<td>제어 위치 (32비트).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ref1 32bit</td>
<td>기준 값 REF1 (32비트).</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Ref2 32bit</td>
<td>기준 값 REF2 (32비트).</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>SW 32bit</td>
<td>상태 위치 (32비트).</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Act1 32bit</td>
<td>실제 값 ACT1 (32비트).</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Act2 32bit</td>
<td>실제 값 ACT2 (32비트).</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>SW2 16bit</td>
<td>상태 위치 2 (16비트).</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

56 FBA B data out
필드버스 어댑터 B의 수신 데이터 매핑.

<table>
<thead>
<tr>
<th>56.01</th>
<th>FBA B data out1</th>
<th>파라미터 56.01 FBA A data out1는 필드버스 어댑터 A를 통해 수신할 데이터를 선택합니다.</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>선택 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CW 16bit</td>
<td>제어 위치 (16비트).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ref1 16bit</td>
<td>기준 값 REF1 (16비트).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ref2 16bit</td>
<td>기준 값 REF2 (16비트).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CW 32bit</td>
<td>제어 위치 (32비트).</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Ref1 32bit</td>
<td>기준 값 REF1 (32비트).</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Ref2 32bit</td>
<td>기준 값 REF2 (32비트).</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>CW2 16bit</td>
<td>제어 위치 2 (16비트).</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

| 56.12 | FBA B data out12 | 파라미터 56.01 FBA A data out1를 참고하십시오. | None |

58 Embedded fieldbus
임베디드 필드버스 인터페이스 구성.
또한 임베디드 필드버스 통신 (페이지 527) 장을 참고하십시오.

<table>
<thead>
<tr>
<th>58.01</th>
<th>Protocol enable</th>
<th>임베디드 필드버스 인터페이스를 허용 또는 금지시킵니다.</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>통신 금지.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Modbus RTU</td>
<td>통신 허용.</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>58.02</th>
<th>Protocol ID</th>
<th>프로토콜 ID 및 개정번호를 표시합니다. 이 파라미터는 읽기 전용입니다.</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>프로토콜 ID 및 개정번호.</td>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>58.03</td>
<td>Node address</td>
<td>임베디드 필드버스 통신의 노드 주소 (Node address)를 정의합니다. 여기서 노드 주소는 1...247 범위까지 지정할 수 있습니다. 단, 온라인상에서 중복된 주소는 허용하지 않습니다. 파라미터를 변경한 후에 이 설정을 적용하기 위해서는 제어 유닛을 재부팅하거나 58.06 Communication control에서 Refresh settings를 선택하십시오.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>노드 주소.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.04</td>
<td>Baud rate</td>
<td>임베디드 필드버스 링크의 통신 속도를 선택합니다. 파라미터를 변경한 후에 이 설정을 적용하기 위해서는 제어 유닛을 재부팅하거나 58.06 Communication control에서 Refresh settings를 선택하십시오.</td>
<td>19.2 kbps</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.6 kbps 9.6 kbit/s.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.2 kbps 19.2 kbit/s.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>38.4 kbps 38.4 kbit/s.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>57.6 kbps 57.6 kbit/s.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>76.8 kbps 76.8 kbit/s.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>115.2 kbps 115.2 kbit/s.</td>
<td>7</td>
</tr>
<tr>
<td>58.05</td>
<td>Parity</td>
<td>패리티 비트 (Parity bit)의 타입 및 정지 비트의 개수를 선택합니다. 파라미터를 변경한 후에 이 설정을 적용하기 위해서는 제어 유닛을 재부팅하거나 58.06 Communication control에서 Refresh settings를 선택하십시오.</td>
<td>8 EVEN 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 NONE 1 8 데이터 비트, 패리티 비트 없음, 1 정지 비트.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 NONE 2 8 데이터 비트, 패리티 비트 없음, 2 정지 비트.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 EVEN 1 8 데이터 비트, 짝수 패리티 비트, 1 정지 비트.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 ODD 1 8 데이터 비트, 홀수 패리티 비트, 1 정지 비트.</td>
<td>3</td>
</tr>
<tr>
<td>58.06</td>
<td>Communication control</td>
<td>EFB 설정을 적용하거나 정숙 모드 (Silent mode)로 동작시킵니다.-desktop control EFB 설정 적용하거나 정숙 모드 (Silent mode)로 동작시킵니다.</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enabled 새로운고침 완료.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Refresh settings</td>
<td>EFB 설정 새로운고침. 새로운고침이 완료되면 Enabled로 자동 복귀됩니다. Refresh settings를 선택하십시오.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Silent mode</td>
<td>정숙 모드 동작 (메시지를 전송하지 않음). 이 모드를 해제하려면 Refresh settings를 선택하십시오.</td>
<td>2</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>58.07</td>
<td>Communication diagnostics</td>
<td>임베디드 필드버스 통신의 상태 워드입니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Init failed</td>
<td>1 = EFB 초기화 중에 오류가 발생하였습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Addr config err</td>
<td>1 = 노드 주소가 하용되지 않습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Silent mode</td>
<td>1 = 데이터 전송을 허용하지 않습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = 데이터 전송을 허용합니다.</td>
</tr>
<tr>
<td>3</td>
<td>Autobauding</td>
<td>예약된 영역.</td>
</tr>
<tr>
<td>4</td>
<td>Wiring error</td>
<td>1 = 통신 케이블의 결선 오류가 발생하였습니다.</td>
</tr>
<tr>
<td>5</td>
<td>Parity error</td>
<td>1 = 패리티 비트 오류가 발생하였습니다.</td>
</tr>
<tr>
<td>6</td>
<td>Baud rate error</td>
<td>1 = 통신 속도 오류가 발생하였습니다.</td>
</tr>
<tr>
<td>7</td>
<td>No bus activity</td>
<td>1 = 최소 5초 동안 수신된 데이터가 없습니다.</td>
</tr>
<tr>
<td>8</td>
<td>No packets</td>
<td>1 = 최소 5초 동안 수신된 패킷이 없습니다.</td>
</tr>
<tr>
<td>9</td>
<td>Noise or addressing error</td>
<td>1 = 전자기적 간섭 또는 온라인 상에 동일한 노드 주소를 사용하여 오류가 발생하였습니다.</td>
</tr>
<tr>
<td>10</td>
<td>Comm loss</td>
<td>1 = 통신 타임아웃 시간 (58.16) 안에 수신된 패킷이 없습니다.</td>
</tr>
<tr>
<td>11</td>
<td>CW/Ref loss</td>
<td>1 = 통신 타임아웃 시간 (58.16) 안에 수신된 제어 워드 및 기준값이 없습니다.</td>
</tr>
<tr>
<td>12</td>
<td>Not active</td>
<td>예약된 영역.</td>
</tr>
<tr>
<td>13</td>
<td>Protocol 1</td>
<td>예약된 영역.</td>
</tr>
<tr>
<td>14</td>
<td>Protocol 2</td>
<td>예약된 영역.</td>
</tr>
<tr>
<td>15</td>
<td>Internal error</td>
<td>예약된 영역.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.08</td>
<td>Received packets</td>
<td>드라이브로 수신된 유효 패킷 수를 표시합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>정상적인 통신 상태에서 이 값은 계속해서 증가합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 값은 Drive composer PC 툴에서 0으로 설정하거나 제어 패널의 리셋 버튼을 3 초 이상 유지한 경우에 클리어됩니다.</td>
</tr>
<tr>
<td></td>
<td>0…4294967295</td>
<td>드라이브로 수신된 유효 패킷 수.</td>
</tr>
<tr>
<td>58.09</td>
<td>Transmitted packets</td>
<td>드라이브로 전송한 유효 패킷 수를 표시합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>정상적인 통신 상태에서 이 값은 계속해서 증가합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 값은 Drive composer PC 툴에서 0으로 설정하거나 제어 패널의 리셋 버튼을 3 초 이상 유지한 경우에 클리어됩니다.</td>
</tr>
<tr>
<td></td>
<td>0…4294967295</td>
<td>드라이브에서 전송한 유효 패킷 수.</td>
</tr>
<tr>
<td>58.10</td>
<td>All packets</td>
<td>통신 버스 상에 유효한 모든 패킷 수를 표시합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>정상적인 통신 상태에서 이 값은 계속해서 증가합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 값은 Drive composer PC 툴에서 0으로 설정하거나 제어 패널의 리셋 버튼을 3 초 이상 유지한 경우에 클리어됩니다.</td>
</tr>
<tr>
<td></td>
<td>0…4294967295</td>
<td>통신 버스 상에 유효한 모든 패킷 수.</td>
</tr>
<tr>
<td>58.11</td>
<td>UART errors</td>
<td>드라이브로 수신된 데이터 오류 수를 표시합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>증가 카운터는 통신 버스 구성 상에 문제가 지시합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 값은 Drive composer PC 툴에서 0으로 설정하거나 제어 패널의 리셋 버튼을 3 초 이상 유지한 경우에 클리어됩니다.</td>
</tr>
<tr>
<td></td>
<td>0…4294967295</td>
<td>드라이브로 수신된 데이터 오류 수.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>58.12</td>
<td>CRC errors</td>
<td>드라이브로 수신된 CRC 오류 패킷 수를 표시합니다. 중간 카운터는 전자기적 간섭 문제를 지시합니다. 이 값은 Drive composer PC 통에서 0으로 설정하거나 제어 패널의 리셋 버튼을 3 초 이상 유지한 경우에 클리어됩니다.</td>
</tr>
<tr>
<td></td>
<td>0...4294967295</td>
<td>드라이브로 수신된 CRC 오류 패킷 수.</td>
</tr>
<tr>
<td>58.14</td>
<td>Communication loss action</td>
<td>임베디드 필드버스 통신에서 타임아웃이 발생한 경우에 드라이브가 어떻게 반응할지를 선택합니다. 파라미터 58.15 Communication loss mode와 58.16 Communication loss time를 참고하십시오. 파라미터를 변경한 후에 이 설정을 적용하기 위해서는 제어 유닛을 재부팅하거나 58.06 Communication control에서 Refresh settings를 선택하십시오.</td>
</tr>
<tr>
<td>No</td>
<td>동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td>Fault</td>
<td>드라이브 트립 정지 (6681 EFB comm loss)</td>
<td>이는 필드버스 통신을 제어 (시작/정지/기준값)에 이용하거나 파라미터 58.36 EFB comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td>Last speed</td>
<td>A7CE EFB comm loss</td>
<td>드라이브는 A7CE EFB comm loss 경고를 발생하고 기준값은 현재 운전 중인 기준 속도 또는 주파수로 고정됩니다. 이때 기준 속도 및 주파수는 850 ms의 지역 통과 필터를 거친 실제 속도를 기반으로 결정됩니다. 이것은 필드버스 통신을 제어에 이용하거나 파라미터 58.36 EFB comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td></td>
<td>WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>Speed ref safe</td>
<td>A7CE EFB comm loss</td>
<td>드라이브는 A7CE EFB comm loss 경고를 발생하고 기준값은 운전 모드에 따라 22.41 Speed ref safe (또는 28.41 Frequency ref safe)로 고정됩니다. 이것은 필드버스 통신을 제어에 이용하거나 파라미터 58.36 EFB comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td></td>
<td>WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>Fault always</td>
<td>A7CE EFB comm loss</td>
<td>필드버스 통신을 제어에 이용하지 않더라도 풀트를 발생시킵니다.</td>
</tr>
<tr>
<td>Warning</td>
<td>드라이브 경고 운전 (A7CE EFB comm loss). 이는 EFB 통신을 제어에 이용하거나 파라미터 58.36 EFB comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
<td>WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
</tr>
<tr>
<td>58.15</td>
<td>Communication loss mode</td>
<td>EFB 통신 중단을 검출하기 위한 타임아웃 시간을 레시트하는 메시지 타입을 정의합니다. 파라미터 58.15 Communication loss mode와 58.16 Communication loss time를 참고하십시오. 파라미터를 변경한 후에 이 설정을 적용하기 위해서는 제어 유닛을 재부팅하거나 58.06 Communication control에서 Refresh settings를 선택하십시오.</td>
</tr>
<tr>
<td>Any message</td>
<td>드라이브로 전송된 모든 메시지는 타임아웃 시간을 레시트합니다.</td>
<td></td>
</tr>
<tr>
<td>Cw / Ref1 / Ref2</td>
<td>드라이브로 전송된 제어 워드 또는 기준값은 타임아웃 시간을 레시트합니다.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 58.16 | Communication loss time | EFB 통신의 타임아웃 시간을 설정합니다. 만약 통신이 타임아웃되면 드라이브가 어떠하게 반응할지 파라미터 58.14 Communication loss action에서 선택할 수 있습니다. 파라미터를 변경한 후에 이 설정을 적용하기 위해서는 제어 유닛을 재부팅하거나 58.06 Communication control에서 Refresh settings를 선택할 수 있습니다.
Note: 전원을 커 직후에 약 30초 정도의 부팅 시간이 있으므로 이 시간 동안에는 통신 감시 가능이 잠시 금지될 수 있습니다. 또한 파라미터 58.15 Communication loss.mode를 참고하십시오. | 3.0 s |
<p>| 58.17 | Transmit delay | 프로토콜에 의한 지연 시간이 외부에 응답 시간까지를 정의합니다. 파라미터를 변경한 후에 이 설정을 적용하기 위해서는 제어 유닛을 재부팅하거나 58.06 Communication control에서 Refresh settings를 선택할 수 있습니다. | 1 = 1 |
| 58.18 | EFB control word | EFB를 통해 제어 위드 변으로 수신된 통신 데이터를 표시합니다. 통신 데이터를 디버깅하는데 이용할 수 있습니다. 이 파라미터는 읽기 전용입니다. | | |
| | | 0000h...FFFFh | 임베디드 필드버스의 제어 위드. | 1 = 1 |
| 58.19 | EFB status word | EFB를 통해 전송한 상태 위드 데이터를 표시합니다. 통신 데이터를 디버깅하는데 이용할 수 있습니다. 이 파라미터는 읽기 전용입니다. | |
| | | 0000h...FFFFh | 임베디드 필드버스의 상태 위드. | 1 = 1 |
| 58.25 | Control profile | EFB 통신을 위한 제어 프로파일을 선택합니다. | ABB Drives |
| | | ABB Drives | 16비트 클래식 포맷으로 구성된 ABB 드라이브 프로파일. 이전 드라이브와의 호환성을 유지시킬 수 있습니다. | 0 |
| | | Transparent | 16비트 또는 32비트 포맷으로 구성된 투과형 프로파일. | 2 |
| 58.26 | EFB ref1 type | 임베디드 필드버스에서 수신할 기준값 1의 16비트 스케일링 값을 정의합니다. 이 값은 03.09 EFB reference 1에서 확인할 수 있습니다. | Auto |
| | | Auto | 기준값 1이 선택된 제어 모드 (토크 제어, 속도 제어, 주파수 제어)에 따라 자동으로 타입 및 스케일링 값을 적용합니다. 단, 기준값 1이 선택되지 않은 경우에는 Transparent가 됩니다. | 0 |
| | | Transparent | 스케일링: 1 = 1. 데이터 범위: -32768…32767. | 1 |
| | | General | 스케일링: 100 = 1. 데이터 범위: -327.68…327.67. | 2 |
| | | Torque | 파라미터 46.03 Torque scaling 범위로 스케일링. | 3 |
| | | Speed | 파라미터 46.01 Speed scaling 범위로 스케일링. | 4 |
| | | Frequency | 파라미터 46.02 Frequency scaling 범위로 스케일링. | 5 |
| 58.27 | EFB ref2 type | 임베디드 필드버스에서 수신할 기준값 2의 16비트 스케일링 값을 정의합니다. 이 값은 03.10 EFB reference 2에서 확인할 수 있습니다. 이에 대한 자세한 사항은 58.26 EFB ref1 type을 참고하십시오. | Torque |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.28</td>
<td>EFB act1 type</td>
<td>임베디드 필드버스를 통해 전송할 실제값 1의 16비트 스케일링 값을 정의합니다.</td>
<td>Auto</td>
</tr>
<tr>
<td>Auto</td>
<td>파라미터 58.26 EFB ref1 type에서 선택한 기준값 1의 타입 및 스케일링 값이 적용.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Transparent</td>
<td>파라미터 58.31 EFB act1 transparent source에서 선택한 값이 실제값 1로 전송. 스케일링: 1 = 1.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>파라미터 58.31 EFB act1 transparent source에서 선택한 값이 실제값 1로 전송. 스케일링: 100 = 1.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>파라미터 01.10 Motor torque이 실제값 1로 전송. 이것은 46.03 Torque scaling 범위로 스케일링됩니다.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>파라미터 01.01 Motor speed used이 실제값 1로 전송. 이것은 46.01 Speed scaling 범위로 스케일링됩니다.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>파라미터 01.06 Output frequency가 실제값 1로 전송. 이것은 46.02 Frequency scaling 범위로 스케일링됩니다.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>모든 위치를 실제값 1로 전송. 파라미터 90.06 Motor position scaled을 확인하십시오.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>58.29</td>
<td>EFB act2 type</td>
<td>임베디드 필드버스를 통해 전송할 실제값 2의 16비트 스케일링 값을 정의합니다.</td>
<td>Torque</td>
</tr>
<tr>
<td>Auto</td>
<td>파라미터 58.27 EFB ref2 type에서 선택한 기준값 2의 타입 및 스케일링 값이 적용.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Transparent</td>
<td>파라미터 58.32 EFB act2 transparent source에서 선택한 값이 실제값 2로 전송. 스케일링: 1 = 1.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>파라미터 58.32 EFB act2 transparent source에서 선택한 값이 실제값 2로 전송. 스케일링: 100 = 1.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>파라미터 01.10 Motor torque이 실제값 2로 전송. 이것은 46.03 Torque scaling 범위로 스케일링됩니다.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>파라미터 01.01 Motor speed used이 실제값 2로 전송. 이것은 46.01 Speed scaling 범위로 스케일링됩니다.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>파라미터 01.06 Output frequency가 실제값 2로 전송. 이것은 46.02 Frequency scaling 범위로 스케일링됩니다.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Position</td>
<td>모든 위치를 실제값 2로 전송. 파라미터 90.06 Motor position scaled을 확인하십시오.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>58.30</td>
<td>EFB status word transparent source</td>
<td>파라미터 58.25 Control profile을 Transparent로 선택한 경우에 임베디드 필드버스를 통해 전송할 상태 웨드를 선택합니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td>Not selected</td>
<td>선택 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>58.31</td>
<td>EFB act1 transparent source</td>
<td>파라미터 58.28 EFB act1 type을 Transparent 또는 General로 선택한 경우에 임베디드 필드버스를 통해 전송할 실제값 1을 선택합니다.</td>
<td>Not selected</td>
</tr>
<tr>
<td>Not selected</td>
<td>선택 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
EFB comm supervision force

각 제어 위치에서 블로드 EFB의 감시 기능을 허용합니다.

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ext 1</td>
<td>1 = 제어 위치가 Ext 1인 경우에 제어 패널의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Ext 2</td>
<td>1 = 제어 위치가 Ext 2인 경우에 제어 패널의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>2</td>
<td>Local</td>
<td>1 = 제어 위치가 로컬인 경우에 제어 패널의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>3…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>0000b...0111b</td>
<td>임베디드 필드버스 감시 선택.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>58.101</td>
<td>Data I/O 1</td>
<td>레지스터 주소 400001에서 읽고 쓸 때 접근하는 드라이브의 주소를 정의합니다. 이 값은 2개의 16비트 워드로 구성된 모드바스 프레임 (Modbus frame)으로 전송되며, 32비트 데이터는 2개의 파라미터가 필요하므로 이 파라미터를 32비트로 선택하면 다음번 파라미터는 자동으로 예약됩니다.</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>선택 없음.</td>
</tr>
<tr>
<td></td>
<td>CW 16bit</td>
<td>제어 워드 (16비트).</td>
</tr>
<tr>
<td></td>
<td>Ref1 16bit</td>
<td>기준값 REF1 (16비트).</td>
</tr>
<tr>
<td></td>
<td>Ref2 16bit</td>
<td>기준값 REF2 (16비트).</td>
</tr>
<tr>
<td></td>
<td>SW 16bit</td>
<td>상태 워드 (16비트).</td>
</tr>
<tr>
<td></td>
<td>Act1 16bit</td>
<td>실제값 ACT1 (16비트).</td>
</tr>
<tr>
<td></td>
<td>Act2 16bit</td>
<td>실제값 ACT2 (16비트).</td>
</tr>
<tr>
<td></td>
<td>CW 32bit</td>
<td>제어 워드 (32비트).</td>
</tr>
<tr>
<td></td>
<td>Ref1 32bit</td>
<td>기준값 REF1 (32비트).</td>
</tr>
<tr>
<td></td>
<td>Ref2 32bit</td>
<td>기준값 REF2 (32비트).</td>
</tr>
<tr>
<td></td>
<td>SW 32bit</td>
<td>상태 워드 (32비트).</td>
</tr>
<tr>
<td></td>
<td>Act1 32bit</td>
<td>실제값 ACT1 (32비트).</td>
</tr>
<tr>
<td></td>
<td>Act2 32bit</td>
<td>실제값 ACT2 (32비트).</td>
</tr>
<tr>
<td></td>
<td>CW2 16bit</td>
<td>제어 워드 2 (16비트).</td>
</tr>
<tr>
<td></td>
<td>SW2 16bit</td>
<td>상태 워드 2 (16비트).</td>
</tr>
<tr>
<td></td>
<td>RO/DIO control word</td>
<td>파라미터 10.99 RO/DIO control word.</td>
</tr>
<tr>
<td></td>
<td>AO1 data storage</td>
<td>파라미터 13.91 AO1 data storage.</td>
</tr>
<tr>
<td></td>
<td>AO2 data storage</td>
<td>파라미터 13.92 AO2 data storage.</td>
</tr>
<tr>
<td></td>
<td>Feedback data storage</td>
<td>파라미터 40.91 Feedback data storage.</td>
</tr>
<tr>
<td></td>
<td>Setpoint data storage</td>
<td>파라미터 40.92 Setpoint data storage.</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
</tr>
<tr>
<td>58.102</td>
<td>Data I/O 2</td>
<td>레지스터 주소 400001에서 읽고 쓸 때 접근하는 드라이브의 주소를 정의합니다. 자세한 사항은 58.101 Data I/O 1을 참고하십시오.</td>
</tr>
<tr>
<td>58.103</td>
<td>Data I/O 3</td>
<td>레지스터 주소 400003에서 읽고 쓸 때 접근하는 드라이브의 주소를 정의합니다. 자세한 사항은 58.101 Data I/O 1을 참고하십시오.</td>
</tr>
<tr>
<td>58.104</td>
<td>Data I/O 4</td>
<td>레지스터 주소 400004에서 읽고 쓸 때 접근하는 드라이브의 주소를 정의합니다. 자세한 사항은 58.101 Data I/O 1을 참고하십시오.</td>
</tr>
</tbody>
</table>
60 DDCS communication

DDCS 통신 구성.
DDCS 프로토콜은 다음과 같은 통신에서 사용됩니다.
- 드라이브간 마스터/팔로워 구성 (페이지 31 참고).
- AC 800M 외부 컨트롤러와 드라이브간 통신 (페이지 38 참고).
- 인버터 유닛과 서플라이 유닛간 통신 (페이지 40 참고).

위에서의 통신 방법들은 FDCO 모듈 (ZCU 제어 유닛) 또는 RDCO 모듈 (BCU 제어 유닛)에서 광통신을 수행합니다.
또한 마스터/팔로워 구성에서는 드라이브를 XD2D 단자에 접속하고 드라이브와 외부 컨트롤러는 트위스트 케이블로 연결하여 필드바스 통신을 수행할 수 있습니다.
이 파라미터 그룹은 D2D 통신 감시를 위한 파라미터를 포함합니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.105</td>
<td>Data I/O 5</td>
<td>레지스터 주소 400005에서 읽고 쓸 때 접근하는 드라이브의 주소를 정의합니다. 자세한 사항은 58.101 Data I/O 1을 참고하십시오</td>
<td>Act1 16bit</td>
</tr>
<tr>
<td>58.106</td>
<td>Data I/O 6</td>
<td>레지스터 주소 400006에서 읽고 쓸 때 접근하는 드라이브의 주소를 정의합니다. 자세한 사항은 58.101 Data I/O 1을 참고하십시오</td>
<td>Act2 16bit</td>
</tr>
<tr>
<td>58.107</td>
<td>Data I/O 7</td>
<td>레지스터 주소 400007에서 읽고 쓸 때 접근하는 드라이브의 주소를 정의합니다. 자세한 사항은 58.101 Data I/O 1을 참고하십시오</td>
<td>None</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>58.124</td>
<td>Data I/O 24</td>
<td>레지스터 주소 400024에서 읽고 쓸 때 접근하는 드라이브의 주소를 정의합니다. 자세한 사항은 58.101 Data I/O 1을 참고하십시오</td>
<td>None</td>
</tr>
</tbody>
</table>

60.01 M/F communication port

마스터/팔로워 구성을 위한 접속 방법을 선택합니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not in use</td>
<td>선택 없음</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Slot 1A</td>
<td>슬롯 1에 설치된 FDCO 모듈의 채널 A (ZCU 제어 유닛).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Slot 2A</td>
<td>슬롯 2에 설치된 FDCO 모듈의 채널 A (ZCU 제어 유닛).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Slot 3A</td>
<td>슬롯 3에 설치된 FDCO 모듈의 채널 A (ZCU 제어 유닛).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Slot 1B</td>
<td>슬롯 1에 설치된 FDCO 모듈의 채널 B (ZCU 제어 유닛).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Slot 2B</td>
<td>슬롯 2에 설치된 FDCO 모듈의 채널 B (ZCU 제어 유닛).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Slot 3B</td>
<td>슬롯 3에 설치된 FDCO 모듈의 채널 B (ZCU 제어 유닛).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>RDCO CH 2</td>
<td>RDCO 모듈의 채널 2 (BCU 제어 유닛).</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>XD2D</td>
<td>XD2D 단자. 단, XD2D 단자를 다른 용도 (예: EFB 또는 IEC 응용 프로그램)로 사용하는 경우에는 마스터/팔로워 구성으로 사용할 수 없습니다.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>60.02</td>
<td>M/F node address</td>
<td>마스터/팔로워 드라이브의 노드 주소를 정의합니다. 단, 온라인상에서 중복된 주소는 허용하지 않습니다. Note: 마스터는 0 또는 1의 주소로 설정하고 팔로워는 2...60 사이의 주소를 설정하십시오.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>노드 주소.</td>
<td></td>
</tr>
<tr>
<td>60.03</td>
<td>M/F mode</td>
<td>마스터/팔로워 드라이브 또는 D2D 통신의 역할 (Role)를 선택합니다. Note: 선택 하십시오.</td>
<td>Not in use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>선택 옵션.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDCS 프로토콜로 구성된 마스터 드라이브.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDCS 프로토콜로 구성된 팔로워 드라이브.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2D 통신으로 구성된 마스터 드라이브. Note: 이 파라미터는 IEC 응용 프로그램에서 XD2D 단자를 사용하는 경우에만 설정되어야 합니다. 만약 XD2D 단자를 마스터/팔로워 기능 (페이지 31)으로 사용하는 경우에는 DDCS master를 선택하십시오.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2D 통신으로 구성된 팔로워 드라이브. Note: 이 파라미터는 IEC 응용 프로그램에서 XD2D 단자를 사용하는 경우에만 설정되어야 합니다. 만약 XD2D 단자를 마스터/팔로워 기능 (페이지 31)으로 사용하는 경우에는 DDCS follower를 선택하십시오.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2D 통신으로 구성된 마스터/팔로워를 파라미터 60.15 Force master와 60.16 Force follower에서 강제로 선택.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2D 통신으로 구성된 마스터/팔로워를 파라미터 60.15 Force master와 60.16 Force follower에서 강제로 선택. Note: 이 파라미터는 IEC 응용 프로그램에서 XD2D 단자를 사용하는 경우에만 설정되어야 합니다. 만약 XD2D 단자를 마스터/팔로워 기능 (페이지 31)으로 사용하는 경우에는 DDCS forcing을 선택하십시오.</td>
<td>6</td>
</tr>
<tr>
<td>60.05</td>
<td>M/F HW connection</td>
<td>마스터/팔로워 링크의 결선 방법을 선택합니다. Note: XD2D 단자로 마스터/팔로워 기능 (페이지 31)으로 사용하는 경우에는 Star를 선택하십시오.</td>
<td>Ring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>고리형 네트워크 구성.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>성형 네트워크 구성.</td>
<td>1</td>
</tr>
<tr>
<td>60.07</td>
<td>M/F link control</td>
<td>RDCO 모듈 채널 2의 광도 (Light intensity)를 정의합니다. (이 파라미터는 60.01 M/F communication port를 RDCO CH 2로 선택한 경우에만 유효하며, FDCO는 하드웨어 스위치가 있습니다.) 통상적으로 원거리 통신의 경우에는 높은 값을 설정하며, 최대 설정은 광통신선의 최대 길이에 의존합니다. 지세한 사항은 마스터/팔로워 링크를 위한 광통신선의 사양 (페이지 37)을 참고하십시오.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>광도 조절.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>60.08</td>
<td>M/F comm loss timeout</td>
<td>파라미터 60.09 M/F comm loss function에 선택한 동작을 수행하기 전에 지연 시간을 정의합니다. 통신 링크에서 새로운 메시지가 업데이트되지 않을 때 타이머가 시작됩니다. 이 파라미터는 통상 마스터의 전송 간격의 3배 이상으로 설정해야 합니다.</td>
<td>100 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…65535 ms 마스터/팔로워 통신 타임아웃 시간.</td>
<td></td>
</tr>
<tr>
<td>60.09</td>
<td>M/F comm loss function</td>
<td>필드버스 통신에서 타임아웃이 발생한 경우에 드라이브가 어떻게 반응할지 선택합니다.</td>
<td>Fault</td>
</tr>
<tr>
<td></td>
<td>No action</td>
<td>동작 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>드라이브 경고 운전 (A7CB MF comm loss). 이경은 마스터/팔로워 링크에 이용하거나 파라미터 60.32 M/F comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>드라이브 트립 경지 (7582 MF comm loss). 이경은 마스터/팔로워 링크에 이용하거나 파라미터 60.32 M/F comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Fault always</td>
<td>드라이브 트립 경지 (7582 MF comm loss). 마스터/팔로워 링크에 이용하지 않더라도 폴트를 발생시킵니다.</td>
<td>3</td>
</tr>
<tr>
<td>60.10</td>
<td>M/F ref1 type</td>
<td>마스터/팔로워 링크를 통해 수신한 기준값 1의 16비트 스케일링 값으로 정의합니다. 이 값은 03.13 M/F or D2D ref1에서 확인할 수 있습니다.</td>
<td>Auto</td>
</tr>
<tr>
<td></td>
<td>Auto</td>
<td>기준값 1이 선택된 제어 모드 (토큰 제어, 속도 제어, 주파수 제어)에 따라 자동으로 타입 및 스케일링 값이 적용.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>단, 기준값 1이 선택되지 않은 경우에는 Transparent가 됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transparent</td>
<td>스케일링: 1 = 1. 데이터 범위: -32768...32767.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>스케일링: 100 = 1. 데이터 범위: -32768...32767.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Torque</td>
<td>파라미터 46.03 Torque scaling 범위로 스케일링.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
<td>파라미터 46.01 Speed scaling 범위로 스케일링.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>파라미터 46.02 Frequency scaling 범위로 스케일링.</td>
<td>5</td>
</tr>
<tr>
<td>60.11</td>
<td>M/F ref2 type</td>
<td>마스터/팔로워 링크를 통해 수신한 기준값 2의 16비트 스케일링 값을 정의합니다. 이 값은 03.14 M/F or D2D ref2에서 확인할 수 있습니다.</td>
<td>Torque</td>
</tr>
<tr>
<td></td>
<td>Auto</td>
<td>파라미터 60.10 M/F ref1 type에서 선택한 기준값 1의 타입 및 스케일링 값이 적용.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Transparent</td>
<td>예약된 명역.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>예약된 명역.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Torque</td>
<td>파라미터 01.10 Motor torque가 실제값 1로 전송. 이경은 46.03 Torque scaling 범위로 스케일링됩니다.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
<td>파라미터 01.01 Motor speed used가 실제값 1로 전송. 이경은 46.01 Speed scaling 범위로 스케일링됩니다.</td>
<td>4</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>파라미터 01.06 Output frequency가 실제값 1로 전송. 이것은 46.02 Frequency scaling 범위로 스케일링됩니다.</td>
<td>5</td>
</tr>
<tr>
<td>60.13</td>
<td>M/F act2 type</td>
<td>마스터/팔로워 링크를 통해 전송할 실제값 2의 16비트 스케일링 값을 정의합니다.</td>
<td>Auto</td>
</tr>
<tr>
<td></td>
<td>Auto</td>
<td>파라미터 60.11 M/F ref2 type에서 선택한 기준값 2의 타입 및 스케일링 값이 적용.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Transparent</td>
<td>예약된 영역.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>General</td>
<td>예약된 영역.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Torque</td>
<td>파라미터 01.10 Motor torque의 실제값 2로 전송. 이 것은 46.03 Torque scaling 범위로 스케일링됩니다.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Speed</td>
<td>파라미터 01.01 Motor speed used의 실제값 2로 전송. 이 것은 46.01 Speed scaling 범위로 스케일링됩니다.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Frequency</td>
<td>파라미터 01.06 Output frequency의 실제값 2로 전송. 이 것은 46.02 Frequency scaling 범위로 스케일링됩니다.</td>
<td>5</td>
</tr>
<tr>
<td>60.14</td>
<td>M/F follower selection</td>
<td>데이터를 읽을 팔로워를 정의합니다 (마스터 드라이브에만 설정). 또한 파라미터 62.28...62.33을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Follower node 2</td>
<td>노드 주소 2번 팔로워 데이터.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Follower node 3</td>
<td>노드 주소 3번 팔로워 데이터.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Follower node 4</td>
<td>노드 주소 4번 팔로워 데이터.</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Follower nodes 2+3</td>
<td>노드 주소 2와 3번 팔로워 데이터.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Follower nodes 2+4</td>
<td>노드 주소 2와 4번 팔로워 데이터.</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Follower nodes 3+4</td>
<td>노드 주소 3와 4번 팔로워 데이터.</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Follower nodes 2+3+4</td>
<td>노드 주소 2, 3, 4번 팔로워 데이터.</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td>60.15</td>
<td>Force master</td>
<td>파라미터 60.03 M/F mode를 DDCS forcing 또는 D2D forcing으로 설정한 경우에 이 파라미터에서 마스터 드라이브로 강제 설정합니다. 1 = 마스터 드라이브.</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TRUE</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>60.16</td>
<td>Force follower</td>
<td>파라미터 60.03 M/F mode를 DDCS forcing 또는 D2D forcing으로 설정한 경우에 이 파라미터에서 팔로워 드라이브로 강제 설정합니다. 1 = 팔로워 드라이브.</td>
<td>FALSE</td>
</tr>
<tr>
<td></td>
<td>FALSE</td>
<td>0.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>TRUE</td>
<td>1.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Other [bit]</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>60.17</td>
<td>Follower fault action</td>
<td>팔로워 드라이브에서 폴트가 발생한 경우에 드라이브가 어떻게 반응할지 선택합니다 (마스터 드라이브에만 설정). 또한 파라미터 60.23 M/F status supervision sel 1을 참고하십시오. Note: 각 팔로워 드라이브는 61.01…61.03 중 1개의 파라미터를 통해 마스터로 상태 워드를 전송해야 하며, 마스터 드라이브는 62.04…62.12 중 1개의 파라미터를 Follower SW로 설정해야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No action</td>
<td>동작 없음. 폴트가 발생하지 않는 팔로워는 계속해서 운전됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>드라이브 경고 운전 (AFE7 Follower), 모든 팔로워가 정지합니다.</td>
<td></td>
</tr>
<tr>
<td>60.18</td>
<td>Follower enable</td>
<td>팔로워의 상태를 마스터의 인터록 (Interlock) 신호로 설정합니다. 또한 파라미터 60.23 M/F status supervision sel 1을 참고하십시오. Note: 각 팔로워 드라이브는 61.01…61.03 중 1개의 파라미터를 통해 마스터로 상태 워드를 전송해야 하며, 마스터 드라이브는 62.04…62.12 중 1개의 파라미터를 Follower SW로 설정해야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW bit 0</td>
<td>전체 팔로워 드라이브의 상태 워드 비트 0. 06.11 Main status word의 비트 0가 1로 세트되어야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW bit 1</td>
<td>전체 팔로워 드라이브의 상태 워드 비트 1. 06.11 Main status word의 비트 1이 1로 세트되어야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW bits 0 + 1</td>
<td>전체 팔로워 드라이브의 상태 워드 비트 0과 1. 06.11 Main status word의 비트 0과 1이 1로 세트되어야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Always</td>
<td>인터록 없음.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW bit 12</td>
<td>전체 팔로워 드라이브의 상태 워드 비트 12. 파라미터 06.31 MSW bit 12 sel에 상태 소스를 선택하십시오. 06.11 Main status word의 비트 12가 1로 세트되어야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW bits 0 + 12</td>
<td>전체 팔로워 드라이브의 상태 워드 비트 0과 12. 06.11 Main status word의 비트 0과 12가 1로 세트되어야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MSW bits 1 + 12</td>
<td>전체 팔로워 드라이브의 상태 워드 비트 1과 12. 06.11 Main status word의 비트 1과 12가 1로 세트되어야 합니다.</td>
<td></td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.19</td>
<td>M/F comm supervision sel 1</td>
<td>파라미터 60.19…60.28는 IEC 응용 프로그램으로 구현된 D2D 통신의 마스터 드라이브에만 적용됩니다. 자세한 사항은 60.01 M/F communication port 및 60.03 M/F mode를 참고하십시오. D2D 통신 마스터는 60.19 M/F comm supervision sel 1과 60.20 M/F comm supervision sel 2로 D2D 통신 팔로워의 통신 상태를 모니터링할 수 있습니다. 이 파라미터에서는 팔로워 1…16의 통신 상태를 모니터링합니다. 만약 선택된 팔로워에서 통신 응답이 없다면 60.09 M/F comm loss function에 선택한 동작을 수행할 것입니다. 여기서 팔로워의 통신 상태는 62.37 M/F communication status 1과 62.38 M/F communication status 2에서 확인할 수 있습니다.</td>
</tr>
<tr>
<td>비트</td>
<td>이름</td>
<td>설명</td>
</tr>
<tr>
<td>0</td>
<td>Follower 1</td>
<td>1 = 마스터는 팔로워 1을 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Follower 2</td>
<td>1 = 마스터는 팔로워 2를 감시합니다.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>Follower 16</td>
<td>1 = 마스터는 팔로워 16을 감시합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.20</td>
<td>M/F comm supervision sel 2</td>
<td>이 파라미터에서는 팔로워 17…32의 통신 상태를 모니터링합니다. 자세한 사항은 60.19 M/F comm supervision sel 1을 참고하십시오.</td>
</tr>
<tr>
<td>비트</td>
<td>이름</td>
<td>설명</td>
</tr>
<tr>
<td>0</td>
<td>Follower 17</td>
<td>1 = 마스터는 팔로워 17을 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Follower 18</td>
<td>1 = 마스터는 팔로워 18을 감시합니다.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>Follower 32</td>
<td>1 = 마스터는 팔로워 32를 감시합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.20</td>
<td>M/F comm supervision sel 2</td>
<td>통신 상태 감시 (팔로워 17...32).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.19</td>
<td>M/F comm supervision sel 1</td>
<td>통신 상태 감시 (팔로워 1...16).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.19</td>
<td>M/F comm supervision sel 1</td>
<td>통신 상태 감시 (팔로워 1...16).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.20</td>
<td>M/F comm supervision sel 2</td>
<td>통신 상태 감시 (팔로워 17...32).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.19</td>
<td>M/F comm supervision sel 1</td>
<td>통신 상태 감시 (팔로워 1...16).</td>
</tr>
</tbody>
</table>
Parameters 359

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.23</td>
<td>M/F status supervision sel 1</td>
<td>파라미터 60.19…60.28는 IEC 응용 프로그램으로 구현된 D2D 통신의 마스터 드라이브에만 적용됩니다. 자세한 사항은 60.01 M/F communication port 및 60.03 M/F mode를 참고하십시오. D2D 통신 마스터는 60.23 M/F status supervision sel 1과 60.24 M/F status supervision sel 2로 D2D 통신 팔로워의 상태 워드를 모니터링할 수 있습니다. 이 파라미터에서는 팔로워 1…16의 상태 워드를 모니터링합니다. 만약 선택된 팔로워에서 상태 워드의 비트 3이 1로 세트 (트립)되면 60.17 Follower fault action에 선택한 동작을 수행할 것입니다. 비트 0과 1 (준비)은 60.18 Follower enable 신호로 사용됩니다. 그리고 60.27 M/F status supv mode sel 1 및 60.28 M/F status supv mode sel 2에서는 항상 팔로워를 감시할 것인지 아니면 정지 중에만 감시할 것인지 선택할 수 있습니다. Note: 60.19 M/F comm supervision sel 1에서 동일한 팔로워의 통신 상태를 감시하지십시오. 이것은 통신 상태는 62.37 M/F communication status 1과 62.38 M/F communication status 2에서 확인할 수 있습니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Follower 1</td>
<td>1 = 마스터는 팔로워 1의 상태 워드를 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Follower 2</td>
<td>1 = 마스터는 팔로워 2의 상태 워드를 감시합니다.</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>15</td>
<td>Follower 16</td>
<td>1 = 마스터는 팔로워 16의 상태 워드를 감시합니다.</td>
</tr>
</tbody>
</table>

| 상태 워드 감시 (팔로워 1…16). | 1 = 1 |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.24</td>
<td>M/F status supervision sel 2</td>
<td>이 파라미터에서는 팔로워 17…32의 상태 워드를 모니터링합니다. Note: 60.20 M/F comm supervision sel 2에서 동일한 팔로워의 통신 상태를 감시하십시오. 자세한 사항은 60.23 M/F status supervision sel 1을 참고하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Follower 17</td>
<td>1 = 마스터는 팔로워 17의 상태 워드를 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Follower 18</td>
<td>1 = 마스터는 팔로워 18의 상태 워드를 감시합니다.</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>15</td>
<td>Follower 32</td>
<td>1 = 마스터는 팔로워 32의 상태 워드를 감시합니다.</td>
</tr>
</tbody>
</table>

| 상태 워드 감시 (팔로워 17…32). | 1 = 1 |
360 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.27</td>
<td>M/F status suvp mode sel 1</td>
<td>파라미터 60.19…60.28는 IEC 응용 프로그램으로 구성된 D2D 통신의 마스터 드라이브에만 적용됩니다. D2D 통신 마스터는 파라미터 60.27 M/F status suvp mode sel 1 및 60.28 M/F status suvp mode sel 2를 통해 팔로워를 모니터링할 때 항상 감시할 것인지 아니면 정지 중에만 감시할 것인지 선택합니다. 이 파라미터에서는 팔로워 1…16의 상태 감시 모드를 선택합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Follower 1</td>
<td>0 = 마스터는 팔로워 1의 상태 워드를 항상 감시합니다. 1 = 마스터는 팔로워 1의 상태 워드를 정지 중에만 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Follower 2</td>
<td>0 = 마스터는 팔로워 2의 상태 워드를 항상 감시합니다. 1 = 마스터는 팔로워 2의 상태 워드를 정지 중에만 감시합니다.</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>15</td>
<td>Follower 16</td>
<td>0 = 마스터는 팔로워 16의 상태 워드를 항상 감시합니다. 1 = 마스터는 팔로워 16의 상태 워드를 정지 중에만 감시합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.28</td>
<td>M/F status suvp mode sel 2</td>
<td>이 파라미터에서는 팔로워 17…32의 상태 감시 모드를 선택합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Follower 17</td>
<td>0 = 마스터는 팔로워 17의 상태 워드를 항상 감시합니다. 1 = 마스터는 팔로워 17의 상태 워드를 정지 중에만 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Follower 18</td>
<td>0 = 마스터는 팔로워 18의 상태 워드를 항상 감시합니다. 1 = 마스터는 팔로워 18의 상태 워드를 정지 중에만 감시합니다.</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>15</td>
<td>Follower 32</td>
<td>0 = 마스터는 팔로워 32의 상태 워드를 항상 감시합니다. 1 = 마스터는 팔로워 32의 상태 워드를 정지 중에만 감시합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.31</td>
<td>M/F wake up delay</td>
<td>마스터/팔로워 링크에서 통신 폴트 또는 경고를 발생하기 전에 지연 시간을 정의합니다. 이 파라미터는 마스터/팔로워 드라이브의 초기 전원 투입 과정에서 안정적인 동작을 위한 지연 시간입니다. 마스터는 이 지연 시간이 경과되거나 모니터링하는 팔로워가 준비될 때까지 시작될 수 없습니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 … 180.0 s</td>
<td>마스터/팔로워 링크의 안정 시간.</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>60.32</td>
<td>M/F comm supervision force</td>
<td>각 제어 위치에서 별도로 마스터/팔로워 링크의 감시 기능을 허용합니다.
 (페이지 20의 로컬 제어 vs. 외부 제어를 참고하십시오.) 이 파라미터는 마스터 또는 팔로워가 드라이브 제어용으로 사용되지는 않지만, 마스터/팔로워 링크의 통신 상태를 감시할 필요가 있는 경우에 사용합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ext 1</td>
<td>1 = 제어 위치가 Ext 1인 경우에 마스터/팔로워의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Ext 2</td>
<td>1 = 제어 위치가 Ext 2인 경우에 마스터/팔로워의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>2</td>
<td>Local</td>
<td>1 = 제어 위치가 로컬인 경우에 마스터/팔로워의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>3…15</td>
<td></td>
<td>예약된 영역.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.41</td>
<td>Extension adapter com port</td>
<td>FEA-xx 확장 음성 어댑터가 설치된 채널을 선택합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.50</td>
<td>DDCS controller drive type</td>
<td>모듈버스 (ModuleBus) 통신에서 "engineered" 또는 "standard" 타입을 선택합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.51</td>
<td>DDCS controller comm port</td>
<td>ABB AC 800M과 같은 외부 컨트롤러가 설치된 채널을 선택합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>XD2D</td>
<td>XD2D 단자.</td>
<td>7</td>
</tr>
</tbody>
</table>
362 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.52</td>
<td>DDCS controller node address</td>
<td>외부 컨트롤러와의 통신을 위한 드라이브의 노드 주소를 선택합니다. 단, 온라인상에서 중복된 주소는 허용하지 않습니다. ABB AC 800M 드라이브 버스 통신에서 드라이브 주소는 1...24이고 ABB AC 80 드라이브 버스 통신에서 드라이브 주소 1...12입니다. 모듈버스 통신에서 드라이브 주소는 다음과 같이 설정해야 합니다. 1. 위치값 백의 자리에 16을 곱합니다. 2. 이 결과에 위치값 십의 자리와 일의 자리를 더합니다. 3. 예를 들어, 위치값 101; 1×16 + 1 = 17.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60.55</th>
<th>DDCS controller HW connection</th>
<th>외부 컨트롤러의 결선 방법을 선택합니다.</th>
<th>Star</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ring</td>
<td>고리형 네트워크 구성.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Star</td>
<td>성형 네트워크 구성.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60.56</th>
<th>DDCS controller baud rate</th>
<th>파라미터 60.51 DDCS controller comm port에 선택한 채널의 통신 속도를 선택합니다.</th>
<th>4 mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 mbps</td>
<td>1 megabit/second.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 mbps</td>
<td>2 megabit/second.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 mbps</td>
<td>4 megabit/second.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 mbps</td>
<td>8 megabit/second.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60.57</th>
<th>DDCS controller link control</th>
<th>RDCO 모듈 채널 0의 광도를 정의합니다. (이 파라미터는 60.51 DDCS controller comm port를 RDCO CH 0로 선택한 경우에만 유의하며, FDCO는 하드웨어 스위치가 있습니다.) 통상적으로 원거리 통신의 경우에는 높은 값을 설정하며, 최대 설정은 광통신선의 최대 길이에 의존합니다. 자세한 사항은 마스터/팔로워 링크를 위한 광통신선의 사양 (페이지 37)을 참고하십시오.</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1…15</td>
<td>광도 조절.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.52</td>
<td>DDCS controller node address</td>
<td>외부 컨트롤러와의 통신을 위한 드라이브의 노드 주소를 선택합니다. 단, 온라인상에서 중복된 주소는 허용하지 않습니다. ABB AC 800M 드라이브 버스 통신에서 드라이브 주소는 1...24이고 ABB AC 80 드라이브 버스 통신에서 드라이브 주소 1...12입니다. 모듈버스 통신에서 드라이브 주소는 다음과 같이 설정해야 합니다. 1. 위치값 백의 자리에 16을 곱합니다. 2. 이 결과에 위치값 십의 자리와 일의 자리를 더합니다. 3. 예를 들어, 위치값 101; 1×16 + 1 = 17.</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60.55</th>
<th>DDCS controller HW connection</th>
<th>외부 컨트롤러의 결선 방법을 선택합니다.</th>
<th>Star</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Ring</td>
<td>고리형 네트워크 구성.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Star</td>
<td>성형 네트워크 구성.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60.56</th>
<th>DDCS controller baud rate</th>
<th>파라미터 60.51 DDCS controller comm port에 선택한 채널의 통신 속도를 선택합니다.</th>
<th>4 mbps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1 mbps</td>
<td>1 megabit/second.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 mbps</td>
<td>2 megabit/second.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 mbps</td>
<td>4 megabit/second.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 mbps</td>
<td>8 megabit/second.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>60.57</th>
<th>DDCS controller link control</th>
<th>RDCO 모듈 채널 0의 광도를 정의합니다. (이 파라미터는 60.51 DDCS controller comm port를 RDCO CH 0로 선택한 경우에만 유의하며, FDCO는 하드웨어 스위치가 있습니다.) 통상적으로 원거리 통신의 경우에는 높은 값을 설정하며, 최대 설정은 광통신선의 최대 길이에 의존합니다. 자세한 사항은 마스터/팔로워 링크를 위한 광통신선의 사양 (페이지 37)을 참고하십시오.</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1…15</td>
<td>광도 조절.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>60.58</td>
<td>DDCS controller comm loss time</td>
<td>외부 컨트롤러와의 통신 탐지된 시간을 설정합니다. 만약 통신이 탐지되지 않으면 드라이버가 어떻게 반응할지를 파라미터 60.59 DDCS controller comm loss function에서 선택할 수 있습니다. 이 파라미터는 통상 마스터의 전송 간격의 3배 이상으로 설정해야 합니다.</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 전원을 켜 직후에 약 60초 정도의 부팅 시간이 있습니다. 이 시간 동안에는 통신 감지 기능이 잠시 금지됩니다.
- ABB AC 800M을 사용하면 제어기가 즉시 통신 중단을 감지하지만 9초 간격으로 통신을 다시 시도합니다. 여기서 데이터 세트의 전송 주기는 응용 태스크 (application task)와 같지 않고 모듈버스 통신의 Scan Cycle Time (기본값 100 ms)으로 결정됩니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.59</td>
<td>DDCS controller comm loss function</td>
<td>외부 컨트롤러와의 통신 탐지시간이 발생한 경우에 어떻게 반응할지 선택합니다.</td>
</tr>
<tr>
<td></td>
<td>No action</td>
<td>동작 없음.</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>드라이브 트립 정지 (7581 DDCS controller comm loss). 이것은 외부 컨트롤러를 이용하거나 파라미터 60.65 DDCS controller comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다.</td>
</tr>
<tr>
<td></td>
<td>Last speed</td>
<td>드라이브는 A7CA DDCS controller comm loss 경고를 발생하고 기준값은 현재 운전 중인 기준 속도 또는 주파수로 고정됩니다. 기준 속도/주파수는 850 ms의 저역 통과 필터를 거친 실제 속도를 기반으로 결정됩니다. 이것은 외부 컨트롤러를 이용하거나 파라미터 60.65 DDCS controller comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다. WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Speed ref safe</td>
<td>드라이브는 A7CA DDCS controller comm loss 경고를 발생하고 기준값은 운전 모드에 따라 22.41 Speed ref safe (또는 28.41 Frequency ref safe)로 고정됩니다. 이것은 외부 컨트롤러를 이용하거나 파라미터 60.65 DDCS controller comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다. WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Fault always</td>
<td>드라이브 트립 정지 (7581 DDCS controller comm loss). 외부 컨트롤러를 이용하지 않더라도 폴트를 발생시킵니다.</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>드라이브 경고 운전 (A7CA DDCS controller comm loss). 이것은 외부 컨트롤러를 이용하거나 파라미터 60.65 DDCS controller comm supervision force에서 감시 기능을 허용한 경우에만 동작합니다. WARNING! 먼저 신호가 중단되어도 운전을 계속하는 것이 안전하지 확인하십시오.</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.60</td>
<td>DDCS controller ref1 type</td>
<td>외부 컨트롤러 링크를 통해 수신할 기준값 1의 16비트 스케일링 값을 정의합니다. 03.11 DDCS controller ref 1에서 확인할 수 있습니다.</td>
<td>Auto</td>
</tr>
<tr>
<td>Auto</td>
<td>기준값 1이 선택된 제어 모드 (토크 제어, 속도 제어, 주파수 제어)에 따라 자동으로 타입 및 스케일링 값이 적용. 단, 기준값 1이 선택되지 않은 경우에는 Transparent가 됩니다.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Transparent</td>
<td>스케일링: 1 = 1. 데이터 범위: -32768…32767.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>스케일링: 100 = 1. 데이터 범위: -327.68…327.67.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>파라미터 46.03 Torque scaling 범위로 스케일링.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>파라미터 46.01 Speed scaling 범위로 스케일링.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>파라미터 46.02 Frequency scaling 범위로 스케일링.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>60.61</td>
<td>DDCS controller ref2 type</td>
<td>외부 컨트롤러 링크를 통해 수신할 기준값 2의 16비트 스케일링 값을 정의합니다. 03.12 DDCS controller ref 2에서 확인할 수 있습니다.</td>
<td>Auto</td>
</tr>
<tr>
<td>Auto</td>
<td>파라미터 60.60 DDCS controller ref1 type에서 선택한 기준값 1의 타입 및 스케일링 값이 적용.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Transparent</td>
<td>예약된 영역.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>예약된 영역.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>파라미터 01.10 Motor torque가 실제값 1로 전송. 이것은 46.03 Torque scaling 범위로 스케일링됩니다.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>파라미터 01.01 Motor speed used가 실제값 1로 전송. 이것은 46.01 Speed scaling 범위로 스케일링됩니다.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>파라미터 01.06 Output frequency가 실제값 1로 전송. 이것은 46.02 Frequency scaling 범위로 스케일링됩니다.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>60.62</td>
<td>DDCS controller act1 type</td>
<td>외부 컨트롤러 링크를 통해 전송할 실제값 1의 16비트 스케일링 값을 정의합니다.</td>
<td>Auto</td>
</tr>
<tr>
<td>Auto</td>
<td>파라미터 60.60 DDCS controller ref1 type에서 선택한 기준값 1의 타입 및 스케일링 값이 적용.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Transparent</td>
<td>예약된 영역.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>예약된 영역.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>파라미터 01.10 Motor torque가 실제값 2로 전송. 이것은 46.03 Torque scaling 범위로 스케일링됩니다.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>파라미터 01.01 Motor speed used가 실제값 2로 전송. 이것은 46.01 Speed scaling 범위로 스케일링됩니다.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>파라미터 01.06 Output frequency가 실제값 2로 전송. 이것은 46.02 Frequency scaling 범위로 스케일링됩니다.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>60.63</td>
<td>DDCS controller act2 type</td>
<td>외부 컨트롤러 링크를 통해 전송할 실제값 2의 16비트 스케일링 값을 정의합니다.</td>
<td>Auto</td>
</tr>
<tr>
<td>Auto</td>
<td>파라미터 60.61 DDCS controller ref2 type에서 선택한 기준값 2의 타입 및 스케일링 값이 적용.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Transparent</td>
<td>예약된 영역.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>예약된 영역.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td>파라미터 01.10 Motor torque가 실제값 2로 전송. 이것은 46.03 Torque scaling 범위로 스케일링됩니다.</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Speed</td>
<td>파라미터 01.01 Motor speed used가 실제값 2로 전송. 이것은 46.01 Speed scaling 범위로 스케일링됩니다.</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>파라미터 01.06 Output frequency가 실제값 2로 전송. 이것은 46.02 Frequency scaling 범위로 스케일링됩니다.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>60.64</td>
<td>Mailbox dataset selection</td>
<td>드라이브와 외부 컨트롤러와의 통신에서 메일박스 서비스에 사용할 데이터 세트를 선택합니다. 자세한 사항은 외부 컨트롤러 인터페이스 (페이지 39) 절을 참고하십시오.</td>
<td>Dataset 32/33</td>
</tr>
<tr>
<td>Dataset 32/33</td>
<td>데이터 세트 32와 33.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Dataset 24/25</td>
<td>데이터 세트 24와 25.</td>
<td>Def FbEq16</td>
<td></td>
</tr>
<tr>
<td>60.65</td>
<td>DDCS controller comm supervision force</td>
<td>각 제어 위치에서 별도로 DDCS 제어기의 통신 감시 기능을 허용합니다. (페이지 20의 로컬 제어 vs. 외부 제어를 참고하십시오.) 이 파라미터는 DDCS 제어기가 드라이브 제어용으로 사용되지는 않지만, DDCS 제어기의 통신 상태를 감시할 필요가 있는 경우에 사용합니다. 0000b</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ext 1</td>
<td>1 = 제어 위치가 Ext 1인 경우에 DDCS 제어기의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Ext 2</td>
<td>1 = 제어 위치가 Ext 2인 경우에 DDCS 제어기의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>2</td>
<td>Local</td>
<td>1 = 제어 위치가 로컬인 경우에 DDCS 제어기의 통신 상태를 감시합니다.</td>
</tr>
<tr>
<td>3...15</td>
<td>Reserved</td>
<td></td>
</tr>
</tbody>
</table>

0000b...0111b	DDCS 제어기 감시 선택.	1 = 1
60.71	INU-LSU communication port	(95.20에서 IGBT 스플라이 유닛 제어를 허용한 경우에 표시됨.) 스플라이 유닛과 접속된 DDCS 채널을 선택합니다. 사용 가능한 항목과 기본값은 드라이브 하드웨어에 따라 다릅니다. 자세한 사항은 스플라이 유닛 제어(페이지 40) 절을 참고하십시오. see text
Not in use	선택 없음.	0
RDCO CH 1	RDCO 모듈의 채널 1 (BCU 제어 유닛).	11
DDCS via BC	X201 단자.	15
60.77	INU-LSU link control	(95.20에서 IGBT 스플라이 유닛 제어를 허용한 경우에 표시됨.) RDCO 모듈 채널 1의 괄호를 정의합니다. (이 파라미터는 60.71 INU-LSU communication port를 RDCO CH 1로 선택한 경우에만 유효하며, FDCO는 하드웨어 스위치가 있습니다.) 동상적으로 원거리 통신의 경우에는 높은 값을 설정하며, 최대 설정은 광통신선의 최대 길이에 의존합니다. 자세한 사항은 마스터/팔로워 링크를 위한 광통신선의 사양(페이지 37)을 참고하십시오.
1...15	괄호 조절.	10
60.78	INU-LSU comm loss timeout	(95.20에서 IGBT 스플라이 유닛 제어를 허용한 경우에 표시됨.) 스플라이 유닛과의 통신에서 타임아웃 시간을 설정합니다. 만약 통신이 타임아웃되면 드라이브가 어떻게 반응할지 파라미터 60.79 INU-LSU comm loss function에서 선택할 수 있습니다. 100 ms
0...65535 ms	스플라이 유닛과의 통신 타임아웃 시간.	
60.79	INU-LSU comm loss function	(95.20에서 IGBT 스플라이 유닛 제어를 허용한 경우에 표시됨.) 스플라이 유닛과의 통신 타임아웃이 발생한 경우에 어떻게 반응할지 선택합니다. Fault
WARNING!	폴트 이외에 다른 설정을 사용하면 인버터 유닛은 컨버터에서 수신된 최종 상태 정보에 따라 연속 운전됩니다. 이것이 위험하지 않는지 확인하십시오.	
No action	동작 없음.	0
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warning</td>
<td>드라이브 경고 운전 (AF80 INU-LSU comm loss).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
<td>드라이브 트립 정지 (7580 INU-LSU comm loss)</td>
<td>2</td>
</tr>
</tbody>
</table>

61 D2D and DDCS transmit data

DDCS 링크의 전송 데이터 매핑.
파라미터 그룹 80 DDCS communication을 참고하십시오.

<table>
<thead>
<tr>
<th>61.01</th>
<th>M/F data 1 selection</th>
<th>마스터/팔로워 링크로 전송할 데이터 워드 1을 선택합니다. 이 값은 파라미터 61.25 M/F data 1 value에서 확인할 수 있습니다. 사례한 사항은 마스터/팔로워 기능 (페이지 31) 절을 참고하십시오.</th>
<th>Follower CW</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>선택 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CW 16bit</td>
<td>제어 워드 (16비트).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SW 16bit</td>
<td>상태 워드 (16비트).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Act1 16bit</td>
<td>실제값 ACT1 (16비트). Note: 이 값은 소스 신호가 필터링되어 있으므로 팔로워 드라이브의 기준값으로 사용하지 마십시오.</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Act2 16bit</td>
<td>실제값 ACT2 (16비트). Note: 이 값은 소스 신호가 필터링되어 있으므로 팔로워 드라이브의 기준값으로 사용하지 마십시오.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Follower CW</td>
<td>팔로워의 메인 제어 워드 (06.01 Main control word). Note: 제어 워드의 비트 3은 마스터가 모듈레이팅을 수행하는 동안에 1로 세트되어, 0으로 클리어될 때 팔로워는 관성 정지합니다.</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Used speed reference</td>
<td>24.01 Used speed reference (페이지 224 참고).</td>
<td>6145</td>
<td></td>
</tr>
<tr>
<td>Torque reference act 5</td>
<td>26.75 Torque reference act 5 (페이지 246 참고).</td>
<td>6731</td>
<td></td>
</tr>
<tr>
<td>Torque reference used</td>
<td>26.02 Torque reference used (페이지 240 참고).</td>
<td>6658</td>
<td></td>
</tr>
<tr>
<td>ACS800 System ctrl SW</td>
<td>팔로워 드라이브의 상태 워드를 ACS800 (System control program) 과 호환성이 유지, 이 설정을 사용하면 운전 허용 (Run enable) 신호가 제거될 때마다 상태 워드의 비트 0이 클리어 됩니다.</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>61.02</td>
<td>M/F data 2 selection</td>
<td>마스터/팔로워 링크로 전송할 데이터 워드 2를 선택합니다. 이 값은 파라미터 61.26 M/F data 2 value에서 확인할 수 있습니다. 사례한 사항은 파라미터 61.01 M/F data 1 selection을 참고하십시오.</td>
<td>Used speed reference</td>
</tr>
<tr>
<td>61.03</td>
<td>M/F data 3 selection</td>
<td>마스터/팔로워 링크로 전송할 데이터 워드 3를 선택합니다. 이 값은 파라미터 61.27 M/F data 3 value에서 확인할 수 있습니다. 사례한 사항은 파라미터 61.01 M/F data 1 selection을 참고하십시오.</td>
<td>Torque reference act 5</td>
</tr>
<tr>
<td>61.25</td>
<td>M/F data 1 value</td>
<td>마스터/팔로워 링크로 전송된 데이터 워드 1을 표시합니다. 만약 파라미터 61.01 M/F data 1 selection에 선택된 데이터가 없다면 이 파라미터에 전송값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td>마스터/팔로워 링크로 전송된 데이터 워드 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>61.26</td>
<td>M/F data 2 value</td>
<td>마스터/팔로워 링크로 전송된 데이터 워드 2를 표시합니다. 만약 파라미터 61.02 M/F data 2 selection에 선택된 데이터가 없다면 이 파라미터에 전송값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>61.27</td>
<td>M/F data 3 value</td>
<td>마스터/팔로워 링크로 전송된 데이터 워드 3를 표시합니다. 만약 파라미터 61.03 M/F data 3 selection에 선택된 데이터가 없다면 이 파라미터에 전송값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>61.45</td>
<td>Data set 2 data 1 selection</td>
<td>파라미터 61.45…61.50은 외부 컨트롤러로 전송할 데이터 세트 2와 4를 선택합니다. 이 데이터 세트는 60.50 DDCS controller drive type 를 ABB standard drive로 선택한 경우에 사용됩니다. 그리고 파라미터 61.95…61.100은 외부 컨트롤러로 전송된 데이터를 표시합니다. 이 파라미터는 외부 컨트롤러로 전송할 데이터 세트 2의 워드 1을 선택합니다. 이 값은 61.95 Data set 2 data 1 value에서 확인할 수 있으며, 이 파라미터에 선택된 데이터가 없다면 61.95에 전송값을 직접 입력할 수 있습니다.</td>
<td>None</td>
</tr>
<tr>
<td>61.46</td>
<td>Data set 2 data 2 selection</td>
<td>외부 컨트롤러로 전송할 데이터 세트 2의 워드 2를 선택합니다. 이 값은 61.96 Data set 2 data 2 value에서 확인할 수 있습니다. 자세한 사항은 파라미터 61.45 Data set 2 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>61.47</td>
<td>Data set 2 data 3 selection</td>
<td>파라미터 61.45 Data set 2 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>61.50</td>
<td>Data set 4 data 3 selection</td>
<td>파라미터 61.45 Data set 2 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>61.51</td>
<td>Data set 11 data 1 selection</td>
<td>파라미터 61.51…61.74는 외부 컨트롤러로 전송할 데이터 세트 11, 13, 15, 17, 19, 21, 23, 25를 선택합니다. 그리고 파라미터 61.101…61.124는 외부 컨트롤러로 전송된 데이터를 표시합니다. 이 파라미터는 외부 컨트롤러로 전송할 데이터 세트 11의 워드 1을 선택합니다. 이 값은 61.101 Data set 11 data 1 value에서 확인할 수 있으며, 이 파라미터에 선택된 데이터가 없다면 61.101에 전송값을 직접 입력할 수 있습니다.</td>
<td>None</td>
</tr>
</tbody>
</table>

선택 없음. 0
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>368</td>
<td>CW 16bit</td>
<td>제어 워드 (16비트).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>SW 16bit</td>
<td>상태 워드 (16비트).</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Act1 16bit</td>
<td>실제값 ACT1 (16비트).</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Act2 16bit</td>
<td>실제값 ACT2 (16비트).</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61.52 Data set 11 data 2 selection</td>
<td>외부 컨트롤러로 전송할 데이터 세트 11의 워드 2를 선택합니다. 이 값은 61.102 Data set 11 data 2 value에서 확인할 수 있습니다. 자세한 사항은 파라미터 61.51 Data set 11 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>61.53 Data set 11 data 3 selection</td>
<td>외부 컨트롤러로 전송할 데이터 세트 11의 워드 3를 선택합니다. 이 값은 61.103 Data set 11 data 3 value에서 확인할 수 있습니다. 자세한 사항은 파라미터 61.51 Data set 11 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>61.54 Data set 13 data 1 selection</td>
<td>파라미터 61.51 Data set 11 data 1 selection를 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>61.74 Data set 25 data 3 selection</td>
<td>파라미터 61.51 Data set 11 data 1 selection를 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>61.95 Data set 2 data 1 value</td>
<td>외부 컨트롤러로 전송된 데이터 세트 2의 워드 1을 표시합니다. 만약 파라미터 61.45 Data set 2 data 1 selection에 선택된 데이터가 없다면 이 파라미터에 전송값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>61.96 Data set 2 data 2 value</td>
<td>외부 컨트롤러로 전송된 데이터 세트 2의 워드 2를 표시합니다. 만약 파라미터 61.46 Data set 2 data 2 selection에 선택된 데이터가 없다면 이 파라미터에 전송값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>61.97 Data set 2 data 3 value</td>
<td>외부 컨트롤러로 전송된 데이터 세트 2의 워드 3을 표시합니다. 만약 파라미터 61.47 Data set 2 data 3 selection에 선택된 데이터가 없다면 이 파라미터에 전송값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>61.100 Data set 4 data 3 value</td>
<td>외부 컨트롤러로 전송된 데이터 세트 4의 워드 3을 표시합니다. 만약 파라미터 61.50 Data set 4 data 3 selection에 선택된 데이터가 없다면 이 파라미터에 전송값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0...65535</td>
<td>외부 컨트롤러로 전송된 데이터 세트 2의 워드 1.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61.102 Data set 11 data 2 value</td>
<td>외부 컨트롤러로 전송할 데이터 세트 11의 워드 2를 선택합니다. 이 값은 61.102 Data set 11 data 2 value에서 확인할 수 있습니다. 자세한 사항은 파라미터 61.51 Data set 11 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>61.103 Data set 11 data 3 value</td>
<td>외부 컨트롤러로 전송할 데이터 세트 11의 워드 3를 선택합니다. 이 값은 61.103 Data set 11 data 3 value에서 확인할 수 있습니다. 자세한 사항은 파라미터 61.51 Data set 11 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>61.51 Data set 11 data 1 selection</td>
<td>파라미터 61.51 Data set 11 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>61.51 Data set 11 data 1 selection</td>
<td>파라미터 61.51 Data set 11 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>61.101</td>
<td>Data set 11 data 1 value</td>
<td>외부 컨트롤러로 전송된 데이터 세트 11의 워드 1을 표시합니다. 만약 파라미터 61.51 Data set 11 data 1 selection에 선택된 데이터가 없다면 이 파라미터에 전송 값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>61.102</td>
<td>Data set 11 data 2 value</td>
<td>외부 컨트롤러로 전송된 데이터 세트 11의 워드 2를 표시합니다. 만약 파라미터 61.52 Data set 11 data 2 selection에 선택된 데이터가 없다면 이 파라미터에 전송 값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>61.103</td>
<td>Data set 11 data 3 value</td>
<td>외부 컨트롤러로 전송된 데이터 세트 11의 워드 3를 표시합니다. 만약 파라미터 61.53 Data set 11 data 3 selection에 선택된 데이터가 없다면 이 파라미터에 전송 값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>61.104</td>
<td>Data set 13 data 1 value</td>
<td>외부 컨트롤러로 전송된 데이터 세트 13의 워드 1을 표시합니다. 만약 파라미터 61.54 Data set 13 data 1 selection에 선택된 데이터가 없다면 이 파라미터에 전송 값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>61.124</td>
<td>Data set 25 data 3 value</td>
<td>외부 컨트롤러로 전송된 데이터 세트 25의 워드 3을 표시합니다. 만약 파라미터 61.74 Data set 25 data 3 selection에 선택된 데이터가 없다면 이 파라미터에 전송 값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
</tbody>
</table>

61.151 | INU-LSU data set 10 data 1 sel | (95.20에서 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 파라미터 61.151...61.153은 서플라이 유닛으로 전송할 데이터 세트 10을 선택합니다. 그리고 파라미터 61.201...61.203은 서플라이 유닛으로 전송된 데이터를 표시합니다. 이 파라미터는 서플라이 유닛으로 전송할 데이터 세트 10의 워드 1을 선택합니다. 이 값은 61.201 INU-LSU data set 10 data 1 selection에 확인할 수 있으며, 이 파라미터에 선택된 데이터가 없다면 61.210에 전송 값을 직접 입력할 수 있습니다. | LSU CW |

None | 선택 없음. | 0 |
LSU CW | 서플라이 유닛 제어 워드. | 22 |
DC voltage reference | 94.20 DC voltage reference (페이지 399 참고). | 24084 |
Reactive power reference | 94.30 Reactive power reference (페이지 399 참고). | 24094 |
Other | 기타 소스 선택. | - |
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.152</td>
<td>INU-LSU data set 10 data 2 sel</td>
<td>(95.20에서 서둘라이 유닛 제어를 허용한 경우에만 표시됨.) 서둘라이 유닛으로 전송할 데이터 세트 10의 워드 2를 선택합니다. 이 값은 61.202 INU-LSU data set 10 data 2 value에서 확인할 수 있습니다. 자세한 사항은 파라미터 61.151 INU-LSU data set 10 data 1 se를 참고하시십시오.</td>
<td>DC voltage reference</td>
</tr>
<tr>
<td>61.153</td>
<td>INU-LSU data set 10 data 3 sel</td>
<td>(95.20에서 서둘라이 유닛 제어를 허용한 경우에만 표시됨.) 서둘라이 유닛으로 전송할 데이터 세트 10의 워드 3를 선택합니다. 이 값은 61.203 INU-LSU data set 10 data 3 value에서 확인할 수 있습니다. 자세한 사항은 파라미터 61.151 INU-LSU data set 10 data 1 se을 참고하시십시오.</td>
<td>Reactive power reference</td>
</tr>
<tr>
<td>61.201</td>
<td>INU-LSU data set 10 data 1 value</td>
<td>(95.20에서 서둘라이 유닛 제어를 허용한 경우에만 표시됨.) 서둘라이 유닛으로 전송된 데이터 세트 10의 워드 1을 표시합니다. 만약 파라미터 61.151 INU-LSU data set 10 data 1 se에 선택된 데이터가 없다면 이 파라미터에 전송값을 직접 입력할 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>62 D2D and DDCS receive data</td>
<td>DDCS 링크의 수신 데이터 매핑. 파라미터 그룹 60 DDCS communication을 참고하시십시오.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.01</td>
<td>M/F data 1 selection</td>
<td>(필로워 전용 파라미터) 마스터로부터 데이터 워드 1로 수신할 데이터를 선택합니다. 이 값은 파라미터 62.25 MF data 1 value에서 확인할 수 있습니다.</td>
<td>None</td>
</tr>
<tr>
<td>None</td>
<td>선택 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CW 16bit</td>
<td>제어 워드 (16비트).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ref1 16bit</td>
<td>기준값 REF1 (16비트).</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ref2 16bit</td>
<td>기준값 REF2 (16비트).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>62.02</td>
<td>M/F data 2 selection</td>
<td>(필로워 전용 파라미터) 마스터로부터 데이터 워드 2로 수신할 데이터를 선택합니다. 이 값은 파라미터 62.26 MF data 2 value에서 확인할 수 있습니다. 자세한 사항은 파라미터 62.01 M/F data 1 selection을 참고하시십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.03</td>
<td>M/F data 3 selection</td>
<td>(필로워 전용 파라미터) 마스터로부터 데이터 워드 3으로 수신할 데이터를 선택합니다. 이 값은 파라미터 62.27 MF data 3 value에서 확인할 수 있습니다. 자세한 사항은 파라미터 62.01 M/F data 1 selection을 참고하시십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.04</td>
<td>Follower node 2 data 1 sel</td>
<td>마스터/필로워 링크를 통해 필로워 1 (노드 주소 2)로부터 워드 1로 수신할 데이터를 선택합니다. 이 값은 62.28 Follower node 2 data 1 value에서 확인할 수 있습니다.</td>
<td>Follower SW</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/Feq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>62.05</td>
<td>Follower node 2 data 2 sel</td>
<td>마스터/팔로워 링크를 통해 팔로워 1(노드 주소 2)로부터 워드 2로 수신할 데이터를 선택합니다. 이 값은 62.29 Follower node 2 data 2 value에서 확인할 수 있습니다. 자세한 사항은 62.04 Follower node 2 data 1 sel을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.06</td>
<td>Follower node 2 data 3 sel</td>
<td>마스터/팔로워 링크를 통해 팔로워 1(노드 주소 2)로부터 워드 3으로 수신할 데이터를 선택합니다. 이 값은 62.30 Follower node 2 data 3 value에서 확인할 수 있습니다. 자세한 사항은 62.04 Follower node 2 data 1 sel을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.07</td>
<td>Follower node 3 data 1 sel</td>
<td>마스터/팔로워 링크를 통해 팔로워 2(노드 주소 3)로부터 워드 1로 수신할 데이터를 선택합니다. 이 값은 62.31 Follower node 3 data 1 value에서 확인할 수 있습니다. 자세한 사항은 62.04 Follower node 2 data 1 sel을 참고하십시오.</td>
<td>Follower SW</td>
</tr>
<tr>
<td>62.08</td>
<td>Follower node 3 data 2 sel</td>
<td>마스터/팔로워 링크를 통해 팔로워 2(노드 주소 3)로부터 워드 2로 수신할 데이터를 선택합니다. 이 값은 62.32 Follower node 3 data 2 value에서 확인할 수 있습니다. 자세한 사항은 62.04 Follower node 2 data 1 sel을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.09</td>
<td>Follower node 3 data 3 sel</td>
<td>마스터/팔로워 링크를 통해 팔로워 2(노드 주소 3)로부터 워드 3으로 수신할 데이터를 선택합니다. 이 값은 62.33 Follower node 3 data 3 value에서 확인할 수 있습니다. 자세한 사항은 62.04 Follower node 2 data 1 sel을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.10</td>
<td>Follower node 4 data 1 sel</td>
<td>마스터/팔로워 링크를 통해 팔로워 3(노드 주소 4)로부터 워드 1로 수신할 데이터를 선택합니다. 이 값은 62.34 Follower node 4 data 1 value에서 확인할 수 있습니다. 자세한 사항은 62.04 Follower node 2 data 1 sel을 참고하십시오.</td>
<td>Follower SW</td>
</tr>
<tr>
<td>62.11</td>
<td>Follower node 4 data 2 sel</td>
<td>마스터/팔로워 링크를 통해 팔로워 3(노드 주소 4)로부터 워드 2로 수신할 데이터를 선택합니다. 이 값은 62.35 Follower node 4 data 2 value에서 확인할 수 있습니다. 자세한 사항은 62.04 Follower node 2 data 1 sel을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.12</td>
<td>Follower node 4 data 3 sel</td>
<td>마스터/팔로워 링크를 통해 팔로워 3(노드 주소 4)로부터 워드 3로 수신할 데이터를 선택합니다. 이 값은 62.36 Follower node 4 data 3 value에서 확인할 수 있습니다. 자세한 사항은 62.04 Follower node 2 data 1 sel을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>62.25</td>
<td>MF data 1 value</td>
<td>(팔로워 전용 파라미터) 마스터로부터 워드 1로 수신된 데이터를 표시합니다. 파라미터 62.01 M/F data 1 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td></td>
<td>마스터로부터 워드 1로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>62.26</td>
<td>MF data 2 value</td>
<td>(팔로워 전용 파라미터) 마스터로부터 워드 2로 수신된 데이터를 표시합니다. 파라미터 62.02 M/F data 2 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td></td>
<td>마스터로부터 워드 2로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>62.27</td>
<td>MF data 3 value</td>
<td>(팔로워 전용 파라미터) 마스터로부터 워드 3으로 수신된 데이터를 표시합니다. 파라미터 62.03 M/F data 3 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td></td>
<td>마스터로부터 워드 3으로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>62.28</td>
<td>Follower node 2 data 1 value</td>
<td>팔로워 1 노드 주소 2에서 워드 1로 수신된 데이터를 표시합니다. 파라미터 62.04 Follower node 2 data 1 sel에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td></td>
<td>팔로워 1에서 워드 1로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>62.29</td>
<td>Follower node 2 data 2 value</td>
<td>팔로워 1 노드 주소 2에서 워드 2로 수신된 데이터를 표시합니다. 파라미터 62.05 Follower node 2 data 2 sel에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td></td>
<td>팔로워 1에서 워드 2로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>62.30</td>
<td>Follower node 2 data 3 value</td>
<td>팔로워 1 노드 주소 2에서 워드 3로 수신된 데이터를 표시합니다. 파라미터 62.06 Follower node 2 data 3 sel에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td></td>
<td>팔로워 1에서 워드 3로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>62.31</td>
<td>Follower node 3 data 1 value</td>
<td>팔로워 2 노드 주소 3에서 워드 1로 수신된 데이터를 표시합니다. 파라미터 62.07 Follower node 3 data 1 sel에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td></td>
<td>팔로워 2에서 워드 1로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>62.32</td>
<td>Follower node 3 data 2 value</td>
<td>팔로워 2 노드 주소 3에서 워드 2로 수신된 데이터를 표시합니다. 파라미터 62.08 Follower node 3 data 2 sel에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td></td>
<td>팔로워 2에서 워드 2로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>62.33</td>
<td>Follower node 3 data 3 value</td>
<td>팔로워 2 (노드 주소 3)에서 워드 3으로 수신된 데이터를 표시합니다. 파라미터 62.09 Follower node 3 data 3 set에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0…65535</td>
<td></td>
<td>팔로워 2에서 워드 3으로 수신된 데이터.</td>
<td>0</td>
</tr>
<tr>
<td>62.34</td>
<td>Follower node 4 data 1 value</td>
<td>팔로워 3 (노드 주소 4)에서 워드 1로 수신된 데이터를 표시합니다. 파라미터 62.10 Follower node 4 data 1 set에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0…65535</td>
<td></td>
<td>팔로워 3에서 워드 1로 수신된 데이터.</td>
<td>0</td>
</tr>
<tr>
<td>62.35</td>
<td>Follower node 4 data 2 value</td>
<td>팔로워 3 (노드 주소 4)에서 워드 2로 수신된 데이터를 표시합니다. 파라미터 62.11 Follower node 4 data 2 set에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0…65535</td>
<td></td>
<td>팔로워 3에서 워드 2로 수신된 데이터.</td>
<td>0</td>
</tr>
<tr>
<td>62.36</td>
<td>Follower node 4 data 3 value</td>
<td>팔로워 3 (노드 주소 4)에서 워드 3으로 수신된 데이터를 표시합니다. 파라미터 62.12 Follower node 4 data 3 set에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0…65535</td>
<td></td>
<td>팔로워 3에서 워드 3으로 수신된 데이터.</td>
<td>0</td>
</tr>
<tr>
<td>62.37</td>
<td>M/F communication status 1</td>
<td>(마스터) 파라미터 60.19 M/F comm supervision sel 1에서 선택한 팔로워와의 통신 상태를 표시합니다. (팔로워) 비트 0은 마스터와의 통신 상태를 나타냅니다. 이 파라미터는 IEC 응용 프로그램으로 구성한 경우에만 유용합니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
</table>
| 0 | Follower 1 | 1 (마스터) = 팔로워 1과의 통신 상태가 정상입니다.
1 (팔로워) = 마스터와의 통신 상태가 정상입니다. |
| 1 | Follower 2 | 1 = 팔로워 2와의 통신 상태가 정상입니다. |
| ... | ... | ... |
| 15 | Follower 16 | 1 = 팔로워 16과의 통신 상태가 정상입니다. |

| 0000h…FFFFh | 마스터/팔로워 통신 상태 (팔로워 1…16). | 1 = 1 |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.38</td>
<td>M/F communication status 2</td>
<td>(마스터) 파라미터 60.20 M/F comm supervision sel 2에서 선택한 팔로워와의 통신 상태를 표시합니다. 이 파라미터는 IEC 응용 프로그램으로 구성한 경우에만 유용합니다.</td>
<td>-</td>
</tr>
<tr>
<td>0000h…FFFFh</td>
<td></td>
<td>마스터/팔로워 통신 상태 (팔로워 17…32).</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Follower 17</td>
<td>1 = 팔로워 17과의 통신 상태가 정상입니다.</td>
</tr>
<tr>
<td>1</td>
<td>Follower 18</td>
<td>1 = 팔로워 18과의 통신 상태가 정상입니다.</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>15</td>
<td>Follower 32</td>
<td>1 = 팔로워 32와의 통신 상태가 정상입니다.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>62.41</td>
<td>M/F follower ready status 1</td>
<td>(마스터) 파라미터 60.23 M/F status supervision sel 1에서 선택한 팔로워의 준비 상태를 표시합니다. 이 파라미터는 IEC 응용 프로그램으로 구성한 경우에만 유 효합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Follower 1</td>
<td>1 = 팔로워 1이 준비되었습니다.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Follower 2</td>
<td>1 = 팔로워 2가 준비되었습니다.</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Follower 16</td>
<td>1 = 팔로워 16이 준비되었습니다.</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h...FFFFh | 팔로워 준비 상태 (팔로워 1...16). | 1 = 1 | |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.42</td>
<td>M/F follower ready status 2</td>
<td>(마스터) 파라미터 60.24 M/F status supervision sel 2에서 선택한 팔로워의 준비 상태를 표시합니다. 이 파라미터는 IEC 응용 프로그램으로 구성한 경우에만 유 효합니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Follower 17</td>
<td>1 = 팔로워 17이 준비되었습니다.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Follower 18</td>
<td>1 = 팔로워 18이 준비되었습니다.</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Follower 32</td>
<td>1 = 팔로워 32가 준비되었습니다.</td>
<td></td>
</tr>
</tbody>
</table>

| 0000h...FFFFh | 팔로워 준비 상태 (팔로워 17...32). | 1 = 1 | None |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.45</td>
<td>Data set 1 data 1 selection</td>
<td>파라미터 62.45...62.50는 외부 컨트롤러를 통해 데이터 세트 1과 3으로 수신할 데이터를 선택합니다. 이 데이터 세트는 "standard drive" 모듈버스에서 사용됩니다. (60.50 DDCS controller drive type = ABB standard drive) 여기서 외부 컨트롤러로부터 수신된 데이터는 62.95...62.100에서 확인할 수 있으며, 기타 파라미터의 신호 소스로 사용될 수 있습니다. 이 파라미터는 외부 컨트롤러를 통해 데이터 세트 1의 워드 1로 수신할 데이터를 선택합니다. 이 값은 파라미터 62.95 Data set 1 data 1 value에서 확인할 수 있으며, 기타 파라미터의 소스로 사용될 수 있습니다.</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>values</th>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td>CW 16bit</td>
<td>제어 워드 (16비트).</td>
<td>1</td>
</tr>
<tr>
<td>Ref1 16bit</td>
<td>기준값 REF1 (16비트).</td>
<td>2</td>
</tr>
<tr>
<td>Ref2 16bit</td>
<td>기준값 REF2 (16비트).</td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.46</td>
<td>Data set 1 data 2 selection</td>
<td>외부 컨트롤러를 통해 데이터 세트 1의 워드 1로 수신할 데이터를 선택합니다. 이 값은 파라미터 62.96 Data set 1 data 2 value에서 확인할 수 있으며, 기타 파라미터의 소스로 사용될 수 있습니다. 자세한 사항은 62.45 Data set 1 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.47</td>
<td>Data set 1 data 3 selection</td>
<td>자세한 사항은 62.45 Data set 1 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
</tbody>
</table>

| ... | ... | ... | |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.50</td>
<td>Data set 3 data 3 selection</td>
<td>자세한 사항은 62.45 Data set 1 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>62.51</td>
<td>Data set 10 data 1 selection</td>
<td>파라미터 62.51...62.74는 외부 컨트롤러를 통해 데이터 세트 10, 12, 14, 16, 18, 20, 22, 24로 수신할 데이터를 선택합니다. 여기서 외부 컨트롤러로부터 수신된 데이터는 62.101...62.124에서 확인할 수 있으며, 기타 파라미터의 신호 소스로 사용될 수 있습니다. 이 파라미터는 외부 컨트롤러를 통해 데이터 세트 10의 워드 1로 수신할 데이터를 선택합니다. 이 값은 파라미터 62.101 Data set 10 data 1 value에서 확인할 수 있으며, 기타 파라미터의 소스로 사용될 수 있습니다.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>CW 16bit</td>
<td>제어 워드 (16비트).</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Ref1 16bit</td>
<td>기준값 REF1 (16비트).</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Ref2 16bit</td>
<td>기준값 REF2 (16비트).</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>62.52</td>
<td>Data set 10 data 2 selection</td>
<td>외부 컨트롤러를 통해 데이터 세트 10의 워드 2로 수신할 데이터를 선택합니다. 이 값은 파라미터 62.102 Data set 10 data 2 value에서 확인할 수 있으며, 기타 파라미터의 소스로 사용될 수 있습니다. 자세한 사항은 62.51 Data set 10 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.53</td>
<td>Data set 10 data 3 selection</td>
<td>외부 컨트롤러를 통해 데이터 세트 10의 워드 3로 수신할 데이터를 선택합니다. 이 값은 파라미터 62.103 Data set 10 data 3 value에서 확인할 수 있으며, 기타 파라미터의 소스로 사용될 수 있습니다. 자세한 사항은 62.51 Data set 10 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.54</td>
<td>Data set 12 data 1 selection</td>
<td>자세한 사항은 62.51 Data set 10 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>62.74</td>
<td>Data set 24 data 3 selection</td>
<td>자세한 사항은 62.51 Data set 10 data 1 selection을 참고하십시오.</td>
<td>None</td>
</tr>
<tr>
<td>62.95</td>
<td>Data set 1 data 1 value</td>
<td>외부 컨트롤러를 통해 데이터 세트 1의 워드 1로 수신된 데이터를 표시합니다. 파라미터 62.45 Data set 1 data 1 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0...65535</td>
<td>데이터 세트 1의 워드 1로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>62.96</td>
<td>Data set 1 data 2 value</td>
<td>외부 컨트롤러를 통해 데이터 세트 1의 워드 2로 수신된 데이터를 표시합니다. 파라미터 62.46 Data set 1 data 2 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0...65535</td>
<td>데이터 세트 1의 워드 2로 수신된 데이터.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>62.97</td>
<td>Data set 1 data 3 value</td>
<td>외부 컨트롤러를 통해 데이터 세트 1의 워드 3으로 수신된 데이터를 표시합니다. 파라미터 62.47 Data set 1 data 3 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td>데이터 세트 1의 워드 3으로 수신된 데이터.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>62.100</td>
<td>Data set 3 data 3 value</td>
<td>외부 컨트롤러를 통해 데이터 세트 3의 워드 3으로 수신된 데이터를 표시합니다. 파라미터 62.50 Data set 3 data 3 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td>데이터 세트 3의 워드 3으로 수신된 데이터.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.101</td>
<td>Data set 10 data 1 value</td>
<td>외부 컨트롤러를 통한 데이터 세트 10의 워드 1로 수신된 데이터를 표시합니다. 파라미터 62.51 Data set 10 data 1 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td>데이터 세트 10의 워드 1로 수신된 데이터.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.102</td>
<td>Data set 10 data 2 value</td>
<td>외부 컨트롤러를 통해 데이터 세트 10의 워드 2로 수신된 데이터를 표시합니다. 파라미터 62.52 Data set 10 data 2 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td>데이터 세트 10의 워드 2로 수신된 데이터.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.103</td>
<td>Data set 10 data 3 value</td>
<td>외부 컨트롤러를 통해 데이터 세트 10의 워드 3으로 수신된 데이터를 표시합니다. 파라미터 62.53 Data set 10 data 3 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td>데이터 세트 10의 워드 3으로 수신된 데이터.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62.104</td>
<td>Data set 12 data 1 value</td>
<td>외부 컨트롤러를 통해 데이터 세트 12의 워드 1로 수신된 데이터를 표시합니다. 파라미터 62.54 Data set 12 data 1 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td>데이터 세트 12의 워드 1로 수신된 데이터.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>62.124</td>
<td>Data set 24 data 3 value</td>
<td>외부 컨트롤러를 통해 데이터 세트 24의 워드 3으로 수신된 데이터를 표시합니다. 파라미터 62.74 Data set 24 data 3 selection에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td>0...65535</td>
<td>데이터 세트 24의 워드 3으로 수신된 데이터.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>LSU SW</td>
<td>서플라이 유닛 상태 워드.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>기타 소스 선택.</td>
<td>-</td>
</tr>
<tr>
<td>62.201</td>
<td>INU-LSU data set 11 data 1 value</td>
<td>서플라이 유닛을 통해 데이터 세트 11의 워드 1로 수신된 데이터를 표시합니다. 파라미터 62.151 INU-LSU data set 11 data 1 sel에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0…65535</td>
<td>데이터 세트 11의 워드 1로 수신된 데이터</td>
<td></td>
</tr>
<tr>
<td>62.202</td>
<td>INU-LSU data set 11 data 2 value</td>
<td>서플라이 유닛을 통해 데이터 세트 11의 워드 2로 수신된 데이터를 표시합니다. 파라미터 62.152 INU-LSU data set 11 data 2 sel에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0…65535</td>
<td>데이터 세트 11의 워드 2로 수신된 데이터</td>
<td></td>
</tr>
<tr>
<td>62.203</td>
<td>INU-LSU data set 11 data 3 value</td>
<td>서플라이 유닛을 통해 데이터 세트 11의 워드 3으로 수신된 데이터를 표시합니다. 파라미터 62.153 INU-LSU data set 11 data 3 sel에서 수신할 데이터를 선택할 수 있습니다. 이 값은 기타 파라미터의 신호 소스로 사용될 수 있습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0…65535</td>
<td>데이터 세트 11의 워드 3으로 수신된 데이터</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>90 Feedback selection</td>
<td>모터 및 부하 피드백 구성.</td>
<td>DefFbEq16</td>
<td></td>
</tr>
<tr>
<td>90.01 Motor speed for control</td>
<td>모터 제어에 사용할 모터속도 추정값 및 측정값을 표시합니다. 이것은 90.41 Motor feedback selection에서 추정값 또는 측정값을 선택할 수 있으며, 기본적으로 90.42 Motor speed filter time에 의해 필터링된 값을 나타냅니다. 이 파라미터는 읽기 전용입니다.</td>
<td>See par. 46.01</td>
<td></td>
</tr>
<tr>
<td>90.02 Motor position</td>
<td>1회전 내에서 파라미터 90.41 Motor feedback selection에서 선택한 소스로부터 계산된 회전자의 위치 정보를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.03 Load speed</td>
<td>모터 제어에 사용할 부하속도 추정값 및 측정값을 표시합니다. 이것은 90.51 Load feedback selection에서 추정값 또는 측정값을 선택할 수 있으며, 기본적으로 90.52 Load speed filter time에 의해 필터링된 값을 나타냅니다. 만약 피드백을 모터에서 측정한 값 또는 추정값을 선택한 경우에는 모터 회전축과 부하 회전축 사이의 기어비 (90.61 Gear numerator, 90.62 Gear denominator)가 반영되어야 합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>See par. 46.01</td>
<td></td>
</tr>
<tr>
<td>90.04 Load position</td>
<td>파라미터 90.51 Load feedback selection에서 선택한 소스로부터 계산된 부하측 위치 정보를 표시합니다. 이 값은 파라미터 90.57 Load position resolution에서 지정한 범위로 표현됩니다. 여기서 부하측 피드백 소스를 모터 속도 (측정값 또는 추정값)로 선택한 경우에는 모터 회전축과 부하 회전축 사이의 기어비 (90.61 Gear numerator, 90.62 Gear denominator)가 반영되어야 합니다. 그리고 정확한 부하측 위치 정보를 얻어내기 위해 오프셋 (90.56 Load position offset)까지 고려하는 것이 바람직합니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2147483648 ... 2147483647</td>
<td>부하측 위치.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>90.05</td>
<td>Load position</td>
<td>계산된 부하측 위치 정보를 표시합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>scaled</td>
<td>이 파라미터의 초기값은 90.65 및 90.66에 정의합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>여기서 소수점 자릿수는 90.38 Pos counter decimals에 정의할 수 있습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 이것은 부동 소수점으로 정확도는 범위 끝부분에서 부정확할 수</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>있으므로 이 파라미터 대신에 90.07 Load position scaled int를 사용할 수</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>있습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2147483.648 …</td>
<td>부하측 위치.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2147483.647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.06</td>
<td>Motor position</td>
<td>계산된 모터측 위치 정보를 표시합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>scaled</td>
<td>이것은 측정 모드 (선택 또는 풀오버)와 분해능은 각각 90.48 Motor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>position axis mode와 90.49 Motor position resolution에 정의합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: 이 위치값은 50.07 FBA A actual 1 type, 50.08 FBA A actual 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>type, 50.37 FBA B actual 1 type 또는 50.38 FBA B actual 2 type에서</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Position을 선택하는 것으로 필드버스 통신으로 전송할 수 있습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2147483.648 …</td>
<td>모터측 위치.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2147483.647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.07</td>
<td>Load position</td>
<td>파라미터 90.05 Load position scaled를 정수로 표현하여 ACS800의</td>
<td></td>
</tr>
<tr>
<td></td>
<td>scaled int</td>
<td>및의 호환성을 유지합니다. 지세한 사항은 위치 카운터 (페이지 51)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>결과 페이지 568의 제어 제어 플로그램을 참고하십시오.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 파라미터의 초기값은 90.58 및 90.59에 정의됩니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2147483648 …</td>
<td>정수로 표현된 부하측 위치.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2147483647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90.10</td>
<td>Encoder 1 speed</td>
<td>엔코더 1 속도를 표시합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-32768.00 …</td>
<td>엔코더 1 속도.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32767.00 rpm</td>
<td></td>
<td>See par.</td>
</tr>
<tr>
<td>90.11</td>
<td>Encoder 1 position</td>
<td>1회전 내에서 엔코더 1의 실제 위치를 표시합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.000000000 …</td>
<td>엔코더 1 위치.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.000000000 rev</td>
<td></td>
<td>32767 =</td>
</tr>
<tr>
<td>90.12</td>
<td>Encoder 1 multturn</td>
<td>(절대치형 엔코더 전용) 파라미터 92.14 Revolution data width에</td>
<td></td>
</tr>
<tr>
<td></td>
<td>revolutions</td>
<td>설정한 범위 내에서 얻어진 엔코더 1의 회전수 (Revolutions)를</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…16777215</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>90.13</td>
<td>Encoder 1 revolution extension</td>
<td>엔코더 1의 확장 회전수를 표시합니다. 이 값은 싱글턴 엔코더에서 엔코더 위치 (파라미터 90.1)가 0으로 클리어될 때마다 모터가 정방향 회전하고 있다면 증가하고 역방향 회전하고 있다면 감소할 것입니다. 이 값은 엔코더에서 엔코더 회전수 (파라미터 90.12)가 0으로 클리어될 때마다 모터가 정방향 회전하고 있다면 증가하고 역방향 회전하고 있다면 감소할 것입니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td>-2147483648 ... 2147483647</td>
<td></td>
<td>엔코더 1 확장 회전수.</td>
<td></td>
</tr>
<tr>
<td>90.14</td>
<td>Encoder 1 position raw</td>
<td>1회전 내에서 엔코더 1 위치를 24비트 부호없는 정수로 원래의 측정 데이터를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td>0...16777215</td>
<td></td>
<td>1회전 내에서 엔코더 1 위치.</td>
<td></td>
</tr>
<tr>
<td>90.15</td>
<td>Encoder 1 revolutions raw</td>
<td>(절대지형 엔코더 전용) 파라미터 92.14 Revolution data width에 설정한 원래의 측정 범위 내에서 엔코더 위치를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td>0...16777215</td>
<td></td>
<td>엔코더 1 회전수.</td>
<td></td>
</tr>
<tr>
<td>90.20</td>
<td>Encoder 2 speed</td>
<td>엔코더 2 속도를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td>-32768.00 ... 32767.00 rpm</td>
<td></td>
<td>엔코더 2 속도.</td>
<td></td>
</tr>
<tr>
<td>90.21</td>
<td>Encoder 2 position</td>
<td>1회전 내에서 엔코더 2의 실제 위치를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td>0.00000000 ... 1.00000000 rev</td>
<td></td>
<td>엔코더 2 위치.</td>
<td></td>
</tr>
<tr>
<td>90.22</td>
<td>Encoder 2 multturn revolutions</td>
<td>(절대지형 엔코더 전용) 파라미터 92.14 Revolution data width에 설정한 범위 내에서 엔코더 회전수를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td>0...16777215</td>
<td></td>
<td>엔코더 2 회전수.</td>
<td></td>
</tr>
<tr>
<td>90.23</td>
<td>Encoder 2 revolution extension</td>
<td>엔코더 1의 확장 회전수를 표시합니다. 이 값은 싱글턴 엔코더에서 모터가 정방향 회전하고 있다면 엔코더 위치 (파라미터 90.2)가 0으로 클리어될 때마다 증가하고 반면에 역방향 회전하고 있다면 감소할 것입니다. 이 값은 엔코더에서 모터가 정방향 회전하고 있다면 엔코더 회전수 (파라미터 90.22)가 0으로 클리어될 때마다 증가하고 반면에 역방향 회전하고 있다면 감소할 것입니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td>-2147483648 ... 2147483647</td>
<td></td>
<td>엔코더 2 확장 회전수.</td>
<td></td>
</tr>
<tr>
<td>90.24</td>
<td>Encoder 2 position raw</td>
<td>1회전 내에서 엔코더 2 위치를 24비트 부호없는 정수로 원래의 측정 데이터를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td></td>
</tr>
<tr>
<td>0...16777215</td>
<td></td>
<td>1회전 내에서 엔코더 2 위치.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>90.25</td>
<td>Encoder 2 revolutions raw</td>
<td>(절대치형 엔코더 전용) 파라미터 92.14 Revolution data width에 설정한 원래의 측정 범위 내에서 멀티턴 엔코더 2의 회전수를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>90.26</td>
<td>Motor revolution extension</td>
<td>모터측 회전수를 표시합니다. 이 값은 파라미터 90.41 Motor feedback selection에 선택한 소스의 위치가 정방향으로 감길 때 증가하고 역방향일 때 감소합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>-2147483648 … 2147483647</td>
<td>모터측 회전수.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>90.27</td>
<td>Load revolution extension</td>
<td>부하측 회전수를 표시합니다. 이 값은 파라미터 90.51 Load feedback selection에 선택한 소스의 위치가 정방향으로 감길 때 증가하고 역방향일 때 감소합니다. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
<tr>
<td>-2147483648 … 2147483647</td>
<td>부하측 회전수.</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>90.35</td>
<td>Pos counter status</td>
<td>위치 카운터의 상태 워드입니다. 자세한 사항은 위치 카운터 (페이지 51)를 참고하십시오. 이 파라미터는 읽기 전용입니다.</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Encoder 1 feedback</td>
<td>1 = 부하측 피드백 소스로 엔코더 1이 선택되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Encoder 2 feedback</td>
<td>1 = 부하측 피드백 소스로 엔코더 2가 선택되었습니다.</td>
</tr>
<tr>
<td>2</td>
<td>Internal position feedback</td>
<td>1 = 부하측 피드백 소스로 위치 추정값이 선택되었습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Motor feedback</td>
<td>1 = 부하측 피드백 소스로 모터측 피드백이 선택되었습니다.</td>
</tr>
<tr>
<td>4</td>
<td>Pos counter init ready</td>
<td>0 = 위치 카운터 초기화를 실패하였습니다. 엔코더 피드백에 손실이 있습니다. 다시 카운터 초기화를 시도하십시오. 1 = 위치 카운터 초기화가 완료되었습니다.</td>
</tr>
<tr>
<td>5</td>
<td>Position counter re-init disabled</td>
<td>1 = 파라미터 90.68에 의해 위치 카운터 초기화가 금지되었습니다.</td>
</tr>
<tr>
<td>6</td>
<td>Position data inaccurate</td>
<td>1 = 엔코더 피드백이 간헐적으로 손실되었습니다. (드라이브 운전 중인 경우에는 엔코더 피드백이 끝길 때마다 위치 추정값이 사용되며, 정지 상태에서는 연결이 복원된 후에 엔코더 피드백을 기반으로 위치가 계산될 것입니다.)</td>
</tr>
<tr>
<td>7…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>0000 0000b … 0111 1111b</td>
<td>위치 카운터 상태 워드.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>90.38</td>
<td>Pos counter decimals</td>
<td>부하측 위치값을 나타내는 파라미터 90.05 Load position scaled 및 90.65 Pos counter init value의 소수점 자릿수를 정의합니다. 예를 들어, 이 값이 3인 경우에 필드버스 통신으로 90.65 Pos counter init value를 정수로 66770을 쓰면 1000으로 나눈 66.77가 됩니다. 그리고 통신으로 파라미터 90.05 Load position scaled을 읽어오면 1000이 곧해진 정수값이 됩니다.</td>
</tr>
<tr>
<td>0…9</td>
<td></td>
<td>부하측 위치값의 소수점 자릿수.</td>
</tr>
<tr>
<td>90.41</td>
<td>Motor feedback selection</td>
<td>모터 제어에 사용할 모터속도 피드백 소스를 선택합니다. Note: 엔코더의 필드바이어가 원하는 모터의 경우에 선택된 엔코더를 사용하여 오토헤이징 과정(페이지 59)을 수행합니다. 만약 새롭게 오토헤이징 과정을 수행하고 싶다면 파라미터 99.13 ID run requested에서 Autophasing을 선택하시십시오. Estimate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>모터속도 추정값.</td>
</tr>
<tr>
<td></td>
<td>Encoder 1</td>
<td>모터측 엔코더 1에서 측정된 실제 속도. 엔코더 1은 파라미터 그룹 92 Encoder 1 configuration에 설정합니다.</td>
</tr>
<tr>
<td></td>
<td>Encoder 2</td>
<td>모터측 엔코더 2에서 측정된 실제 속도. 엔코더 2는 파라미터 그룹 93 Encoder 2 configuration에 설정합니다.</td>
</tr>
<tr>
<td>90.42</td>
<td>Motor speed filter time</td>
<td>제어에 사용된 모터속도 (90.01 Motor speed for control)의 필터링 시간을 정의합니다.</td>
</tr>
<tr>
<td>0 … 10000 ms</td>
<td></td>
<td>모터 속도 필터링 시간.</td>
</tr>
<tr>
<td>90.43</td>
<td>Motor gear numerator</td>
<td>파라미터 90.43과 90.44는 모터속도 피드백과 모터 제어 사이의 기어비를 정의합니다. 여기서 해당 기어비는 엔코더가 모터 회전축에 직접 설치되지 않은 경우에 모터와 엔코더 속도의 차이를 보정하는데 사용됩니다. 이 값을 적용하기 위해서는 제어 유닛을 재부팅하거나 91.10 Encoder parameter refresh에서 Refresh를 선택하시십시오. 자세한 사항은 부하 및 모터 피드백(페이지 50)을 참고하십시오. 1</td>
</tr>
<tr>
<td>-2147483648 ... 2147483647</td>
<td>모터기어비의 분자 (모터속도)</td>
<td>-</td>
</tr>
<tr>
<td>90.44</td>
<td>Motor gear denominator</td>
<td>자세한 사항은 90.43 Motor gear numerator를 참고하십시오.</td>
</tr>
<tr>
<td>-2147483648 ... 2147483647</td>
<td>모터기어비의 분모 (엔코더속도)</td>
<td>-</td>
</tr>
<tr>
<td>90.45</td>
<td>Motor feedback fault</td>
<td>모터측 피드백이 손실된 경우에 어떻게 반응할지 선택합니다. Fault</td>
</tr>
<tr>
<td>Fault</td>
<td>드라이브 트립 정지 (7301 Motor speed feedback, 7381 Encoder).</td>
<td>0</td>
</tr>
<tr>
<td>Warning</td>
<td>드라이브 경고 운전 (A798 Encoder option comm loss, A780 Motor speed feedback 또는 A7E1 Encoder). 이메시 드라이브는 속도 주정값을 사용하여 연속 운전합니다. Note: 이 설정을 사용하기 전에 90.41 Motor feedback selection을 주정 속도로 선택하여 안정적으로 제어되는지 확인하십시오.</td>
<td>1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>90.46</td>
<td>Force open loop</td>
<td>모터 모델링의 변수로 사용할 피드백 소스를 선택합니다. 이 파라미터는 앱코더 슬립으로 앱코더 측정 정보를 모터 모델링에 사용하기 균일한 경우에 적용할 수 있습니다. Note: 이 파라미터는 모터 모델링에만 적용되며, 속도 제어와는 관계가 없습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터 90.41 Motor feedback selection에 선택한 피드백 소스를 모터 모델링에 적용.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>속도 추정값을 모터 모델링에 적용.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(파라미터 90.41 Motor feedback selection에 선택한 피드백 소스는 그대로 속도 제어에 사용됩니다.)</td>
</tr>
<tr>
<td>90.48</td>
<td>Motor position axis mode</td>
<td>모터 회전자의 위치 정보 (파라미터 90.06 Motor position scaled)의 측정 타입을 선택합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear</td>
<td></td>
<td>선형 모드. 위치 정보는 데이터 범위까지 증가 또는 감소합니다.</td>
</tr>
<tr>
<td>Rollover</td>
<td></td>
<td>롤오버 모드. 위치 정보는 0...1 (= 0...360도)의 범위로 증가 또는 감소합니다.</td>
</tr>
<tr>
<td>90.49</td>
<td>Motor position resolution</td>
<td>1회전 내에서 모터축 위치값의 분해능을 정의합니다. 예를 들어, 이 값이 24이면 위치값은 파라미터 90.06 Motor position scaled에 24비트의 범위 (16777216)로 표시됩니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...31 모터축 위치 분해능.</td>
</tr>
<tr>
<td>90.51</td>
<td>Load feedback selection</td>
<td>모터 제어에 사용할 부하축 속도 및 위치 피드백 소스를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td>피드백 선택 없음.</td>
</tr>
<tr>
<td>Encoder 1</td>
<td></td>
<td>부하축 엔코더 1에서 측정된 속도 및 위치값. 이 값은 90.53 Load gear numerator 및 90.54 Load gear denominator에 의해 스케일링됩니다. 엔코더 1은 파라미터 그룹 92 Encoder 1 configuration에 설정합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encoder 2</td>
<td></td>
<td>부하축 엔코더 2에서 측정된 속도 및 위치값. 이 값은 90.53 Load gear numerator 및 90.54 Load gear denominator에 의해 스케일링됩니다. 엔코더 1은 파라미터 그룹 92 Encoder 1 configuration에 설정합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate</td>
<td></td>
<td>부하축 속도 및 위치 추정값. 이 값은 90.61 Gear numerator 및 90.62 Gear denominator 사이의 반비례 비율 (90.62÷90.61)로 모터축에서 부하축으로 계산됩니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor feedback</td>
<td></td>
<td>모터측 피드백 소스를 부하측 피드백 소스로 사용. 부하측 피드백 소스로 파라미터 90.41 Motor feedback selection에 선택한 모터 피드백 소스를 사용합니다. 이 값은 90.61 Gear numerator 및 90.62 Gear denominator 사이의 반비례 비율 (90.62÷90.61)로 모터축에서 부하축으로 계산됩니다.</td>
</tr>
<tr>
<td>90.52</td>
<td>Load speed filter time</td>
<td>부하측 속도 (90.03 Load speed)의 필터링 시간을 정의합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 ... 10000 ms 부하측 속도 필터링 시간.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>90.53</td>
<td>Load gear numerator</td>
<td>파라미터 90.53과 90.54는 부하측 속도와 90.51 Load feedback selection에 선택한 부하측 엔코더 사이의 기여비를 정의합니다. 여기에 해당 기여비는 엔코더가 부하 회전측에 직접 설치되지 않은 경우에 부하와 엔코더 속도의 차이를 보정하는데 사용됩니다. 이를 적용하기 위해서는 제어 유닛을 재부팅하거나 91.10 Encoder parameter refresh에서 Refresh를 선택하시십시오. 자세한 사항은 부하 및 모터 피드백(페이지 50)을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 … 2147483647</td>
<td>부하측 기여비의 분자 (부하 속도).</td>
</tr>
<tr>
<td>90.54</td>
<td>Load gear denominator</td>
<td>자세한 사항은 90.53 Load gear numerator를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 … 2147483647</td>
<td>부하측 기여비의 분모 (엔코더 속도).</td>
</tr>
<tr>
<td>90.55</td>
<td>Load feedback fault</td>
<td>부하측 피드백이 손실된 경우에 어떻게 반응할지 선택합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fault 드라이브 트립 정지 (73A1 Load feedback).</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
<td>드라이브 경고 운전 (A798 Encoder option comm loss 또는 A7B1 Load speed feedback). 이때 드라이브는 위치 주정값을 사용하여 연속 운전합니다.</td>
</tr>
<tr>
<td>90.56</td>
<td>Load position offset</td>
<td>부하측 위치값의 오프셋을 정의합니다. 이것의 브이능은 90.57 Load position resolution에 의해 결정됩니다.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 … 2147483647</td>
<td>부하측 위치 오프셋.</td>
</tr>
<tr>
<td>90.57</td>
<td>Load position resolution</td>
<td>1회전 내에서 부하측 위치값의 브이능을 정의합니다. 예를 들어, 이 값이 16이면 위치값은 파라미터 90.04 Load position에 16비트의 범위 (65536)로 표시됩니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…31 부하측 위치 브이능.</td>
</tr>
<tr>
<td>90.58</td>
<td>Pos counter init value int</td>
<td>파라미터 90.59 Pos counter init value int source가 Pos counter init value int로 설정된 경우에 90.07의 초기값을 정의합니다. 자세한 사항은 위치 카운터(페이지 51)를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 … 2147483647</td>
<td>부하측 위치 카운터의 초기값.</td>
</tr>
<tr>
<td>90.59</td>
<td>Pos counter init value int source</td>
<td>파라미터 90.07 Load position scaled int의 초기값을 선택합니다. 해당 파라미터는 90.67 Pos counter init cmd source가 1로 세트된 경우에 자세한 사항은 위치 카운터(페이지 51)를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zero 0.</td>
</tr>
<tr>
<td></td>
<td>Pos counter init value int</td>
<td>파라미터 90.58 Pos counter init value int.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other 기타 소스 선택.</td>
</tr>
<tr>
<td>90.60</td>
<td>Pos counter error and boot action</td>
<td>부하측 피드백의 손실이 발생한 경우에 어떻게 반응할지 선택합니다. Request re-initialization</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Request re-initialization 파라미터 90.35 Pos counter status의 비트 4가 클리어되었습니. 위치 카운터를 다시 초기화할 것을 권장합니다.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Continue from previous value</td>
<td>부하측 피드백 손실 또는 제어 유닛이 재부팅된 경우에 이전 저장된 위치값을 계속 사용합니다. 여기서 피드백 손실이 발생한 경우에 파라미터 90.35 Pos counter status의 비트 6이 1로 세트될 것입니다.</td>
</tr>
<tr>
<td></td>
<td>WARNING! 만약 드라이브가 정지 또는 전원이 차단된 상태 에서 피드백이 손실되었다면 부하가 이동하더라도 위치값이 갱신되지 않습니다.</td>
<td></td>
</tr>
<tr>
<td>90.61</td>
<td>Gear numerator</td>
<td>파라미터 90.61 및 90.62는 모터 속도와 부하 속도 사이의 기어비를 정의합니다. 이 값을 적용하기 위해서는 제어 유닛을 재부팅하거나 91.10 Encoder parameter refresh에서 Refresh를 선택하십시오. 자세한 사항은 부하 및 모터 피드백 (페이지 50)을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 … 2147483647</td>
<td>기어비의 분자 (모터 속도).</td>
</tr>
<tr>
<td>90.62</td>
<td>Gear denominator</td>
<td>자세한 사항은 90.61 Gear numerator를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 … 2147483647</td>
<td>기어비의 분모 (부하 속도).</td>
</tr>
<tr>
<td>90.63</td>
<td>Feed constant numerator</td>
<td>파라미터 90.63과 90.64는 위치값 계산을 위한 피드 상수를 정의합니다. 이 값은 회전 운동을 직선 운전으로 변환하는 상수입니다. 다시 말해, 모터 회전축이 1회전할 때 부하가 이동하는 거리를 나타냅니다. 여기서 변환된 부하측 위치값은 파라미터 90.07 Load position scaled int에서 확인할 수 있습니다. 이 값을 적용하기 위해서는 제어 유닛을 재부팅하거나 91.10 Encoder parameter refresh에서 Refresh를 선택하십시오. 자세한 사항은 부하 및 모터 피드백 (페이지 50)을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 … 2147483647</td>
<td>피드 상수의 분자.</td>
</tr>
<tr>
<td>90.64</td>
<td>Feed constant denominator</td>
<td>자세한 사항은 90.63 Feed constant numerator를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>-2147483648 … 2147483647</td>
<td>피드 상수의 분모.</td>
</tr>
<tr>
<td>90.65</td>
<td>Pos counter init value</td>
<td>파라미터 90.66 Pos counter init value source가 90.65 Pos counter init value로 설정된 경우에 90.05의 초기값을 정의합니다. 여기서 소수점 자릿수는 90.38 Pos counter decimals에 정의할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>-2147483.648 … 2147483.647</td>
<td>부하측 위치 카운터의 초기값.</td>
</tr>
<tr>
<td>90.66</td>
<td>Pos counter init value source</td>
<td>파라미터 90.05 Load position scaled의 초기값을 선택합니다. 해당 파라미터는 90.67 Pos counter init cmd source가 1로 세트된 경우에 즉시 초기화됩니다. 자세한 사항은 위치 카운터 (페이지 51)를 참고하십시오.</td>
</tr>
<tr>
<td>Zero</td>
<td>0.</td>
<td>Pos counter init value</td>
</tr>
<tr>
<td>Pos counter init value</td>
<td>파라미터 90.65 Pos counter init value.</td>
<td>1.000</td>
</tr>
<tr>
<td>Other</td>
<td>기타 소스 선택.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>90.67</td>
<td>Pos counter init cmd source</td>
<td>부하측 위치값을 초기화시키는 디지털 소스를 선택합니다. 만약 해당 디지털 입력이 1로 세트되면 90.59 Pos counter init value int source 및 90.66 Pos counter init value source에 선택한 값이 부하측 위치값으로 갱신될 것입니다. Note: 파라미터 90.69 Disable pos counter initialization에서 위치 카운터의 초기화를 금지시킬 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other [bit]</td>
</tr>
<tr>
<td>90.68</td>
<td>Disable pos counter initialization</td>
<td>부하측 위치값의 초기화를 허용 또는 금지시키는 소스를 선택합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other [bit]</td>
</tr>
<tr>
<td>90.69</td>
<td>Reset pos counter init ready</td>
<td>부하측 위치값의 초기화를 허용하는 소스를 선택합니다. 이것은 90.35 Pos counter status의 비트 4를 0으로 클리어시킬 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DI6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIO2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other [bit]</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td>91</td>
<td>Encoder module</td>
<td>설정</td>
</tr>
<tr>
<td></td>
<td>FEN DI status</td>
<td>FEN-xx 엔코더 인터페이스 모듈의 디지털 입력 상태를 표시합니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
<th>Name</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>DI1 /module 1</td>
<td>인터페이스 모듈 1의 디지털 입력 DI1 (파라미터 91.11 및 91.12)</td>
</tr>
<tr>
<td>1</td>
<td>DI2 /module 1</td>
<td>인터페이스 모듈 1의 디지털 입력 DI2 (파라미터 91.11 및 91.12)</td>
</tr>
<tr>
<td>2...3</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DI1 /module 2</td>
<td>인터페이스 모듈 2의 디지털 입력 DI1 (파라미터 91.13 및 91.14)</td>
</tr>
<tr>
<td>5</td>
<td>DI2 /module 2</td>
<td>인터페이스 모듈 2의 디지털 입력 DI2 (파라미터 91.13 및 91.14)</td>
</tr>
<tr>
<td>6...15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

| 0000 0000b ... 0011 0011b | FEN-xx 모듈의 디지털 입력 상태 워드. 1 = 1 |

| 91.02 | Module 1 status | 파라미터 91.12 Module 1 location에 선택한 인터페이스 모듈의 타입을 표시합니다. 이 파라미터는 읽기 전용입니다. |

No option	모듈 없음.
No communication	제어 뮤니트의 통신 불가.
Unknown	알 수 없는 모듈 타입.
FEN-01	FEN-01 모듈 검출.
FEN-11	FEN-11 모듈 검출.
FEN-21	FEN-21 모듈 검출.
FEN-31	FEN-31 모듈 검출.
FSE-31	FSE-31 모듈 검출.

| 91.03 | Module 2 status | 파라미터 91.14 Module 2 location에 선택한 인터페이스 모듈의 타임을 표시합니다. 이 파라미터는 읽기 전용입니다. |

| 자세한 사항은 파라미터 91.02 Module 1 status를 참고하십시오. |

| 91.04 | Module 1 temperature | 인터페이스 모듈 1의 센서 입력에서 측정된 온도를 표시합니다. 이것의 단위는 96.16 Unit selection에서 선택할 수 있습니다. 이 파라미터는 읽기 전용입니다. |

| Note: PTC 센서의 경우에 단위는 온온도입니다. |

| 0...1000 °C, °F or ohm | 인터페이스 모듈 1에서 측정된 온도. |

| 91.06 | Module 2 temperature | 인터페이스 모듈 2의 센서 입력에서 측정된 온도를 표시합니다. 이것의 단위는 96.16 Unit selection에서 선택할 수 있습니다. |

| Note: PTC 센서의 경우에 단위는 온도입니다. |

<p>| 0...1000 °C, °F or ohm | 인터페이스 모듈 2에서 측정된 온도. |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.10</td>
<td>Encoder parameter</td>
<td>파라미터 그룹 90…93의 설정을 실제로 적용합니다. 새로운고침 후에 이 파라미터는 Done으로 자동 복귀됩니다.</td>
<td>Done</td>
</tr>
<tr>
<td></td>
<td>refresh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 영구자석 모터의 경우: 드라이브는 엔코더 모듈 설정이 변경되고 다음 시작에서 오토플레이지 과정 (페이지 59)을 다시 수행합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Done</td>
<td>새로운고침 완료.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Refresh</td>
<td>새로운고침.</td>
<td>1</td>
</tr>
<tr>
<td>91.11</td>
<td>Module 1 type</td>
<td>인터페이스 모듈 1에 설치된 모듈 타입을 선택합니다.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>모듈 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FEN-01</td>
<td>FEN-01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEN-11</td>
<td>FEN-11.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FEN-21</td>
<td>FEN-21.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FEN-31</td>
<td>FEN-31.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>FSE-31</td>
<td>FSE-31.</td>
<td>5</td>
</tr>
<tr>
<td>91.12</td>
<td>Module 1 location</td>
<td>인터페이스 모듈이 설치된 드라이브 제어 유닛의 슬롯을 선택하거나 FEA-03 확장 어댑터에서 슬롯의 노드 ID를 설정합니다.</td>
<td>Slot 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slot 1</td>
<td>슬롯 1에 설치.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>슬롯 2에 설치.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Slot 3</td>
<td>슬롯 3에 설치.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4…254</td>
<td>FEA-03 확장 어댑터 슬롯의 노드 ID 설정.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.13</td>
<td>Module 2 type</td>
<td>인터페이스 모듈 2에 설치된 모듈 타입을 선택합니다.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>모듈 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>FEN-01</td>
<td>FEN-01.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FEN-11</td>
<td>FEN-11.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>FEN-21</td>
<td>FEN-21.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>FEN-31</td>
<td>FEN-31.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>FSE-31</td>
<td>FSE-31.</td>
<td>5</td>
</tr>
<tr>
<td>91.14</td>
<td>Module 2 location</td>
<td>인터페이스 모듈이 설치된 드라이브 제어 유닛의 슬롯을 선택하거나 FEA-03 확장 어댑터에서 슬롯의 노드 ID를 설정합니다.</td>
<td>Slot 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slot 1</td>
<td>슬롯 1에 설치.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Slot 2</td>
<td>슬롯 2에 설치.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Slot 3</td>
<td>슬롯 3에 설치.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4…254</td>
<td>FEA-03 확장 어댑터 슬롯의 노드 ID 설정.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.21</td>
<td>Module 1 temp</td>
<td>인터페이스 모듈 1에 설치된 온도 센서의 타입을 선택합니다. 해당 모듈은 파라미터 91.11…91.12에서 허용해야 합니다.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>sensor type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PTC</td>
<td>PTC. (이것의 단위는 온도입니다.)</td>
<td>1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>KTY-84</td>
<td>KTY84. (이것의 단위는 96.16 Unit selection에서 선택합니다.)</td>
<td>2</td>
</tr>
<tr>
<td>91.22</td>
<td>Module 1 temp filter time</td>
<td>인터페이스 모듈 1에서 측정된 온도의 필터링 시간을 정의합니다.</td>
<td>1500 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>측정 온도 필터링 시간.</td>
<td>-</td>
</tr>
<tr>
<td>91.24</td>
<td>Module 2 temp sensor type</td>
<td>인터페이스 모듈 1에 설치된 온도 센서의 타입을 선택합니다.</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>해당 모듈은 파라미터 91.13...91.14에서 허용해야 합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>PTC</td>
<td>PTC. (이것의 단위는 옵니다.)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>KTY-84</td>
<td>KTY84. (이것의 단위는 96.16 Unit selection에서 선택합니다.)</td>
<td>2</td>
</tr>
<tr>
<td>91.25</td>
<td>Module 2 temp filter time</td>
<td>인터페이스 모듈 2에서 측정된 온도의 필터링 시간을 정의합니다.</td>
<td>1500 ms</td>
</tr>
<tr>
<td></td>
<td></td>
<td>측정 온도 필터링 시간.</td>
<td>-</td>
</tr>
<tr>
<td>91.31</td>
<td>Module 1 TTL output source</td>
<td>인터페이스 모듈 1의 입력 신호를 TTL 출력으로 에코 및 애플레이션할 입력 단자를 선택합니다. 단, FEN-31과 FSE-31은 입력 1만 지원합니다. 자세한 사항은 엔코더 지원 (페이지 49) 철을 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>출력 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Module input 1</td>
<td>입력 1을 TTL 출력으로 에코 또는 애플레이션.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Module input 2</td>
<td>입력 2를 TTL 출력으로 에코 또는 애플레이션.</td>
<td>2</td>
</tr>
<tr>
<td>91.32</td>
<td>Module 1 emulation pulses/rev</td>
<td>인터페이스 모듈 1의 애플레이션 출력의 1회전당 TTL 출력 펄스수를 정의합니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…65535 TTL 출력 펄스수.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.33</td>
<td>Module 1 emulated Z-pulse offset</td>
<td>인터페이스 모듈 1을 사용하는 경우, 애플레이션 입력된 영점 위치와 관련된 영점 펄스가 출력되는 시점을 정의합니다. 예를 들어, 이 값을 0.50000으로 설정하면 애플레이션의 경우 0.5 회전할 때마다 영점 펄스가 출력되며, 0.00000으로 설정하면 영점 위치에서 영점 펄스가 출력될 것입니다.</td>
<td>0.00000</td>
</tr>
<tr>
<td></td>
<td>0.00000 ... 1.00000 rev</td>
<td>애플레이션된 영점 펄스의 위치.</td>
<td>32767 = 1 rev</td>
</tr>
<tr>
<td>91.41</td>
<td>Module 2 TTL output source</td>
<td>인터페이스 모듈 2의 입력 신호를 TTL 출력으로 에코 및 애플레이션할 입력 단자를 선택합니다. 단, FEN-31과 FSE-31은 입력 1만 지원합니다. 자세한 사항은 엔코더 지원 (페이지 49) 철을 참고하십시오.</td>
<td>Not selected</td>
</tr>
<tr>
<td></td>
<td>Not selected</td>
<td>출력 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Module input 1</td>
<td>입력 1을 TTL 출력으로 에코 또는 애플레이션.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Module input 2</td>
<td>입력 2를 TTL 출력으로 에코 또는 애플레이션.</td>
<td>2</td>
</tr>
<tr>
<td>91.42</td>
<td>Module 2 emulation pulses/rev</td>
<td>인터페이스 모듈 2의 애플레이션 출력의 1회전당 TTL 출력 펄스수를 정의합니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0…65535 TTL 출력 펄스수.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
91.43 Module 2 emulated Z-pulse offset

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>91.43</td>
<td>Module 2 emulated Z-pulse offset</td>
<td>인터페이스 모듈 2를 사용하는 경우, 엔코더에서 입력된 영점 위치와 관련된 영점 포즈가 출력되는 시점을 정의합니다. 예를 들어, 이 값을 0.5000으로 설정하면 엔코더 위치가 0.5 회전할 때마다 영점 포즈가 출력되며, 0.0000으로 설정하면 영점 포즈가 출력될 것입니다.</td>
<td>0</td>
</tr>
</tbody>
</table>

| 0.00000 ... 1.00000 rev | 예뮬레이션된 영점 포즈의 위치. | 32767 = 1 rev |

92 Encoder 1 configuration

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.01</td>
<td>Encoder 1 type</td>
<td>엔코더 또는 레 деле의 타입을 선택합니다.</td>
</tr>
</tbody>
</table>

None configured	선택 없음.	0
TTL	TTL 모듈 타입 (입력): FEN-01 (X31), FEN-11 (X41), FEN-21 (X51).	1
TTL+	TTL 모듈 타입 (입력): FEN-01 (X32).	2
Absolute encoder	절대값 인코더. 모듈 타입 (입력): FEN-11 (X42).	3
Resolver	레 деле, 모듈 타입 (입력): FEN-21 (X52).	4
HTL	HTL 모듈 타입 (입력): FEN-31 (X82).	5
HTL 1	HTL 모듈 타입 (입력): FSE-31 (X31).	6
HTL 2	HTL 모듈 타입 (입력): FSE-31 (X32).	7

| 92.02 | Encoder 1 source | 엔코더 1의 사용하는 인터페이스 모듈을 선택합니다. 이것은 파라미터 그룹 91 Encoder module settings에 정의합니다. | Module 1 |

| Module 1 | 인터페이스 모듈 1. | 0 |
| Module 2 | 인터페이스 모듈 2. | 1 |

| 92.10 | Pulses/revolution | (TTL, TTL+ 또는 HTL 타입 엔코더를 선택한 경우에만 표시됨.) 중분위 인코더의 1회전당 펄스수를 정의합니다. | 2048 |

| 0...65535 | 1회전당 펄스수. | - |

| 92.10 | Sine/cosine number | (절대값 인코더를 선택한 경우에만 표시됨.) 1회전당 사인/코사인파 (sine/cos wave)의 주기수를 정의합니다. Note: EnDat 또는 SSI 엔코더에서 연속 모드를 사용하는 경우에는 해당 설정이 불필요합니다. 자세한 사항은 파라미터 92.30 Serial link mode를 참조하십시오. | 0 |

<p>| 0...65535 | 1회전당 사인/코사인파의 주기수 | - |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/Fbeq16</th>
</tr>
</thead>
</table>
| 92.10 | Excitation signal frequency | (레벨버를 선택한 경우에만 표시됨.) 여자 신호의 주파수를 정의합니다.
 Note: FEN-11의 FPGA 버전 VIE12200 이상에서 HIPERFACE 또는 EnDat 엔코더를 사용할 때 설정을 새로고침 (91.10 Encoder parameter refresh) 하면 이 파라미터는 자동으로 설정됩니다. | 1 kHz |
| | | 1…20 kHz 여자 신호 주파수. | 1 = 1 kHz |
| 92.11 | Pulse encoder type | (TTL, TTL+ 또는 HTL 탑 엔코더를 선택한 경우에만 표시됨.) 엔코더의 탐입을 선택합니다. | Quadrature |
| | | Quadrate 움직려져 엔코더 (2채널, A 및 B채널) | 0 |
| | | Single track 싱글 트랙 엔코더 (1채널, A채널).
 Note: 이 설정에서 측정된 속도값은 항상 양수로 표시됩니다. | 1 |
| 92.11 | Absolute position source | (절대치형 엔코더를 선택한 경우에만 표시됨.) 절대치형 엔코더에서 위치 소스를 전송하는 방식을 선택합니다. | None |
| | | None 선택 없음. | 0 |
| | | Commut signals 정류 신호 (Commutation signals). | 1 |
| | | EnDat 직접 통신: EnDat 엔코더. | 2 |
| | | Hiperface 직접 통신: HIPERFACE 엔코더. | 3 |
| | | SSI 직접 통신: SSI 엔코더. | 4 |
| | | Tamagawa 직접 통신: Tamagawa 17/33비트 엔코더. | 5 |
| 92.11 | Excitation signal amplitude | (레벨버를 선택한 경우에만 표시됨.) 여자 신호의 rms 크기를 정의합니다. | 4.0 V |
| | | 4.0 … 12.0 V 여자 신호 크기. | 10 = 1 V |
| 92.12 | Speed calculation mode | (TTL, TTL+ 또는 HTL 탑 엔코더를 선택한 경우에만 표시됨.) 속도 계산 모드를 선택합니다.
 단, 싱글 트랙 엔코더 (92.11 Pulse encoder type = Single track)에서 속도는 항상 양수로 표시됩니다. | Auto rising |
| | | A&B all 채널 A 및 B: 상승 에지 및 하강 에지를 모두 검출.
 *채널 B: 회전 방향 판별.
 Note: 싱글 트랙 엔코더 (파라미터 92.11 Pulse encoder type)를 사용한 경우에는 A all과 같이 동작합니다. | 0 |
| | | A all 채널 A: 상승 에지 및 하강 에지를 모두 검출.
 *채널 B: 회전 방향 판별. | 1 |
| | | A rising 채널 A: 상승 에지만 검출.
 *채널 B: 회전 방향 판별. 2 |
| | | A falling 채널 A: 하강 에지만 검출.
 *채널 B: 회전 방향 판별. 3 |
| | | Auto rising 엔코더 절스의 주파수에 따라서 모드가 자동 선택됩니다. | 4 |

<table>
<thead>
<tr>
<th>필스 주파수 (s)</th>
<th>선택 모드</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 2442 Hz</td>
<td>A&B all</td>
</tr>
<tr>
<td>2442…4884 Hz</td>
<td>A all</td>
</tr>
<tr>
<td>> 4884 Hz</td>
<td>A rising</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto falling</td>
<td>양코더 필스의 주파수에 따라서 모드가 자동 선택됩니다.</td>
<td>펄스 주파수</td>
<td>선택 모드</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 2442 Hz</td>
<td>A&B all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2442...4884 Hz</td>
<td>A all</td>
</tr>
<tr>
<td></td>
<td></td>
<td>> 4884 Hz</td>
<td>A falling</td>
</tr>
<tr>
<td>92.12</td>
<td>Zero pulse enable</td>
<td>(절대치형 양코더를 선택한 경우에만 표시됨.) FEN-11 인터페이스 모듈의 양코더 입력 (X42)으로 영점 필스 신호를 사용할지 선택합니다. Note: 파라미터 92.11 Absolute position source를 Commut signals로 선택한 경우에만 유효합니다.</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disable</td>
<td>영점 필스 길지.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable</td>
<td>영점 필스 허용.</td>
</tr>
<tr>
<td>92.12</td>
<td>Resolver polepairs</td>
<td>(레볼버를 선택한 경우에만 표시됨.) 레볼버의 극쌍수 (Number of pole pairs)를 정의합니다.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1...32</td>
<td>레볼버 극쌍수 (극수 ÷ 2).</td>
</tr>
<tr>
<td>92.13</td>
<td>Position estimation enable</td>
<td>(TTL, TTL+ 또는 HTL 타입 양코더를 선택한 경우에만 표시됨.) 위치 데이터의 분해능을 높이기 위해 양코더 1과 함께 위치 추정값을 사용할지 선택합니다.</td>
<td>Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disable</td>
<td>측정 위치 사용. 여기서 표시된 값은 양코더의 최대 분해능은 4체배 (4 × PPR)이고 싱글 트릭 양코더는 2체배 (2 × PPR)입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable</td>
<td>추정 위치 사용. 이것은 측정 위치 기반의 보간법 (Interpolation)을 이용하여 위치를 정밀하게 추정합니다.</td>
</tr>
<tr>
<td>92.13</td>
<td>Position data width</td>
<td>(절대치형 양코더를 선택한 경우에만 표시됨.) 1회전 내에서 위치 데이터의 비트수를 정의합니다. 여기서 이 파라미터를 설정하면 1회전 내에 위치값은 10진수로 32768까지 표현할 수 있습니다. 해당 양코더의 기술 사양서에서 위치 데이터의 비트수를 확인하십시오. 이것은 파라미터 92.11 Absolute position source를 직렬 통신 (EnDat, SSI, Hiperface)으로 설정한 경우에만 유효하며, Tamagawa로 설정하면 17로 자동 설정됩니다. Note: FEN-11의 FPGA 버전 VIE12200 이상에서 HIPERFACE 또는 EnDat 양코더를 사용할 때 설정을 새로고침 (91.10 Encoder parameter refresh)하면 이 파라미터는 자동으로 설정됩니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0...32</td>
<td>1회전 내에서 위치 데이터의 비트수.</td>
</tr>
<tr>
<td>92.14</td>
<td>Speed estimation enable</td>
<td>(TTL, TTL+ 또는 HTL 타입 양코더를 선택한 경우에만 표시됨.) 동적 특성 (Dynamic characteristics)을 향상시키기 위해 양코더 1과 함께 속도 추정값을 사용할지 선택합니다. 단, 추정값은 보정을 통해 정상 상태에서 속도 레벨이 증가합니다. Note: 이 파라미터는 FEN-xx의 FPGA 버전 VIEx 2000 이상에서 효과가 없습니다.</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disable</td>
<td>측정 속도 사용.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable</td>
<td>추정 속도 사용.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>92.14</td>
<td>Revolution data width</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 멀티턴 엔코더에서 회전수 데이터의 비트수를 정의합니다. 여기서 이 파라미터를 12로 설정하면 1회전 내에 위치값은 10진수로 4096까지 표현할 수 있습니다. 해당 엔코더의 기술 사양서에서 위치 데이터의 비트수를 확인하십시오. 이것은 파라미터 92.11 Absolute position source를 직렬 통신(EnDat, SSI, HiPerface)으로 설정한 경우에만 유효하며, Tamagawa로 설정한 경우에는 0이 아닌 값을 입력하면 회전수 데이터를 요청합니다. Note: FEN-11의 FPGA 버전 VIE1200 이상에서 HIPERFACE 또는 EnDat 엔코더를 사용할 때 설정을 새로고침(91.10 Encoder parameter refresh)하면 이 파라미터는 자동으로 설정됩니다.</td>
<td></td>
</tr>
<tr>
<td>0…32</td>
<td></td>
<td>회전수 데이터의 비트수. 1 = 1</td>
<td></td>
</tr>
<tr>
<td>92.15</td>
<td>Transient filter</td>
<td>(TTL, TTL+ 또는 HTL 타입 엔코더를 선택한 경우에만 표시됨.) 엔코더의 과도 신호 필터를 허용합니다. 이 파라미터에서 선택한 엔코더 패스 주파수 이상에서 회전 방향의 변화를 무시합니다. 4880 Hz 이하에서 회전 방향의 변화를 허용. 2440 Hz 이하에서 회전 방향의 변화를 허용. 1220 Hz 이하에서 회전 방향의 변화를 허용. Disabled 모든 주파수에서 회전 방향의 변화를 허용.</td>
<td></td>
</tr>
<tr>
<td>4880 Hz</td>
<td></td>
<td>0</td>
<td>4880 Hz</td>
</tr>
<tr>
<td>2440 Hz</td>
<td></td>
<td>1</td>
<td>2440 Hz</td>
</tr>
<tr>
<td>1220 Hz</td>
<td></td>
<td>2</td>
<td>1220 Hz</td>
</tr>
<tr>
<td>Disabled</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>92.17</td>
<td>Accepted pulse freq of encoder 1</td>
<td>(92.01 Encoder 1 type = HTL 1 또는 HTL 2인 경우에만 표시됨.) 엔코더 1의 최대 패스 주파수를 정의합니다. 0 kHz 최대 패스 주파수. 1 = 1 kHz</td>
<td></td>
</tr>
<tr>
<td>0…300 kHz</td>
<td></td>
<td>0</td>
<td>300 kHz</td>
</tr>
<tr>
<td>92.21</td>
<td>Encoder cable fault mode</td>
<td>(TTL, TTL+ 또는 HTL 타입 엔코더를 선택한 경우에만 표시됨.) 엔코더 케이블의 결선 상태를 모니터링할 채널을 선택합니다.</td>
<td></td>
</tr>
<tr>
<td>A, B</td>
<td></td>
<td>A 채널, B 채널. 0</td>
<td></td>
</tr>
<tr>
<td>A, B, Z</td>
<td></td>
<td>A 채널, B 채널, Z 채널. 1</td>
<td></td>
</tr>
<tr>
<td>A+, A-, B+, B-</td>
<td></td>
<td>A+ 채널, A- 채널, B+ 채널, B- 채널. 2</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/Eq</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>92.23</td>
<td>Maximum pulse waiting time</td>
<td>(92.01 Encoder 1 type = TTL 또는 HTL인 경우에만 표시됨.) 속도 계산에 사용할 엔코더 풀스의 최대 대기 시간을 정의합니다. 만약 이 시간 안에 엔코더 풀스가 검출되지 않는다면 인터페이스에서 측정된 속도는 0이 될 것입니다. 이 시간을 증가시키면 저속 영역에서 측정 성능을 향상시킬 수 있습니다. 4 ms</td>
<td></td>
</tr>
<tr>
<td>1...200 ms</td>
<td>최대 풀스 대기 시간.</td>
<td>1 = 1 ms</td>
<td></td>
</tr>
<tr>
<td>92.24</td>
<td>Pulse edge filtering</td>
<td>(92.01 Encoder 1 type = HTL인 경우에만 표시됨.) 엔코더 풀스 필터링 시간을 정의합니다. 이 필터는 특히 신호 변환 엔코더 (Single-ended encoder)에서 측정 성능을 향상시키는데 유용합니다. No filtering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>필터링 없음.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 μs</td>
<td>1 μs 필터링 시간.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 μs</td>
<td>2 μs 필터링 시간.</td>
<td>2</td>
</tr>
<tr>
<td>92.25</td>
<td>Pulse overfrequency function</td>
<td>(92.01 Encoder 1 type = HTL인 경우에만 표시됨.) 엔코더 풀스의 과주파수 상태가 검출된 경우에 드라이브가 어떻게 반응할지 선택합니다. Fault</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(92.01 Encoder 1 type = HTL인 경우에만 표시됨.) 엔코더 풀스의 과주파수 상태가 검출된 경우에 드라이브가 어떻게 반응할지 선택합니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warning</td>
<td>드라이브 경고 운전 (7381 Encoder). FEN-xx 모듈은 속도 및 위치 데이터를 계속 감시할 것입니다.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fault</td>
<td>드라이브 트림 정지 (A7E1 Encoder).</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>92.30</td>
<td>Serial link mode</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) EnDat 또는 SSI 엔코더의 직렬 링크 모드를 선택합니다. Initial position</td>
<td></td>
</tr>
<tr>
<td>Initial position</td>
<td>초기 위치 전송 모드.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Continuous</td>
<td>위치 데이터 연속 전송 모드.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Continuous speed and position</td>
<td>속도 및 위치 데이터 연속 전송 모드. 이 설정은 사인/코사인 신호가 없는 EnDat 2.2 엔코더를 사용하기 위한 것입니다.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FEN-11 인터페이스의 하드웨어 버전 H 이상이 필요합니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td>92.31</td>
<td>EnDat max calculation time</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) EnDat 엔코더의 최대 연산 시간을 선택합니다./ Note: 이 파라미터는 사인/코사인 신호가 없는 EnDat 엔코더에서 92.30 Serial link mode를 Continuous로 설정한 경우에만 유효합니다.</td>
<td>50 ms</td>
</tr>
<tr>
<td></td>
<td>10 µs</td>
<td>10 µs.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100 µs</td>
<td>100 µs.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 ms</td>
<td>1 ms.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>50 ms</td>
<td>50 ms.</td>
<td>3</td>
</tr>
<tr>
<td>92.32</td>
<td>SSI cycle time</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) SSI 엔코더의 전송 주기를 선택합니다. Note: 이 파라미터는 사인/코사인 신호가 없는 SSI 엔코더에서 92.30 Serial link mode를 Continuous로 설정한 경우에만 유효합니다.</td>
<td>100 us</td>
</tr>
<tr>
<td></td>
<td>50 µs</td>
<td>50 µs.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>100 µs</td>
<td>100 µs.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>200 µs</td>
<td>200 µs.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>500 µs</td>
<td>500 µs.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1 ms</td>
<td>1 ms.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2 ms</td>
<td>2 ms.</td>
<td>5</td>
</tr>
<tr>
<td>92.33</td>
<td>SSI clock cycles</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) SSI 엔코더의 통신 메시지 길이를 정의합니다. 이 길이는 클록 주기 수를 정의하며, SSI 메시지의 기본 비트수에 1을 더해줍니다. 해당 엔코더의 기술 사양서를 확인하십시오.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2...127</td>
<td>통신 메시지 길이.</td>
<td>-</td>
</tr>
<tr>
<td>92.34</td>
<td>SSI position msb</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) SSI 엔코더의 통신 메시지 내에 위치 데이터의 최상위 비트 (MSB; Most Significant Bit) 번호를 정의합니다. 해당 엔코더의 기술 사양서를 확인하십시오.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1...126</td>
<td>위치 데이터의 MSB 번호.</td>
<td>-</td>
</tr>
<tr>
<td>92.35</td>
<td>SSI revolution msb</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) SSI 엔코더의 통신 메시지 내에 회전수 데이터의 MSB를 정의합니다. 해당 엔코더의 기술 사양서를 확인하십시오.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1...126</td>
<td>회전수 데이터의 MSB 번호.</td>
<td>-</td>
</tr>
<tr>
<td>92.36</td>
<td>SSI data format</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) SSI 엔코더의 데이터 포맷 형식을 선택합니다. 해당 엔코더의 기술 사양서를 확인하십시오.</td>
<td>Binary</td>
</tr>
<tr>
<td></td>
<td>Binary</td>
<td>바이너리 코드.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Gray</td>
<td>그레이 코드 (측정 오차 최소화).</td>
<td>1</td>
</tr>
<tr>
<td>92.37</td>
<td>SSI baud rate</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) SSI 엔코더의 통신 속도를 선택합니다. 해당 엔코더의 기술 사양서를 확인하십시오.</td>
<td>100 kBit/s</td>
</tr>
<tr>
<td></td>
<td>10 kBit/s</td>
<td>10 kbit/s.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50 kBit/s</td>
<td>50 kbit/s.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>100 kBit/s</td>
<td>100 kbit/s.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>200 kBit/s</td>
<td>200 kbit/s.</td>
<td>3</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>500 kBit/s</td>
<td>500 kbit/s.</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>1000 kBit/s</td>
<td>1000 kbit/s.</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

92.40 SSI zero phase

<table>
<thead>
<tr>
<th></th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.)</td>
<td>1주기의 사인/코사인 신호 안에 SSI 통신 데이터의 영점에 해당하는 위상각 (Phase angle)을 정의합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>이 파라미터는 사인/코사인 신호 기반의 위치와 SSI 위치 데이터와의 동기화 조절을 위해 사용됩니다. 이때 부정확한 동기화는 ± 1 주기의 중분 오차를 발생시킬 수 있습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note: 이 파라미터는 92.30 Serial link mode를 Initial position으로 설정한 경우에만 유효합니다.</td>
<td></td>
</tr>
<tr>
<td>315-45 deg</td>
<td>315-45 °.</td>
<td></td>
</tr>
<tr>
<td>45-135 deg</td>
<td>45-135 °.</td>
<td></td>
</tr>
<tr>
<td>135-225 deg</td>
<td>135-225 °.</td>
<td></td>
</tr>
<tr>
<td>225-315 deg</td>
<td>225-315 °.</td>
<td></td>
</tr>
</tbody>
</table>

92.45 Hiperface parity

<table>
<thead>
<tr>
<th></th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.)</td>
<td>HIPERFACE 엔코더의 통신 패리티 및 정지 비트를 정의합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>이 파라미터는 일반적으로 설정할 필요가 없습니다.</td>
<td></td>
</tr>
<tr>
<td>Odd</td>
<td>홀수 패리티 비트, 1 정지 비트.</td>
<td></td>
</tr>
<tr>
<td>Even</td>
<td>짝수 패리티 비트, 1 정지 비트.</td>
<td></td>
</tr>
</tbody>
</table>

92.46 Hiperface baud rate

<table>
<thead>
<tr>
<th></th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.)</td>
<td>HIPERFACE 엔코더의 통신 속도를 정의합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>이 파라미터는 일반적으로 설정할 필요가 없습니다.</td>
<td></td>
</tr>
<tr>
<td>4800 bits/s</td>
<td>4800 bit/s.</td>
<td></td>
</tr>
<tr>
<td>9600 bits/s</td>
<td>9600 bit/s.</td>
<td></td>
</tr>
<tr>
<td>19200 bits/s</td>
<td>19200 bit/s.</td>
<td></td>
</tr>
<tr>
<td>38400 bits/s</td>
<td>38400 bit/s.</td>
<td></td>
</tr>
</tbody>
</table>

92.47 Hiperface node address

<table>
<thead>
<tr>
<th></th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.)</td>
<td>HIPERFACE 엔코더의 노드 주소를 정의합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>이 파라미터는 일반적으로 설정할 필요가 없습니다.</td>
<td></td>
</tr>
<tr>
<td>0...255</td>
<td>HIPERFACE 엔코더 노드 주소.</td>
<td></td>
</tr>
</tbody>
</table>

93 Encoder 2 configuration

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.01 Encoder 2 type</td>
<td>엔코더 또는 레즐버 2의 타입을 선택합니다.</td>
<td>None configured</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>설명</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>None configured</td>
<td>선택 없음.</td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>TTL 모듈 타입 (입력): FEN-01 (X31), FEN-11 (X41), FEN-21 (X51).</td>
<td></td>
</tr>
<tr>
<td>TTL+</td>
<td>TTL+. 모듈 타입 (입력): FEN-01 (X32).</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- 파라미터 그룹 내에 항목들은 엔코더 타입에 따라 다릅니다.
- 엔코더 1 (파라미터 그룹 92 Encoder 1 configuration)에서 수신된 데이터가 엔코더 2 (해당 그룹)에서 입력된 데이터보다 우선 순위가 높으므로 가능한 엔코더 1의 사용을 권장합니다.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute encoder</td>
<td>절대치형 엔코더, 모듈 타입 (입력): FEN-11 (X42).</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Resolver</td>
<td>레졸버. 모듈 타입 (입력): FEN-21 (X52).</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HTL</td>
<td>HTL. 모듈 타입 (입력): FEN-31 (X82).</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>HTL 1</td>
<td>HTL. 모듈 타입 (입력): FSE-31 (X31).</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>HTL 2</td>
<td>HTL. 모듈 타입 (입력): FSE-31 (X32). 단, 이 버전에서는 지원하지 않습니다.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>93.02 Encoder 2 source</td>
<td>엔코더 2의 사용이 허용된 인터페이스 모듈을 선택합니다. 이것은 파라미터 그룹 91 Encoder module settings에 정의합니다.</td>
<td>Module 1</td>
<td></td>
</tr>
<tr>
<td>Module 1</td>
<td>인터페이스 모듈 1.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Module 2</td>
<td>인터페이스 모듈 2.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>93.10 Pulses/rev</td>
<td>(TTL, TTL+ 또는 HTL 탑 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.10 Pulses/revolution을 참고하십시오.</td>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>93.10 Sine/cosine number</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.10 Sine/cosine number를 참고하십시오.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>93.10 Excitation signal frequency</td>
<td>(레졸버를 선택한 경우에만 표시됨.) 파라미터 92.10 Excitation signal frequency를 참고하십시오.</td>
<td>1 kHz</td>
<td></td>
</tr>
<tr>
<td>93.11 Pulse encoder type</td>
<td>(TTL, TTL+ 또는 HTL 탑 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.11 Pulse encoder type를 참고하십시오.</td>
<td>Quadrature</td>
<td></td>
</tr>
<tr>
<td>93.11 Absolute position source</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.11 Absolute position source를 참고하십시오.</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>93.11 Excitation signal amplitude</td>
<td>(레зол버를 선택한 경우에만 표시됨.) 파라미터 92.11 Excitation signal amplitude를 참고하십시오.</td>
<td>4.0 V</td>
<td></td>
</tr>
<tr>
<td>93.12 Speed calculation mode</td>
<td>(TTL, TTL+ 또는 HTL 탑 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.12 Speed calculation mode를 참고하십시오.</td>
<td>Auto rising</td>
<td></td>
</tr>
<tr>
<td>93.12 Zero pulse enable</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.12 Zero pulse enable을 참고하십시오.</td>
<td>Disable</td>
<td></td>
</tr>
<tr>
<td>93.12 Resolver polepairs</td>
<td>(레졸버를 선택한 경우에만 표시됨.) 파라미터 92.12 Resolver polepairs를 참고하십시오.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>93.13 Position estimation enable</td>
<td>(TTL, TTL+ 또는 HTL 탑 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.13 Position estimation enable을 참고하십시오.</td>
<td>Enable</td>
<td></td>
</tr>
<tr>
<td>93.13 Position data width</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.13 Position data width을 참고하십시오.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>93.14 Speed estimation enable</td>
<td>(TTL, TTL+ 또는 HTL 탑 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.14 Speed estimation enable을 참고하십시오.</td>
<td>Disable</td>
<td></td>
</tr>
<tr>
<td>93.14 Revolution data width</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.14 Revolution data width을 참고하십시오.</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>93.15 Transient filter</td>
<td>(TTL, TTL+ 또는 HTL 탑 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.15 Transient filter를 참고하십시오.</td>
<td>4880 Hz</td>
<td></td>
</tr>
<tr>
<td>93.17 Accepted pulse freq of encoder 2</td>
<td>(93.01 Encoder 2 type = HTL 1 또는 HTL 2인 경우에만 표시됨.) 파라미터 92.17 Accepted pulse freq of encoder 1을 참고하십시오.</td>
<td>0 kHz</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/Equation</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>93.21</td>
<td>Encoder cable fault mode</td>
<td>(TTL, TTL+ 또는 HTL 타입 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.21 Encoder cable fault mode를 참고하십시오.</td>
<td>A, B</td>
</tr>
<tr>
<td>93.23</td>
<td>Maximum pulse waiting time</td>
<td>(93.01 Encoder 2 type = TTL 또는 HTL인 경우에만 표시됨.) 파라미터 92.23 Maximum pulse waiting time을 참고하십시오.</td>
<td>4 ms</td>
</tr>
<tr>
<td>93.24</td>
<td>Pulse edge filtering</td>
<td>(93.01 Encoder 2 type = HTL인 경우에만 표시됨.) 파라미터 92.24 Pulse edge filtering을 참고하십시오.</td>
<td>No filtering</td>
</tr>
<tr>
<td>93.25</td>
<td>Pulse overfrequency function</td>
<td>(93.01 Encoder 2 type = HTL인 경우에만 표시됨.) 파라미터 92.25 Pulse overfrequency function을 참고하십시오.</td>
<td>Fault</td>
</tr>
<tr>
<td>93.30</td>
<td>Serial link mode</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.30 Serial link mode를 참고하십시오.</td>
<td>Initial position</td>
</tr>
<tr>
<td>93.31</td>
<td>EnDat calc time</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.31 EnDat max calculation time을 참고하십시오.</td>
<td>50 ms</td>
</tr>
<tr>
<td>93.32</td>
<td>SSI cycle time</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.32 SSI cycle time을 참고하십시오.</td>
<td>100 us</td>
</tr>
<tr>
<td>93.33</td>
<td>SSI clock cycles</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.33 SSI clock cycles를 참고하십시오.</td>
<td>2</td>
</tr>
<tr>
<td>93.34</td>
<td>SSI position msb</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.34 SSI position msb를 참고하십시오.</td>
<td>1</td>
</tr>
<tr>
<td>93.35</td>
<td>SSI revolution msb</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.35 SSI revolution msb를 참고하십시오.</td>
<td>1</td>
</tr>
<tr>
<td>93.36</td>
<td>SSI data format</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.36 SSI data format을 참고하십시오.</td>
<td>Binary</td>
</tr>
<tr>
<td>93.37</td>
<td>SSI baud rate</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.37 SSI baud rate를 참고하십시오.</td>
<td>100 kBit/s</td>
</tr>
<tr>
<td>93.40</td>
<td>SSI zero phase</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.40 SSI zero phase를 참고하십시오.</td>
<td>315-45 deg</td>
</tr>
<tr>
<td>93.45</td>
<td>Hiperface parity</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.45 Hiperface parity를 참고하십시오.</td>
<td>Odd</td>
</tr>
<tr>
<td>93.46</td>
<td>Hiperface baud rate</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.46 Hiperface baud rate를 참고하십시오.</td>
<td>4800 bits/s</td>
</tr>
<tr>
<td>93.47</td>
<td>Hiperface node address</td>
<td>(절대치형 엔코더를 선택한 경우에만 표시됨.) 파라미터 92.47 Hiperface node address를 참고하십시오.</td>
<td>64</td>
</tr>
</tbody>
</table>

94 LSU control

서룰라이 유닛의 DC 전압 및 기준 정보 전력 제어. 이 파라미터 그룹에서 정의한 기준값을 사용하기 위해서는 서룰라이 유닛 제어 프로그램에서 이를 기준 소스로 선택해야 합니다. 파라미터 95.20 HW options word 1에서 서룰라이 유닛 제어 기능이 허용된 경우에만 이 기능이 사용될 수 있습니다. 자세한 사항은 서룰라이 유닛 제어 (페이지 40) 절을 참고하십시오.

94.01 LSU control

내부 INU-LSU 상태 메시지를 채용 또는 긴급시킵니다. 상태 메시지를 허용하면 인버터 유닛 (INU)은 서룰라이 유닛 (LSU)의 상태를 모니터링하고 시작 명령 및 기준 소스를 제어할 수 있습니다. 반대로 상태 메시지가 긴지되면 서룰라이 유닛의 상태는 무시됩니다.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>INU-LSU 상태 미사용.</td>
</tr>
<tr>
<td>On</td>
<td>INU-LSU 상태 사용.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>94.02</td>
<td>LSU panel communication</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Disable</td>
<td></td>
</tr>
<tr>
<td>Enable</td>
<td></td>
</tr>
<tr>
<td>94.10</td>
<td>LSU max charging time</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>94.11</td>
<td>LSU stop delay</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>94.20</td>
<td>DC voltage reference</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>94.21</td>
<td>DC voltage ref source</td>
</tr>
<tr>
<td>Zero</td>
<td></td>
</tr>
<tr>
<td>User ref</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>94.22</td>
<td>User DC voltage reference</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>94.30</td>
<td>Reactive power reference</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>94.31</td>
<td>Reactive power ref source</td>
</tr>
<tr>
<td>Zero</td>
<td></td>
</tr>
<tr>
<td>User ref</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>94.32</td>
<td>User reactive power reference</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>94.40</td>
<td>Power mot limit on net loss</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>94.41</td>
<td>Power gen limit on net loss</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

95 HW configuration

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.01</td>
<td>Supply voltage</td>
<td>드라이브의 하드웨어와 관련된 다양한 설정.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Not given</td>
<td>전압 선택 없음. 드라이브는 전압 범위를 선택하기 전에 시작할 수 없습니다.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>208...240 V</td>
<td>208...240 V</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>380...415 V</td>
<td>380...415 V</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>440...480 V</td>
<td>440...480 V</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>500 V</td>
<td>500 V</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>525...600 V</td>
<td>525...600 V</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>660...690 V</td>
<td>660...690 V</td>
<td>6</td>
</tr>
<tr>
<td>WARMING!</td>
<td></td>
<td>부정확한 설정으로 인해 모터 제어가 불안정해 지거나 제동 장치 (초퍼 및 저항)가 소손될 수도 있습니다.</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>95.02</td>
<td>Adaptive voltage limits</td>
<td>적응형 전압 제한 기능을 허용합니다. 예를 들어, 이 기능은 IGBT 서플라이 유닛을 이용하여 DC 링크 전압을 부스팅할 경우에 사용될 수 있습니다. 만약 인버터와 IGBT 서플라이 유닛간의 통신을 허용 (95.20의 비트 15=1)하면 서플라이 유닛으로 전송된 기준 DC 전압 (94.20 DC voltage reference)을 기반으로 전압이 제한되며, 그렇지 않은 경우에 종전 완료 시점에서 측정된 DC 전압을 기반으로 계산됩니다. 결론적으로 이 기능은 드라이브의 입력 전압이 높은 경우에 경고 레벨을 상승시킵니다.</td>
<td>Disable</td>
</tr>
<tr>
<td>95.04</td>
<td>Control board supply</td>
<td>드라이브의 제어 유닛에 전원 공급 방식을 선택합니다. 이것의 기본값은 제어 유닛의 타입과 파라미터 95.20 설정에 따라 다릅니다.</td>
<td>Internal 24V (ZCU); External 24V (BCU: 95.20 b4)</td>
</tr>
<tr>
<td>Internal 24V</td>
<td></td>
<td>내부 24 V 전원 입력. 외부 전원 공급 장치에서 별도로 제어 유닛 전원을 공급하는 경우에 반드시 이 파라미터를 External 24V로 선택하십시오.</td>
<td>0</td>
</tr>
<tr>
<td>External 24V</td>
<td></td>
<td>외부 24 V 전원 입력. BCU 제어 유닛의 경우에는 자동으로 External 24V가 선택됩니다.</td>
<td>1</td>
</tr>
<tr>
<td>Redundant external 24V</td>
<td>(BCU 제어 유닛 전용)</td>
<td>2개의 외부 24 V 전원 입력 (제어 전원 이중화). 1개의 외부 전원이 차단되면 드라이브는 경고 (AFEC External power signal missing)를 발생시키고 연속 운전할 것입니다.</td>
<td>2</td>
</tr>
</tbody>
</table>
402 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/Feq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.08</td>
<td>DC switch monitoring</td>
<td>제어 유닛이 ZCU인 경우에만 생성됨. 제어 유닛의 DIIL 입력 단자를 통해 DC 스위치 모니터링을 허용 또는 금지시킵니다. 이 설정은 아래와 같이 DC 스위치를 통해 DC 전원이 직접 공급되는 드라이브에서 내부 충전 회로를 가지고 있는 경우에 사용될 수 있습니다. 이것은 DC 스위치에 보조 접점을 가지야 하며 이 접점은 제어 유닛의 DIIL 입력 단자에 연결되어야 합니다.</td>
<td>Disable: Enable (95.20 b5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DC 버스</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>인버터 모듈</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>중전회로 로직</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>중전회로 컨택티</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>외부 xSFC 충전 컨트롤러와의 통신을 허용 또는 금지시킵니다. 이 설정은 xSFC 충전 컨트롤러에 의해 외부 충전 회로 및 DC 스위치가 제어되는 인버터 모듈에서 사용됩니다. 이 컨트롤러는 인버터의 중전 상태를 모니터링하여 상태 신호를 출력합니다 (예를 들어, “충전 OK” 램프가 꺼지고 중전 스위치가 열린 후에 DC 스위치가 닫힘). 이에 대한 자세한 사항은 xSFC 매뉴얼을 참고하시십시오.</td>
<td>Enable</td>
</tr>
<tr>
<td>95.09</td>
<td>Switch fuse controller</td>
<td>(제어 유닛이 BCU인 경우에만 생성됨.) 공급된 전력과 동등한 전력만 DC 스위치 모니터링을 허용 또는 금지시킵니다. 이 설정은 xSFC 충전 컨트롤러에 의해 외부 충전 회로 및 DC 스위치가 제어되는 인버터 모듈에서 사용됩니다. 이 컨트롤러는 인버터의 중전 상태를 모니터링하여 상태 신호를 출력합니다 (예를 들어, “충전 OK” 램프가 꺼지고 중전 스위치가 열린 후에 DC 스위치가 닫힘). 이에 대한 자세한 사항은 xSFC 매뉴얼을 참고하시십시오.</td>
<td>Disable: Enable</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xSFC 통신 금지.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>xSFC 통신 허용.</td>
<td>1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>95.13</td>
<td>Reduced run mode</td>
<td>(제어 유닛이 BCU인 경우에만 생성됨.) 병렬 연결된 인버터 중에서 사용 가능한 모듈 수량을 설정합니다. 이 파라미터는 인버터의 축소 운전이 필요한 경우에 설정하며, 값이 0이 아닌 경우에는 축소 운전 가능성이 동작합니다. 만약 이 파라미터에 설정한 인버터 수량과 제어 프로그램에서 검출된 수량이 다르다면 드라이브는 티럽 (5695 Reduced run) 됩니다. 자세한 사항은 축소 운전 가능 (페이지 92) 절을 참고하십시오. 0 = 축소 운전 금지. 1…12 = 사용 가능한 인버터 수량.</td>
<td></td>
</tr>
<tr>
<td>0…65535</td>
<td>사용 가능한 인버터 수량.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95.14</td>
<td>Connected modules</td>
<td>(제어 유닛이 BCU인 경우에만 생성됨.) 제어 프로그램에서 검출된 병렬 연결 인버터를 표시합니다.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Module 1</td>
<td>1 = 모듈 1이 검출되었습니다.</td>
</tr>
<tr>
<td>1</td>
<td>Module 2</td>
<td>1 = 모듈 2가 검출되었습니다.</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>11</td>
<td>Module 12</td>
<td>1 = 모듈 12가 검출되었습니다.</td>
</tr>
<tr>
<td>12…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.15</td>
<td>Special HW settings</td>
<td>특수 하드웨어 구성 워드입니다. Note: 이 파라미터에 선택한 하드웨어가 설치되어 있다면 드라이브의 출력 감소 (Derating)가 불가피하거나 다른 제한 사항이 적용될 수도 있습니다. 드라이브의 하드웨어 매뉴얼을 참고하십시오.</td>
</tr>
<tr>
<td>0…65535</td>
<td>병렬 연결 인버터.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>EX motor</td>
<td>1 = 폭발 가능성이 있는 장소에 ABB 방폭 모터가 설치되었습니다. 이 설정은 ABB 방폭 모터를 위해 스위칭 주파수를 적절히 제한합니다.</td>
</tr>
<tr>
<td>1</td>
<td>ABB sine filter</td>
<td>1 = 드라이브 출력단의 ABB 사인 필터가 설치되었습니다. 필터 인덕턴스 및 캐파시턴스는 인버터 용량에 따라 자동으로 적용됩니다.</td>
</tr>
<tr>
<td>2</td>
<td>High speed mode</td>
<td>1 = 120 Hz 이상으로 운전이 필요한 모터가 설치되었습니다. 이 설정은 출력 주파수가 120 Hz 이상인 경우에 스위칭 주파수를 조절하여 제어 성능을 향상시킵니다.</td>
</tr>
<tr>
<td>3</td>
<td>Custom sine filter</td>
<td>1 = 드라이브 출력단에 사용자 사인 필터가 설치되었습니다. 필터 인덕턴스 및 캐파시턴스를 99.18, 99.19에 정확히 입력하십시오.</td>
</tr>
<tr>
<td>4…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000b…0111b</td>
<td>특수 하드웨어 구성 워드.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

"Note: 이 파라미터에 선택한 하드웨어가 설치되어 있다면 드라이브의 출력 감소 (Derating)가 불가피하거나 다른 제한 사항이 적용될 수도 있습니다. 드라이브의 하드웨어 매뉴얼을 참고하십시오."
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
</table>
| 95.20 | HW options word 1 | 하드웨어 옵션 워드 1입니다. 이 파라미터에서 해당 비트를 셋시켜면 관련 파라미터의 기본값이 변경될 것입니다. 예를 들어, 비상 정지 옵션을 1로 셋시하면 디지털 입력 및 정지 모드가 해당 기능으로 예약되고 설정이 금지됩니다. 이 파라미터는 96.06 Parameter restore에서 초기 상태로 복원하여도 변경되지 않습니다.

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Supply frequency 60 Hz</td>
<td>0 = 50 Hz; 1 = 60 Hz. 파라미터 11.45, 11.59, 12.20, 13.18, 30.11, 30.12, 30.13, 30.14, 31.26, 31.27, 40.15, 40.37, 41.15, 41.37, 46.01, 46.02의 기본값이 변경됩니다.</td>
</tr>
<tr>
<td>1</td>
<td>Emergency stop Cat 0</td>
<td>1 = 비상 정지, 카테고리 0, FSO 모듈이 없는 경우. 파라미터 21.04, 21.05, 23.11의 기본값이 변경됩니다.</td>
</tr>
<tr>
<td>2</td>
<td>Emergency stop Cat 1</td>
<td>1 = 비상 정지, 카테고리 1, FSO 모듈이 없는 경우. 파라미터 10.24, 10.27, 10.28, 10.29의 기본값이 변경됩니다.</td>
</tr>
<tr>
<td>3</td>
<td>RO2 for -07 cabinet cooling fan</td>
<td>1 = 판넬 냉각팬 제어 (ACS880-07 타입 전용). 파라미터 10.27, 10.28, 10.29의 기본값이 변경됩니다.</td>
</tr>
<tr>
<td>4</td>
<td>Externally powered control unit</td>
<td>1 = 제어 유닛에 외부 전원 입력, 파라미터 95.04의 기본값이 변경됩니다. (ZCU 제어 유닛 전용)</td>
</tr>
<tr>
<td>5</td>
<td>DC supply switch</td>
<td>1 = DC 스위치 모니터링 가능 허용. 파라미터 20.12, 31.03, 95.08의 기본값이 변경됩니다. (ZCU 제어 유닛 전용)</td>
</tr>
<tr>
<td>6</td>
<td>DOL motor switch</td>
<td>1 = 태님식 모터 냉각팬 허용. 파라미터 10.24, 35.100, 35.103, 35.104의 기본값이 변경됩니다.</td>
</tr>
<tr>
<td>7</td>
<td>xSFC-01 fuse switch controller</td>
<td>1 = xSFC 중전 컨트롤러 사용. 파라미터 95.09의 기본값이 변경됩니다. (BCU 제어 유닛 전용)</td>
</tr>
<tr>
<td>8</td>
<td>Service switch</td>
<td>1 = 서비스 스위치 사용. 파라미터 31.01, 31.02의 기본값이 변경됩니다.</td>
</tr>
<tr>
<td>9</td>
<td>Output contactor</td>
<td>1 = 출력 단절기 사용, 파라미터 10.24, 20.12의 기본값이 변경됩니다.</td>
</tr>
<tr>
<td>10</td>
<td>Brake resistor, sine filter, IP54 fan</td>
<td>1 = DIIL 입력 단자에 상태 스위치 접속. 파라미터 20.11, 20.12의 기본값이 변경됩니다.</td>
</tr>
<tr>
<td>11</td>
<td>INU-DSU communication</td>
<td>*1 = 인버터 유닛으로 다이오드 유닛 제어 허용. 해당 그룹 06, 60, 61, 62, 94에서 파라미터가 생성됩니다. (BCU 제어 유닛 전용)</td>
</tr>
<tr>
<td>12</td>
<td>예약된 영역</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>du/dt filter activation</td>
<td>1 = 드라이브 출력단에 du/dt 필터 사용. 이 설정은 출력 스위칭 주기수를 제한하여, R5i-R7i 모듈의 메인 냉각팬을 최대 속도로 운전시킵니다. Note: R8i 모듈인 경우에는 +E205 옵션으로 du/dt 필터가 내부에 설치되어 이 비트의 설정이 필요하지 않습니다.</td>
</tr>
<tr>
<td>14</td>
<td>DOL fan activation</td>
<td>1 = R8i 모듈에서 냉각팬을 직접 기동용 (옵션 +C188)으로 사용. 냉각팬 감시 기능이 금지되고 단지 온/오프 타입이 변경됩니다.</td>
</tr>
<tr>
<td>15</td>
<td>INU-ISU communication</td>
<td>*1 = 인버터 유닛으로 IGBT 서플라이 유닛 제어 허용. 해당 그룹 01, 05, 06, 07, 30, 31, 60, 61, 62, 94, 96에서 파라미터가 생성됩니다.</td>
</tr>
</tbody>
</table>

자세한 사항은 서플라이 유닛 제어(페이지 40) 절을 참고하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>Value 1</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h...FFFFh</td>
<td>하드웨어 옵션 구성 워드 1.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>95.21</td>
<td>HW options word 2</td>
<td>하드웨어 옵션 워드 2입니다. 기본값이 다르게 구성되는 하드웨어를 위한 파라미터입니다. WARNING! 해당 비트를 1로 세트했던 후에 관련 파라미터의 변경 사항을 확인하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Dual use</td>
<td>1 = 고속 응용 프로그램 (옵션 +N8200) 사용. 제어 가능한 출력 주파수 범위가 증가합니다.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SynRM</td>
<td>1 = 동기 휠러턴스 모터 사용. 파라미터 25.02, 25.03, 25.15, 99.03, 99.13의 기본값이 변경됩니다.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Salient PM</td>
<td>1 = 동극형 영구자석 동기 모터 사용. 파라미터 25.02, 25.03, 25.15, 99.03, 99.13의 기본값이 변경됩니다.</td>
<td></td>
</tr>
</tbody>
</table>

| | | 예약된 영역. | |

| | | 0000b...0011b 하드웨어 옵션 구성 워드 2. 1 = 1 | |

| | | 95.30 Parallel type filter | (제어 유닛의 BCU 인 경우에만 생성됨.) 파라미터 95.31 Parallel connection rating id에 표시할 인버터 타입 목록을 필터링합니다. All types | |

		All types	모든 타입의 드라이브 표시.	
		-3 (380-415V)	-3 (380…415 V) 타입만 표시.	
		-5 (380-500V)	-5 (380…500 V) 타입만 표시.	
		-7 (525-690V)	-7 (525…690 V) 타입만 표시.	

| | | 95.31 Parallel connection rating id | (제어 유닛의 BCU 인 경우에만 생성됨.) 병렬 연결 모듈의 드라이브 타입을 정의합니다. 만약 드라이브가 단일 모듈이라면 Not selected를 선택하십시오. Not selected | |

| | | Not selected | 선택 없음. | |
| | | [Drive/inverter type] | 병렬 연결 모듈의 드라이브 타입. | |

| | | 95.40 Transformation ratio | 승압형 변압기의 권선비 (Turn ratio)를 정의합니다. 변압기 2차축 전류 (01.71 Step-up motor current)가 계산됩니다. 0.000 | |

| | | 0.000 ... 100.000 | 변압기 권선비. | |

| | | 96 System | 표시 언어 선택, 접근 레벨, 매크로 선택, 파라미터 저장 및 복원, 제어 유닛 재부팅, 사용자 파라미터 세트, 단위 선택, 데이터 로거 트리거, 파라미터 체크섬 계산, 사용자 잠금. | |

| | | 96.01 Language | 제어 패널에 표시할 사용자 언어를 선택합니다. Notes: 표준 웹사이트에서 아래의 언어가 모두 지원되는 것은 아닙니다. | |

		Not selected	선택없음.	
		English	영어. 1033	
		Deutsch	독일어. 1031	
		Italiano	이탈리아어. 1040	
96.02 Pass code

사용자 암호를 입력하여 접근 권한을 부여받거나 (파라미터 96.03 Access levels active 확인) 사용자 잠금 기능을 허용할 수 있습니다. 제어 패널 또는 PC 통에서 "358"를 입력하면 모든 파라미터의 설정이 금지되며, 이를 허용하려면 다시 "358"를 입력하십시오. 사용자 암호 (초기 암호 "1000000")를 입력하면 파라미터 96.100...96.102가 열리고 여기에 신규 암호 설정하거나 사용자 잠금 기능을 사용할 수 있습니다. 그리고 유효하지 않은 사용자 암호를 입력하면 96.100...96.102는 다시 사라지는데, 만약 사용자 암호를 연속해서 틀릴 경우에는 새로운 암호 입력을 허용하는 시간이 필요합니다. 자세한 사항은 사용자 잠금 기능 (페이지 91) 절을 참고하십시오.

Note: 높은 수준의 보안을 유지하려면 사용자 암호를 설정하십시오. 그리고 사용자 암호는 절대 분실하지 마십시오. ABB는 사용자 암호를 해제하는 권한이 없습니다.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.03</td>
<td>Access levels active</td>
<td>파라미터 96.02 Pass code에 입력한 사용자 암호에 의해 주어진 접근 권한을 나타냅니다. 이 파라미터는 임기 전용입니다.</td>
<td>0001h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>최종 사용자 접근 권한.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>서비스 엔지니어 접근 권한.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>전문 프로그래머 접근 권한.</td>
<td></td>
</tr>
<tr>
<td>3…10</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>OEM 레벨 1 접근 권한.</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>OEM 레벨 2 접근 권한.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>OEM 레벨 3 접근 권한.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>파라미터 접근.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.04</td>
<td>Macro select</td>
<td>응용 매크로를 선택합니다. 자체한 사항은 응용 매크로 (페이지 95) 장을 참고하십시오. 이 파라미터는 매크로 적용 후에 Done으로 자동 복귀됩니다.</td>
</tr>
<tr>
<td></td>
<td>Factory</td>
<td>공장 매크로 (페이지 96 참고).</td>
</tr>
<tr>
<td></td>
<td>Hand/Auto</td>
<td>수동/자동 매크로 (페이지 98 참고).</td>
</tr>
<tr>
<td></td>
<td>PID-CTRL</td>
<td>PID 제어 매크로 (페이지 100 참고).</td>
</tr>
<tr>
<td></td>
<td>T-CTRL</td>
<td>토크 제어 매크로 (페이지 104 참고).</td>
</tr>
<tr>
<td></td>
<td>Sequence control</td>
<td>순차 제어 매크로 (페이지 106 참고).</td>
</tr>
<tr>
<td></td>
<td>FIELDBUS</td>
<td>예약된 영역. 해당 버전에서는 지원하지 않습니다.</td>
</tr>
<tr>
<td>96.05</td>
<td>Macro active</td>
<td>현재 선택된 응용 매크로를 나타냅니다. 자체한 사항은 응용 매크로 (페이지 95) 장을 참고하십시오. 파라미터 96.04 Macro select에서 매크로를 변경할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td>Factory</td>
<td>공장 매크로 (페이지 96 참고).</td>
</tr>
<tr>
<td></td>
<td>Hand/Auto</td>
<td>수동/자동 매크로 (페이지 98 참고).</td>
</tr>
<tr>
<td></td>
<td>PID-CTRL</td>
<td>PID 제어 매크로 (페이지 100 참고).</td>
</tr>
<tr>
<td></td>
<td>T-CTRL</td>
<td>토크 제어 매크로 (페이지 104 참고).</td>
</tr>
<tr>
<td></td>
<td>Sequence control</td>
<td>순차 제어 매크로 (페이지 106 참고).</td>
</tr>
<tr>
<td></td>
<td>FIELDBUS</td>
<td>예약된 영역. 해당 버전에서는 지원하지 않습니다.</td>
</tr>
<tr>
<td>96.06</td>
<td>Parameter restore</td>
<td>제어 프로그램의 파라미터를 초기화합니다. Note: 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다.</td>
</tr>
<tr>
<td></td>
<td>Done</td>
<td>초기화 완료.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>-----------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| | Restore defaults| 다음 목록을 제외하고 모든 파라미터를 초기화시킵니다.
- 모터 데이터 및 ID run 결과.
- 파라미터 31.42 Overcurrent fault limit.
- 제어 패널 및 PC 툴 설정.
- I/O 확장 모듈 설정.
- 필드버스 어댑터 설정.
- 엔코더 구성 설정.
- 응용 매크로 선택 및 매크로 파라미터 항목.
- 파라미터 95.01 Supply voltage.
- 파라미터 95.09 Switch fuse controller.
- 파라미터 95.20 HW options word 1, 95.21 HW options word 2.
- 상용자 잠금 파라미터 96.100…96.102. | 8 |
| | Clear all | 다음 목록을 제외하고 모든 파라미터를 초기화시킵니다.
- 제어 패널 및 PC 툴 설정.
- 응용 매크로 선택 및 매크로 파라미터 항목.
- 파라미터 95.01 Supply voltage.
- 파라미터 95.09 Switch fuse controller.
- 파라미터 95.20 HW options word 1, 95.21 HW options word 2.
- 상용자 잠금 파라미터 96.100…96.102.
단, 초기화 과정에서 PC 툴과의 통신이 중단됩니다. | 62 |
| | Reset all fieldbus settings | 필드버스 어댑터 및 엄베디드 필드버스 인터페이스 설정 (파라미터 그룹 50…58)을 초기화시킵니다. | 32 |
| 96.07 | Parameter save manually | 영구 메모리에 설정 파라미터를 수동으로 저장합니다.
이 파라미터는 필드버스 통신에서 전송된 데이터 저장이 필요하거나
제어 유닛의 전원을 외부에서 공급받는 경우에 외부 전원이 차단되면
매우 짧은 시간 안에 제어 유닛이 꺼질 수 있으므로 파라미터를 수동으로
저장하는 것이 필요합니다.
Note: 제어 패널 또는 PC 툴로 변경한 파라미터는 자동 저장되지만,
필드버스 통신으로 변경한 파라미터는 자동 저장되지 않습니다. | Done |
| | Done | 파라미터 저장 완료. | 0 |
| | Save | 파라미터 저장 요청. | 1 |
| 96.08 | Control board boot | 전원 차단없이 이 파라미터를 세트시켜 제어 유닛을 재부팅합니다.
이 파라미터는 재부팅 후에 0으로 자동 복귀됩니다. | 0 |
| | 0…1 | 1 = 제어 유닛 재부팅.
1 = 1 | 1 |
| 96.09 | FSO reboot | FSO-xx 안전 기능 모듈을 재부팅합니다.
Note: 이 파라미터는 0으로 자동 복귀되지 않습니다. | False |
<p>| | False | 0. | 0 |
| | True | 1. | 1 |
| | Other [bit] | 기타 소스 선택. | - |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.10</td>
<td>User set status</td>
<td>사용자 파라미터 세트의 상태 정보를 표시합니다. 이 파라미터는 읽기 전용입니다. 자세한 사항은 사용자 파라미터 세트 (페이지 90) 절을 참고하십시오.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>n/a</td>
<td>사용자 세트 없음.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Loading</td>
<td>사용자 세트 실행 중.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Saving</td>
<td>사용자 세트 저장 중.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Faulted</td>
<td>사용자 세트가 유효하지 않거나 비어 있음.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>User set 1</td>
<td>사용자 세트 1 실행.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>User set 2</td>
<td>사용자 세트 2 실행.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>User set 3</td>
<td>사용자 세트 3 실행.</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>User set 4</td>
<td>사용자 세트 4 실행.</td>
<td>7</td>
</tr>
<tr>
<td>96.11</td>
<td>User set save/load</td>
<td>4개의 사용자 세트에 설정 파라미터를 저장하거나 실행합니다. 자세한 사항은 사용자 파라미터 세트 (페이지 90) 절을 참고하십시오.</td>
<td>No action</td>
</tr>
<tr>
<td></td>
<td>No action</td>
<td>실행 또는 저장 완료.</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>User set I/O mode</td>
<td>파라미터 96.12 User set I/O mode in1 및 96.13 User set I/O mode in2를 사용하여 사용자 파라미터 세트 선택.</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Load set 1</td>
<td>사용자 세트 1 선택.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Load set 2</td>
<td>사용자 세트 2 선택.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Load set 3</td>
<td>사용자 세트 3 선택.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Load set 4</td>
<td>사용자 세트 4 선택.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Save to set 1</td>
<td>사용자 세트 1 저장.</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Save to set 2</td>
<td>사용자 세트 2 저장.</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Save to set 3</td>
<td>사용자 세트 3 저장.</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Save to set 4</td>
<td>사용자 세트 4 저장.</td>
<td>21</td>
</tr>
</tbody>
</table>

Notes:
- I/O 확장 모듈, 필드버스 및 엔코더 구성 (그룹 14...16, 51...56, 58, 92...93 및 파라미터 50.01과 50.31)과 같은 하드웨어 파라미터 및 강제 입력/출력 (예: 10.03과 10.04) 파라미터는 사용자 파라미터 세트에 포함되지 않습니다.
- 여기서 변경된 파라미터는 사용자 세트에 자동 저장되지 않으므로 이 파라미터를 사용하여 직접 저장하십시오.
410 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.12</td>
<td>User set I/O mode in1</td>
<td>파라미터 96.11 User set save/load에서 User set I/O를 선택한 경우에 이 파라미터와 96.13 User set I/O mode in2에 선택한 소스를 사용하여 사용자 파라미터 세트를 선택합니다.</td>
<td>Not selected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>96.12 선택 소스</th>
<th>96.13 선택 소스</th>
<th>사용자 파라미터 세트 선택</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>사용자 세트 1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>사용자 세트 2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>사용자 세트 3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>사용자 세트 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.13</td>
<td>User set I/O mode in2</td>
<td>파라미터 96.12 User set I/O mode in1를 참고하십시오.</td>
<td>Not selected</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.16</td>
<td>Unit selection</td>
<td>전력, 온도 및 토크와 관련된 파라미터의 단위를 선택합니다.</td>
<td>0000 0000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Power unit</td>
<td>0 = kW</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = hp</td>
</tr>
<tr>
<td>1</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Temperature</td>
<td>0 = C (°C)</td>
</tr>
<tr>
<td></td>
<td>unit</td>
<td>1 = F (°F)</td>
</tr>
<tr>
<td>3</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Torque unit</td>
<td>0 = Nm (N·m)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = lbft (lb·ft)</td>
</tr>
<tr>
<td>5...15</td>
<td></td>
<td>예약된 영역.</td>
</tr>
</tbody>
</table>

| 0000 0000b ... | 단위 선택 워드. | 1 = 1 |
| 0001 0101b | | |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.20</td>
<td>Time sync primary source</td>
<td>드라이브의 날짜 및 시간을 동기화시키는 외부 소스를 선택합니다. 또한 날짜와 시간은 96.24...96.26에 직접 설정할 수 있습니다. 단, 이 파라미터 설정은 무시됩니다.</td>
<td>DDCS Controller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>외부 소스 선택 없음.</td>
<td>0</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>DDCS Controller</td>
<td>외부 컨트롤러.</td>
</tr>
<tr>
<td></td>
<td>Fieldbus A or B</td>
<td>필드버스 어댑터 A 또는 B.</td>
</tr>
<tr>
<td></td>
<td>Fieldbus A</td>
<td>필드버스 어댑터 A.</td>
</tr>
<tr>
<td></td>
<td>Fieldbus B</td>
<td>필드버스 어댑터 B.</td>
</tr>
<tr>
<td></td>
<td>D2D or M/F</td>
<td>마스터/팔로워 또는 D2D 링크에서 마스터 드라이브.</td>
</tr>
<tr>
<td></td>
<td>Embedded FB</td>
<td>임베디드 필드버스 인터페이스.</td>
</tr>
<tr>
<td></td>
<td>Embedded Ethernet</td>
<td>BCU 제어 유닛의 이더넷 포트.</td>
</tr>
<tr>
<td></td>
<td>Panel link</td>
<td>제어 패널 또는 제어 패널에 접속된 PC 툴.</td>
</tr>
<tr>
<td></td>
<td>Ethernet tool link</td>
<td>FENA 모듈에 접속된 PC 툴.</td>
</tr>
<tr>
<td>96.23</td>
<td>M/F and D2D clock synchronization</td>
<td>(마스터 드라이브 전용) 마스터/팔로워 및 D2D 통신으로 시간을 동기화시킵니다.</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>시간 동기화 금지.</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>시간 동기화 허용.</td>
</tr>
<tr>
<td>96.24</td>
<td>Full days since 1st Jan 1980</td>
<td>1980년 1월 1일 이후 현재까지 경과 시간 (일)을 정의합니다. 이 파라미터는 96.25 Time in minutes within 24 h 및 96.26 Time in ms within one minute과 함께 필드버스 또는 응용 프로그램을 통해 드라이브의 날짜와 시간을 설정할 수 있습니다. 이 파라미터는 통신 프로토콜에서 시간 동기화 기능을 지원하지 않는 경우에 사용할 수 있습니다.</td>
</tr>
<tr>
<td>1…59999</td>
<td>1980년 1월 1일 이후 경과 시간.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.25</td>
<td>Time in minutes within 24 h</td>
<td>오전 12시부터 현재까지 경과 시간 (시분)을 정의합니다. 예를 들어, 오전 2시 20분은 680입니다. 파라미터 96.24 Full days since 1st Jan 1980를 참고하십시오.</td>
</tr>
<tr>
<td>1…1439</td>
<td>오전 12시 이후 경과 시간.</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.26</td>
<td>Time in ms within one minute</td>
<td>1분 내에 현재까지 경과 시간 (밀리초)을 정의합니다. 파라미터 96.24 Full days since 1st Jan 1980를 참고하십시오.</td>
</tr>
<tr>
<td>0…59999</td>
<td>1분 내에 경과 시간.</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.29</td>
<td>Time sync source status</td>
<td>시간 소스 상태 워드입니다. 이 파라미터는 읽기 전용입니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Time tick received</td>
<td>1 = 날짜와 시간 정보를 1번째 우선 순위 소스 (또는 96.24...96.26)로부터 수신합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Aux Time tick received</td>
<td>1 = 날짜와 시간 정보를 2번째 우선 순위 소스로부터 수신합니다.</td>
</tr>
<tr>
<td>2</td>
<td>Tick interval is too long</td>
<td>1 = 시간 클록 간격이 너무 길습니다 (정밀도 저하).</td>
</tr>
<tr>
<td>3</td>
<td>DDCS controller</td>
<td>1 = 날짜와 시간 정보를 DDCS 컨트롤러로부터 수신합니다.</td>
</tr>
<tr>
<td>4</td>
<td>Master/ Follower</td>
<td>1 = 날짜와 시간 정보를 마스터/필로워 링크로부터 수신합니다.</td>
</tr>
<tr>
<td>5</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>D2D</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FbusA</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>FbusB</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>EFB</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Ethernet</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Panel link</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Ethernet tool link</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Parameter setting</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>RTC</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Drive On-Time</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000h...FFFFh</td>
<td>시간 소스 상태 워드 1.</td>
</tr>
<tr>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>96.31 Drive ID number</td>
<td>드라이브의 ID 번호를 지정합니다. 예를 들어, DDCS 통신으로 해당 ID로 접근하여 드라이브 데이터를 읽을 수 있습니다.</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0...32767</td>
<td>ID 번호.</td>
</tr>
<tr>
<td>1 = 1</td>
<td></td>
</tr>
<tr>
<td>96.39 Power up event logging</td>
<td>메인 전원이 투입된 시점을 기록합니다. 이 기능을 허용하면 전원이 투입될 때마다 이벤트 (B5A2 Power up)가 기록됩니다.</td>
</tr>
<tr>
<td>Enable</td>
<td></td>
</tr>
<tr>
<td>Disable</td>
<td>전원 투입 기록 금지.</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Enable</td>
<td>전원 투입 기록 허용.</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
</tr>
<tr>
<td>------</td>
<td>--------------------</td>
</tr>
<tr>
<td>96.53</td>
<td>Actual checksum</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>96.54</td>
<td>Checksum action</td>
</tr>
<tr>
<td></td>
<td>No action</td>
</tr>
<tr>
<td></td>
<td>Pure event</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td>Warning and prevent start</td>
</tr>
<tr>
<td></td>
<td>Fault</td>
</tr>
<tr>
<td>96.55</td>
<td>Checksum control word</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Approved checksum 1</td>
<td>1 = 기존 체크섬 1 (96.56)을 허용합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Approved checksum 2</td>
<td>1 = 기존 체크섬 2 (96.57)을 허용합니다.</td>
</tr>
<tr>
<td>2</td>
<td>Approved checksum 3</td>
<td>1 = 기존 체크섬 3 (96.56)을 허용합니다.</td>
</tr>
<tr>
<td>3</td>
<td>Approved checksum 4</td>
<td>1 = 기존 체크섬 4 (96.59)를 허용합니다.</td>
</tr>
<tr>
<td>4</td>
<td>Set approved checksum 1</td>
<td>1 = 실제 체크섬 (96.53)을 기존 체크섬 1 (96.56)에 복사합니다.</td>
</tr>
<tr>
<td>5</td>
<td>Set approved checksum 2</td>
<td>1 = 실제 체크섬 (96.53)을 기존 체크섬 2 (96.57)에 복사합니다.</td>
</tr>
<tr>
<td>6</td>
<td>Set approved checksum 3</td>
<td>1 = 실제 체크섬 (96.53)을 기존 체크섬 3 (96.58)에 복사합니다.</td>
</tr>
<tr>
<td>7</td>
<td>Set approved checksum 4</td>
<td>1 = 실제 체크섬 (96.53)을 기존 체크섬 4 (96.59)에 복사합니다.</td>
</tr>
<tr>
<td>8…15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

		체크섬 제어 워드.	1 = 1
	00000000b…		
	11111111b		
96.56	Approved checksum 1	기존 체크섬 1입니다.	0h
	00000000h…		
	FFFFFFFFh		
96.57	Approved checksum 2	기존 체크섬 2입니다.	0h
	00000000h…		
	FFFFFFFFh		-
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>설명</th>
<th>Def/Fbeq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.58</td>
<td>Approved checksum 3</td>
<td>기준 체크섬 3입니다.</td>
<td>0h</td>
</tr>
<tr>
<td>96.59</td>
<td>Approved checksum 4</td>
<td>기준 체크섬 4입니다.</td>
<td>0h</td>
</tr>
<tr>
<td>96.61</td>
<td>User data logger status word</td>
<td>사용자 데이터 로거 (페이지 489 참고)의 상태 워드입니다. Drive composer pro에서 사용자 데이터 로기를 구성할 수 있습니다.</td>
<td>0000b</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Running</td>
<td>1 = 사용자 데이터 로가 실행 중입니다. 이 비트는 트리거가 완료된 후에 자동으로 클리어됩니다.</td>
</tr>
<tr>
<td>1</td>
<td>Triggered</td>
<td>1 = 사용자 데이터 로가 트리거되었습니다. 이 비트는 로기를 재시작할 때 자동으로 클리어됩니다.</td>
</tr>
<tr>
<td>2</td>
<td>Data available</td>
<td>1 = 기록 가능한 데이터가 포함되어 있습니다. 해당 데이터가 메모리에 저장되기 때문에 이 비트는 클리어되지 않습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Configured</td>
<td>1 = 사용자 데이터 로가 구성되었습니다. 구성 데이터가 메모리에 저장되기 때문에 이 비트는 클리어되지 않습니다.</td>
</tr>
<tr>
<td>4...15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

0000b...1111b	사용자 데이터 로거 상태 워드.	1 = 1	
96.63	User data logger trigger	사용자 데이터 로거를 트리거시키는 소스를 선택합니다.	Off
Off	0.	0	
On	1.	1	
Other [bit]	기타 소스 선택.	-	

96.64	User data logger start	사용자 데이터 로거를 허용 또는 금지시키는 소스를 선택합니다.	Off
Off	0.	0	
On	1.	1	
Other [bit]	기타 소스 선택.	-	

96.65	Factory data logger time level	공장 데이터 로거 (페이지 488 참고)의 샘플링 간격을 선택합니다.	500us
500μs	500 μs.	500	
2ms	2 ms.	2000	
10ms	10 ms.	10000	

96.70	Disable adaptive program	아답티브 프로그램을 허용 또는 금지시킵니다. 차세한 사항은 아답티브 프로그래밍 (페이지 27) 절을 참고하십시오.	No
No	아답티브 프로그램 허용.	0	
Yes	아답티브 프로그램 금지.	1	
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.100</td>
<td>Change user pass code</td>
<td>변경하려면 이 파라미터와 96.101 Confirm user pass code에 임의의 8자리 숫자를 입력하십시오. 이때 암호 변경을 취소하려면 96.101을 입력하지 말고 96.02 Pass code에 임의의 숫자를 입력하여 사용자 잠금 가능을 해제하십시오. 자세한 사항은 사용자 잠금(페이지 91) 절을 참고하십시오.</td>
<td>10000000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>새로운 사용자 암호.</td>
<td>-</td>
</tr>
<tr>
<td>96.101</td>
<td>Confirm user pass code</td>
<td>파라미터 96.100 Change user pass code에 입력한 사용자 암호를 다시 확인합니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>새로운 사용자 암호 확인.</td>
<td>-</td>
</tr>
</tbody>
</table>

- 새로운 사용자 암호 입력한 경 우에 표시됨.
416 Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.102</td>
<td>User lock functionality</td>
<td>사용자 암호를 입력한 경우에 표시됨. 사용자 접근 기능으로 금지시킬 동작 또는 기능을 선택합니다. 그리고 이를 적용하기 위해서 파라미터 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오. Note: 보안을 위해 모든 작업과 기능을 선택하는 것을 권장합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Disable ABB access levels</td>
<td>1 = ABB 접근 권한 (서비스, 전문 프로그래머 등)이 금지됩니다.</td>
</tr>
<tr>
<td>1</td>
<td>Freeze parameter lock state</td>
<td>1 = 파라미터 잠금 상태 변경이 금지됩니다. 예를 들어, 암호 "358"가 적용되지 않습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Disable FB write to hidden</td>
<td>1 = 필드버스 통신으로 ABB 접근 권한 파라미터의 쓰기가 금지됩니다.</td>
</tr>
<tr>
<td>4...5</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Protect AP</td>
<td>1 = 아답티브 프로그램의 접근이 금지됩니다.</td>
</tr>
<tr>
<td>7</td>
<td>Disable panel Bluetooth</td>
<td>1 = ACS-AP-W 제어 패널의 블루투스 기능이 금지됩니다. 만약 드라이브가 패널 버스로 연결되었다면 모든 제어 패널의 블루투스 기능이 금지됩니다.</td>
</tr>
<tr>
<td>8...10</td>
<td>예약된 영역.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Disable OEM access level 1</td>
<td>1 = OEM 레벨 1 접근 금지.</td>
</tr>
<tr>
<td>12</td>
<td>Disable OEM access level 2</td>
<td>1 = OEM 레벨 2 접근 금지.</td>
</tr>
<tr>
<td>13</td>
<td>Disable OEM access level 3</td>
<td>1 = OEM 레벨 3 접근 금지.</td>
</tr>
<tr>
<td>14...15</td>
<td>예약된 영역.</td>
<td></td>
</tr>
</tbody>
</table>

<p>| Def FbEq16 | | |
| 0000h...FFFFh | 사용자 접근 기능 워드. | - |
| 96.108 | LSU control board boot | (95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에만 표시됨.) 전원 차단없이 이 파라미터에서 서플라이 제어 유닛을 제어하는 기능이 있습니다. 이 파라미터는 0으로 자동 복귀됩니다. |
| 0...1 | 1 = 서플라이 유닛 재부팅. | 1 = 1 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>97 Motor control</td>
<td>모터 모델.</td>
<td></td>
</tr>
<tr>
<td>97.01</td>
<td>Switching frequency reference</td>
<td>내부적으로 제한되지 않은 스위칭 주파수를 정의합니다. Note: 이것은 전문가 수준의 파라미터입니다. 전문 기술 없이 임의로 해당 파라미터를 설정하지 마십시오.</td>
</tr>
<tr>
<td></td>
<td>0.000 ... 24.000 kHz</td>
<td>기준 스위칭 주파수.</td>
</tr>
</tbody>
</table>
| 97.02 | Minimum switching frequency | 기준 스위칭 주파수의 하한값을 정의합니다. 스위칭 주파수는 어떠한 경우에는 설정값 이하로 감소하지 않습니다. **Notes:**

• 전문 기술 없이 임의로 해당 파라미터를 설정하지 마십시오.

• 자체 보호를 위해 내부에서 스위칭 주파수를 제한할 수 있습니다. |
| | 0.000 ... 24.000 kHz | 스위칭 주파수 하한값. |
| 97.03 | Slip gain | 모터 속도의 추정 성능을 개선하기 위한 이득을 정의합니다.

100 %는 최대 속도 이득을 의미하며, 0 %는 속도 이득이 없습니다.
최대 이득은 설정하더라도 정적 속도 오차가 발생하면 이 파라미터를 조절하십시오. 이 파라미터의 기본값은 100 %입니다.
예를 들어, 정적 축 하 상태에서 정적 속도가 40 rpm 인 유도 모터를 1000 rpm의 일정 속도로 운전한 경우에 실제 측정 속도가 998 rpm이면, 정적 속도 오차는 1000 rpm - 998 rpm = 2 rpm입니다.
이러한 속도 오차를 보상하기 위해서는 속도 이득을 105 % (2 rpm / 40 rpm = 5%)로 증가시켜야 합니다. |
| | 0 ... 200% | 속도 이득. |
| 97.04 | Voltage reserve | 최소 에너지 전압을 정의합니다.
드라이브의 출력 전압이 에너지 전압에 도달하게 되면 모터는 약자속 영역 (Field weakening area)으로 진입합니다. 예를 들어, DC 링크 전압이 550 V이고 에너지 전압이 5 %로 설정된 경우에 정상 상태에서 최대 출력 전압의 실효값은 0.95 × 550 V / sqrt(2) = 369 V입니다.
에너지 전압이 키우면 약자속 영역에서 모터의 동작 성능은 향상되지만, 드라이브는 빠르게 약자속 영역으로 진입하기 때문입니다. **Note:** 이것은 전문가 수준의 파라미터입니다. 전문 기술 없이 임의로 해당 파라미터를 설정하지 마십시오. |
| | -4 ... 50% | 에너지 전압. |
| 97.05 | Flux braking | 자속 제동 모드를 정의합니다.
자세한 사항은 자속 제동 (페이지 62) 절을 참고하십시오. **Note:** 이것은 전문가 수준의 파라미터입니다. 전문 기술 없이 임의로 해당 파라미터를 설정하지 마십시오. |
	Disabled	자속 제동 금지.
	Moderate	보통 제동.
	0	감속 시간은 완전 제동에 비해 길어집니다.

Note: 브로크는 모터 안의 유도 자속의 증가를 방지하기 위한 제작을 의미합니다. 이는 모터의 최대 속도에서 작동을 하기 위한 제어를 의미합니다. 이 파라미터는 모터의 성능에 영향을 미칩니다. 상세한 내용은 제품 설명서를 참조하십시오.
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FB Eq16</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full</td>
<td>완전 제동.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>모든 전류를 이용하여 기계 에너지를 열 에너지로 변환합니다.</td>
<td></td>
</tr>
</tbody>
</table>
| 97.06| Flux reference select | 기준 자속의 입력 소스를 정의합니다.
Note: 이것은 전문가 수준의 파라미터입니다. 전문 가설 없이 입력으로 해당 파라미터를 설정하지 마십시오. | User flux reference |
| | Zero | 기준 자속 없음. | 0 |
| | User flux reference | 파라미터 97.07 User flux reference. | 1 |
| | Other | 기타 소스 선택. | - |
| 97.07| User flux reference | 파라미터 97.06 Flux reference select을 User flux reference로 선택한 경우에 기준 자속을 정의합니다. | 100.00% |
| | 0.00 ... 200.00% | 사용자 기준 자속. | 100 = 1% |
| 97.08| Optimizer minimum torque| 동기 릭턴스 모터 또는 돌극형 영구자석 모터의 동적 제어 성능을 향상시키기 위해 시간 지연 없이 증가시킬 출력 토크를 정의합니다. 이는 저속에서 모터 전류가 증가시켜 토크를 빠르게 증가시킵니다. | 0.0% |
| | 0.0 ... 1600.0% | 최적 토크 제한. | 10 = 1% |
| 97.09| Switching freq mode | 모터의 제어 성능과 소음 감소를 위해 최적화된 모드를 선택합니다.
Note: 이것은 전문가 수준의 파라미터입니다. 전문 가설 없이 입력으로 해당 파라미터를 설정하지 마십시오. | Normal |
| | Normal | 모터와의 거리가 먼 경우에 최적화된 제어 성능을 보입니다. | 0 |
| | Low noise | 모터의 음향 소음 (Acoustic noise)를 최소화합니다.
Note: 이 설정은 음향 감소가 필요합니다. 이에 대한 자세한 사항은 하드웨어 매뉴얼을 확인하십시오. | 1 |
| | Cyclic | 반복 부하 (Cyclic load)에 최적화된 제어 성능을 보입니다.
Note: 이 설정은 모터와의 거리가 먼 경우에 적합하지 않습니다. | 2 |
| | Custom | 파라미터 97.01에 설정한 기준 스위칭 주파수를 실제로 적용합니다.
Note: 이 설정은 음향 감소가 필요합니다. 이에 대한 자세한 사항은 하드웨어 매뉴얼을 확인하십시오. | 3 |
| 97.10| Signal injection | 싱호 주입 기능을 허용합니다. 이는 저속 영역에서 안정적인 토크 제어를 수행하기 위해 모터에 높은 주파수의 교류 싱호를 주입합니다. | Disabled |
| | Disabled | 싱호 주입 금지. | 0 |
| | Enabled (5 %) | 싱호 주입 5 % 허용. | 1 |
| | Enabled (10 %) | 싱호 주입 10 % 허용. | 2 |
| | Enabled (15 %) | 싱호 주입 15 % 허용. | 3 |
| | Enabled (20 %) | 싱호 주입 20 % 허용. | 4 |
Parameters 419

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.11</td>
<td>TR tuning</td>
<td>회전자 시정수를 튜닝합니다. 유도 모터의 패루프 제어에서 토크 정밀도를 향상시키기 위해 사용될 수 있습니다. 일반적으로 ID run을 수행하면 충분한 토크 제어 성능을 제공하지만 최적 성능을 얻어내기 위해 미세 조절할 수 있습니다. Note: 이것은 전문가 수준의 파라미터입니다. 전문 기술 없이 임의로 해당 파라미터를 설정하지 마십시오.</td>
<td>100%</td>
</tr>
<tr>
<td>25...400%</td>
<td></td>
<td>회전자 시정수 튜닝.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>97.12</td>
<td>IR comp step-up frequency</td>
<td>승압형 변압기, 케이블 및 모터에서의 전압강하를 보상합니다. 실제 0 Hz 근처에서 승압형 변압기는 전압을 충분히 출력할 수 없기 때문에 전압을 일정 크기로 높여줍니다. 이 파라미터는 아래 그림에서 보인 것처럼 97.13 IR compensation에 주파수 중단점을 추가합니다.</td>
<td>0.0 Hz</td>
</tr>
</tbody>
</table>

Note: 이 파라미터는 아래 그림에서 보인 것처럼 97.13 IR compensation에 주파수 중단점을 추가합니다.

![IR 보상 중단점 그래프](image)

0.0 Hz = 중단점 없음.
0.0 ... 50.0 Hz IR 보상 중단점.
1 = 1 Hz
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.13</td>
<td>IR compensation</td>
<td>증압형 변압기, 케이블 및 모터에서의 전압강하를 보상합니다. 이 기능은 높은 기동 토크를 요구하지만, DTC 모드를 적용할 수 없는 응용 분야에서 유용하게 사용될 수 있습니다. 이 값은 모터 정격 전압에 대한 백분율로 표시됩니다.</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

![Graph](https://via.placeholder.com/150)

정격 주파수의 50%

자세한 사항은 스칼라 제어 모드에서의 전압 보상(페이지 58)을 참고하십시오.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.15</td>
<td>Motor model temperature adaptation</td>
<td>모터의 실제 온도 (측정 또는 추정 온도)를 온도에 영향을 받는 모터 파라미터 (예: 고정자 또는 회전자 저항)에 반영할지 선택합니다. 온도 측정 소스는 파라미터 그룹 35 Motor thermal protection에서 설정하십시오.</td>
<td>Disabled</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>온수부</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 ... 50.00%</td>
<td>영주파수에서의 보상 전압.</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>97.18</td>
<td>Hexagonal field weakening</td>
<td>악축 속 영역에서 육각형 모터 자속 패턴을 허용 또는 금지시킵니다. 이것은 파라미터 97.19 Hexagonal field weakening point 이상에서 동작을 시작하며, 드라이브의 최대 출력 전압이 증가합니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>온수부</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>원형 모터 자속 패턴 (선형 모듈레이션 영역).</td>
<td>0</td>
</tr>
<tr>
<td>On</td>
<td>육각형 모터 자속 패턴 (오버 모듈레이션 영역), 악축 속 전점 (97.19) 이상에서 원형 자속 패턴에서 점차 육각형 자속 패턴으로 변형될 것입니다.</td>
<td>1</td>
</tr>
</tbody>
</table>
Parameters 421

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def</th>
<th>FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.19</td>
<td>Hexagonal field weakening point</td>
<td>악자속 영역으로 진입하는 시작점 (최대 출력 전압에서의 주파수)를 정의합니다. 드라이브의 최대 출력 전압이 증가합니다. Note: 이 파라미터는 스컬라 제어 모드에서만 유효합니다. 자세한 사항은 [유각형 모터 자속 패턴](페이지 65) 절을 참고하십시오.</td>
<td>0.0 ... 500.0%</td>
<td>악자속 영역 시작점.</td>
</tr>
<tr>
<td>97.32</td>
<td>Motor torque unfiltered</td>
<td>필터링되지 않은 모터 토크를 정격 토크에 대한 백분율로 표시합니다.</td>
<td>-1600.0 ... 1600.0%</td>
<td>필터링되지 않은 모터 토크.</td>
</tr>
<tr>
<td>97.33</td>
<td>Speed estimate filter time</td>
<td>주정 속도의 필터링 시간을 정의합니다. 필터링되지 않은 모터 제어에 필터링 동작을 추가로 적용할 수 있습니다. 페이지 567의 제어 체인 보고서를 참고하십시오.</td>
<td>0.00 ... 100.00 ms</td>
<td>주정 속도 필터링 시간.</td>
</tr>
</tbody>
</table>

98 User motor parameters

모터 모델에 사용된 사용자 모터 파라미터. 이 파라미터는 모터를 보다 정확하게 제어하기 위해 사용됩니다. 정확한 모터 모델은 속도 및 토크 제어 성능을 향상시킵니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.01</td>
<td>User motor model mode</td>
<td>모터 파라미터 98.02...98.14 및 회전각 오프셋 98.15를 허용합니다.</td>
<td>Not selected</td>
</tr>
</tbody>
</table>

- **Notes:**
 - 파라미터 99.13 ID run requested에서 ID run을 요청할 때 해당 파라미터 그룹은 모두 0으로 클라이어되며, ID run을 수행하는 동안 모터 특성에 따라 파라미터 98.02...98.15가 업데이트됩니다.
 - ID run 수행 결과는 모터 제조업체에서 제시한 데이터와 약간의 차이가 발생할 수 있습니다.
 - ID run을 수행한 경우에 별도로 선택할 필요가 없습니다.
 - 이 파라미터는 드라이브가 운전 중인 경우에 변경할 수 없습니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>98.02</td>
<td>Rs user</td>
<td>PU 단위로 표현된 고정자 저항을 정의합니다. Y결선 모터의 경우는 상당 권선 저항이고, D결선 모터의 경우에는 상당 권선 저항의 1/3입니다.</td>
<td>0.00000 ... 0.50000 p.u.</td>
</tr>
<tr>
<td>98.03</td>
<td>Rr user</td>
<td>PU 단위로 표현된 회전자 저항을 정의합니다. Note: 이 파라미터는 유도 모터 전용입니다.</td>
<td>0.00000 ... 0.50000 p.u.</td>
</tr>
<tr>
<td>번호</td>
<td>이름/값</td>
<td>설명</td>
<td>Def/FbEq16</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>98.04</td>
<td>Lm user</td>
<td>PU 단위로 표현된 상호 인덕턴스를 정의합니다. Note: 이 파라미터는 유도 모터 전용입니다.</td>
<td>0.00000 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>상호 인덕턴스.</td>
<td>-</td>
</tr>
<tr>
<td>98.05</td>
<td>SigmaL user</td>
<td>PU 단위로 표현된 고정자 과도 인덕턴스를 정의합니다. Note: 이 파라미터는 유도 모터 전용입니다.</td>
<td>0.00000 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>고정자 과도 인덕턴스.</td>
<td>-</td>
</tr>
<tr>
<td>98.06</td>
<td>Ld user</td>
<td>PU 단위로 표현된 직축 (d축) 인덕턴스를 정의합니다. Note: 이 파라미터는 PMSM 및 SynRM 전용입니다.</td>
<td>0.00000 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d축 인덕턴스.</td>
<td>-</td>
</tr>
<tr>
<td>98.07</td>
<td>Lq user</td>
<td>PU 단위로 표현된 횡축 (q축) 인덕턴스를 정의합니다. Note: 이 파라미터는 PMSM 및 SynRM 전용입니다.</td>
<td>0.00000 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>q축 인덕턴스.</td>
<td>-</td>
</tr>
<tr>
<td>98.08</td>
<td>PM flux user</td>
<td>PU 단위로 표현된 영구자석의 자속 크기를 정의합니다. Note: 이 파라미터는 PMSM 전용입니다.</td>
<td>0.00000 p.u.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>영구자석의 자속 크기.</td>
<td>-</td>
</tr>
<tr>
<td>98.09</td>
<td>Rs user SI</td>
<td>SI 단위로 표현된 고정자 저항을 정의합니다. Note: 이 파라미터는 유도 모터 전용입니다.</td>
<td>0.00000 ohm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>고정자 저항.</td>
<td>-</td>
</tr>
<tr>
<td>98.10</td>
<td>Rr user SI</td>
<td>SI 단위로 표현된 회전자 저항을 정의합니다. Note: 이 파라미터는 유도 모터 전용입니다.</td>
<td>0.00000 ohm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>회전자 저항.</td>
<td>-</td>
</tr>
<tr>
<td>98.11</td>
<td>Lm user SI</td>
<td>SI 단위로 표현된 상호 인덕턴스를 정의합니다. Note: 이 파라미터는 유도 모터 전용입니다.</td>
<td>0.00 mH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>상호 인덕턴스.</td>
<td>1 = 10 mH</td>
</tr>
<tr>
<td>98.12</td>
<td>SigmaL user SI</td>
<td>SI 단위로 표현된 고정자 과도 인덕턴스를 정의합니다. Note: 이 파라미터는 유도 모터 전용입니다.</td>
<td>0.00 mH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>고정자 과도 인덕턴스.</td>
<td>1 = 10 mH</td>
</tr>
<tr>
<td>98.13</td>
<td>Ld user SI</td>
<td>SI 단위로 표현된 직축 (d축) 인덕턴스를 정의합니다. Note: 이 파라미터는 PMSM 및 SynRM 전용입니다.</td>
<td>0.00 mH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>d축 인덕턴스.</td>
<td>1 = 10 mH</td>
</tr>
<tr>
<td>98.14</td>
<td>Lq user SI</td>
<td>SI 단위로 표현된 횡축 (q축) 인덕턴스를 정의합니다. Note: 이 파라미터는 PMSM 및 SynRM 전용입니다.</td>
<td>0.00 mH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>q축 인덕턴스.</td>
<td>1 = 10 mH</td>
</tr>
</tbody>
</table>
번호 이름/값 설명

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
</table>
| 98.15 | Position offset user | 동기 모터의 영점과 위치 센서의 영점 사이의 오프셋을 정의합니다. 이 값은 파라미터 21.13 Autophasing mode를 Turning with Z-pulse로 설정한 경우 오토 페이지 과정에서 초기값으로 사용되며, 이 값을 적절히 조절하여 정밀 트닝할 수 있습니다.
Notes:
- 이 값은 전기각 (Electrical angle)으로 표현되며, 모터의 극쌍수를 곱하는 것으로 기계각으로 변환이 가능합니다.
- 이 파라미터는 PMSM 및 SynRM 전용입니다. |
| | | 0...360 deg | 회전각 오프셋. | 1 = 1 deg |

99 Motor data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
</table>
| 99.03 | Motor type | 모터 타입을 선택합니다.
Note: 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다. |
| Asynchronous motor | 3상 비등기 모터. 표준 농형 유도 모터입니다. | 0 |
| Permanent magnet motor | 3상 영구자석 동기 모터. 회전자가 영구자석이고 역기전력 (Back EMF)이 정현파입니다. | 1 |
| SynRM | 3상 동기 탁실트론스 모터. 회전자가 둔극형이고 영구자석이 없습니다. | 2 |

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
</table>
| 99.04 | Motor control mode | 모터 제어 모드를 선택합니다.
DTC
직렬토크제어.
이 모드는 대부분의 응용 분야에서 높은 제어 성능을 제공합니다.
Note: 다음과 같은 경우에 DTC 대신에 스칼라 제어를 사용하십시오.
1) 모터 부하가 동일하지 않은 경우.
2) 모터 용량이 다른 경우.
- 드라이브에 비해 모터의 정격 전류가 1/6만큼 작은 경우.
- 드라이브가 모터 없이 사용되는 경우 (시험용 전원 장치로 사용).
자세한 사항은 드라이브의 운전 모드 (페이지 22) 절을 참고하십시오. |
| Scalar | | 스칼라 제어 모드.
이 모드는 DTC에서의 높은 제어 성능을 제공할 수 없습니다.
Notes:
- 스칼라 제어는 V/f 제어 또는 일정차속제어라고도 합니다.
- 모터 속도에 따라 전압 및 주파수를 동시에 비례적으로 제어합니다.
- 일부 기능은 스칼라 제어 모드에서 사용할 수 없습니다.
- 예를 들어, 속도 및 토크 제어기는 이 모드와 관련이 없습니다.
자세한 사항은 스칼라 제어 (페이지 58) 및 드라이브의 운전 모드 (페이지 22) 절을 참고하십시오. |
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
</table>
| 99.06 | Motor nominal current | 모터 정격 전류를 정의합니다. 모터의 명판 데이터를 확인하고 정확히 입력하십시오. 모터의 정격 전류의 총합을 입력하십시오. Notes:
• 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다. | 0.0 A |
| | | 모터 정격 전류. 설정 가능 전류는 DTC에서 드라이브 정격 전류의 1/6 이상입니다. | 1 = 1 A |
| 99.07 | Motor nominal voltage | 모터 정격 전압을 정의합니다. 모터의 명판 데이터를 확인하고 정확히 입력하십시오. Notes:
• PMSM의 경우, 설정 전압은 정격 속도에서의 역기전력입니다. 만약 전압이 1/6 이상일 경우에 주어진다면 다음과 같이 계산합니다. 예를 들어, 1000 rpm당 전압 80 V라면 정격 속도 3000 rpm에서의 정격 전압은 3 x 60 V = 180 V입니다.
• 모터 젤연 코어는 드라이브의 입력 전원 크기에 의존합니다.
• 드라이브와 모터 케이블에서의 전압 상승을 고려하여 입력 전압은 모터 전압보다 약간 높게 인가하는 것을 권장합니다. 예를 들어, 모터 정격 전압이 380 V라면 입력 전압은 400 V를 공급하십시오.
• 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다. | 0.0 V |
<p>| | | 모터 정격 전압. 설정 가능 전류는 DTC에서 드라이브 정격 전압의 1/6 이상입니다. 드라이브의 정격 전압은 95.01에 선택한 전압 범위로 주어집니다. | 10 = 1 V |
| 99.08 | Motor nominal frequency | 모터 정격 주파수를 정의합니다. 모터의 명판 데이터를 확인하고 정확히 입력하십시오. Note: 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다. | 50.0 Hz |
| | | 모터 정격 주파수. 설정 가능 주파수는 DTC에서 드라이브 정격 주파수의 1/6 이상입니다. 드라이브의 정격 주파수는 95.01에 선택한 주파수 범위로 주어집니다. | 10 = 1 Hz |
| 99.09 | Motor nominal speed | 모터 정격 속도를 정의합니다. 모터의 명판 데이터를 확인하고 정확히 입력하십시오. Note: 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다. | 0 rpm |
| | | 모터 정격 속도. 설정 가능 속도는 DTC에서 드라이브 정격 속도의 1/6 이상입니다. 드라이브의 정격 속도는 95.01에 선택한 주파수 범위로 주어집니다. | 1 = 1 rpm |
| 99.10 | Motor nominal power | 모터 정격 출력을 정의합니다. 모터의 명판 데이터를 확인하고 정확히 입력하십시오. 만약 모터 명판에 정격 출력이 없는 경우에는 파라미터 99.12에 정격 토크를 입력하십시오. 여러 모터를 제어한다면 정격 출력의 총합을 입력하십시오. 이것의 단위는 96.16 Unit selection에서 선택할 수 있습니다. Note: 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다. | 0.00 kW or hp|
| | | 모터 정격 출력. 설정 가능 출력은 DTC에서 드라이브 정격 출력의 1/6 이상입니다. 드라이브의 정격 출력은 95.01에 선택한 정격 범위로 주어집니다. | 1 = 1 unit |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
</table>
| 99.11 | Motor nominal cos ϕ | 모터 정격 역률을 정의하며, 정확한 모터 모델을 위해 사용됩니다. 이 값은 필수 사항이 아니지만, 유도 모터의 정지형 ID run 과정에서 모터 모델의 정확성을 향상시킵니다. PMSM 및 SynRM에서는 설정이 필요하지 않습니다.
Notes:
- 값이 모를 경우에는 0으로 두고 절대 추정해서 입력하지 마십시오.
- 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다. |
| 0.00 ... 1.00 | 모터 정격 역률. | 100 = 1 | 0.00 |
| 99.12 | Motor nominal torque | 모터 정격 토크를 정의합니다. 이 값이 알고 있다면 정격 출력 (99.10) 대신에 사용될 수 있습니다. 이것은 단위는 96.16 Unit selection에서 선택할 수 있습니다.
Notes:
- 이 파라미터와 99.10이 모두 입력된 경우, 이 값이 우선 적용됩니다.
- 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다. |
| 0.000 ... 4000000.000 N·m or lb·ft | 모터 정격 토크. | 1 = 1 unit | 0.000 | N·m or lb·ft
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.13</td>
<td>ID run requested</td>
<td>모터 ID run 모드를 선택합니다. ID run을 수행하는 동안에 최적 제어를 위한 모터 파라미터 정보를 얻어냅니다. 만약 ID run이 수행되지 않은 경우 Standstill로 설정되며, ID run이 완료되면 이 파라미터는 None으로 전환됩니다.</td>
</tr>
</tbody>
</table>

Notes:
- Advanced 모드는 부하 장치를 모터에서 분리하고 수행하십시오.
- ID run을 수행 전에 파라미터 그룹 35 Motor thermal protection과 97.15를 설정하십시오.
- 만약 사인 필터가 설치되었다면, ID run 수행 전에 파라미터 95.15 Special HW settings에서 해당 비트를 설정하고 사용자 사인 필터의 경우에는 99.18과 99.19를 정확히 입력하십시오.
- 스칼라 제어 (99.04 Motor control mode = Scalar)에서는 ID run이 자동으로 요청되지 않습니다. 그러나 정확한 토크 추정을 위해 ID run을 수행할 수 있습니다.
- ID run 수행 중에 드라이브를 정지시키면 이 과정이 취소됩니다.
- ID run은 파라미터 99.04, 99.06…99.12를 변경할 때마다 새롭게 수행되어야 합니다.
- 기계 브레이크가 완전히 열려있는지 확인하십시오.
- 이 파라미터는 드라이브 운전 중에 변경할 수 없습니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td>ID run 완료. 이 모드는 이미 ID run이 수행된 경우에만 선택할 수 있습니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td>일반 회전형 ID run. 대부분의 경우에 우수한 제어 성능을 제공합니다. 이 모드는 약 90 s 정도의 투닝 시간이 필요합니다.</td>
</tr>
</tbody>
</table>

Notes:
- 만약 부하 토큰가 모터 정격 토큰의 20 % 보다 높거나 부하 장치가 과도 상태를 견딜 수 없는 경우에는 부하 장치를 모터에서 분리하고 일반 회전형 ID run을 수행하십시오.
- ID run을 수행하기 전에 모터의 회전 방향을 점검하십시오.
- ID run을 수행하는 동안 모터는 정방향으로 회전합니다.

WARNING! 모터는 ID run을 수행하는 동안에 정격 속도의 거의 50…100 %까지 운전될 것입니다. ID run을 수행하기 전에 안전한지 먼저 확인하십시오!
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Reduced</td>
<td>축소 회전형 ID run. 이 모드는 약자속 제어 또는 토크 제어 성능이 일반 회전형 ID run에 비해 정확하지 않을 수 있습니다. 이 모드는 90s 이하의 튜닝 시간이 필요합니다. • 부하 토크가 모터 정격 토크의 20%를 초과한 경우에 수행합니다. 즉, 부하 장치와 모터를 불리시킬 수 없습니다. • 운전 중에 모터 자속을 감소시킬 수 없는 경우에 수행합니다. 예를 들어, 모터 내부에 브레이크 장치가 포함되어 있습니다. • ID run을 수행하며 전에 모터의 회전 방향을 점검하십시오. • ID run을 수행하는 동안 모터는 정방향으로 회전합니다. WARNING! 모터는 ID run을 수행하는 동안에 정격 속도의 거의 60…100%까지 운전될 것입니다. ID run을 수행하기 전에 안전한지 먼저 확인하십시오!</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Standstill</td>
<td>일반 정지형 ID run. 이 모드는 DC 전류를 모터에 주입합니다. 유도 모터에서는 회전축이 완전히 정지됩니다. 영구자석 동기 모터 또는 동기 헌터스 모터에서는 최대 반바퀴까지 회전할 수 있습니다. Note: 이 모드는 회전형 튜닝을 수행할 수 없는 경우 (예: 리프트 또는 크레인)에만 선택하십시오.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Autophasing</td>
<td>오토 페이징 모드 (페이저 59 참고)는 영구자석 동기 모터 또는 동기 헌터스 모터의 초기 회전자 위치를 결정합니다. 이 모드는 모터 파라미터와 관련이 없으며, ID run 과정에서 자동으로 수행됩니다. 이 설정을 사용하면 오토 페이징 과정을 단독으로 수행할 수 있으며 정대치형 엔코더, 레플러 또는 템포서 신호를 갖는 증가형 엔코더를 교체하거나 추가한 경우에 선택할 수 있습니다. 자세한 사항은 파라미터 21.13 Autophasing mode를 참고하십시오. Notes: • 이 설정은 이미 ID run을 수행한 경우에만 사용될 수 있습니다. • 선택한 오토 페이징 모드에 따라 모터가 회전할 수도 있습니다.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Current measurement calibration</td>
<td>전류 측정 오차 보정. 이 모드는 내부 전류 센서의 오프셋 오차 및 전압 변환 이득 오차를 보정합니다. 이러한 오차들은 토크 레이블을 유발합니다.</td>
<td></td>
</tr>
</tbody>
</table>
Parameters

<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def/FbEq16</th>
</tr>
</thead>
</table>
| Advanced | | 고급 회전형 ID run.
대부분의 경우에 최적의 제어 성능을 제공합니다.
이 모드는 수분 이상의 튜닝 시간이 필요합니다.
전영역에서 최상의 제어 성능이 필요한 경우에 선택할 수 있습니다.
Note: 부하 장치에는 과도 상태가 반복되므로 반드시 모터를 분리하고 고급 회전형 ID run을 수행하십시오.
WARNING! 모터는 ID run을 수행하는 동안에 정적 속도의 거의 50…100 %까지 운전될 것입니다. ID run을 수행하기 전에 안전한지 먼저 확인하십시오!
| | | | 6 |
| Advanced Standstill | | 고급 정지형 ID run.
이 설정은 최대 75 kW 이하의 유도 모터에서 권장됩니다.
모터 정적을 정확히 알 수 없거나 Standstill ID run을 수행하였지만, 제어 성능이 만족스럽지 못한 경우에 선택할 수 있습니다.
Note: 이 모드는 모터 용량에 따라 완료 시간에 차이가 있습니다.
소용량 모터는 일반적으로 5분 이내이고, 대용량 모터는 최대 1시간까지 튜닝 시간이 필요합니다.
| | | | 7 |
| 99.14 Last ID run | performed | 최근에 수행된 모터 ID run 모드를 나타냅니다.
이에 대한 자세한 사항은 99.13 ID run requested를 참고하십시오.
| None | | 수행하지 않음. | None |
| Normal | | 일반 회전형 ID run. | 0 |
| Reduced | | 축소 회전형 ID run. | 1 |
| Standstill | | 일반 정지형 ID run. | 2 |
| Advanced | | 고급 회전형 ID run. | 3 |
| Advanced Standstill | | 고급 정지형 ID run. | 6 |
| 99.15 Motor polepairs | calculated | 모터 데이터에서 계산된 극쌍수를 표시합니다.
모터 극쌍수. | 0 |
| 0…1000 | | 모터 극쌍수. | 1 = 1 |
| 99.16 Motor phase order | | 모터의 상순 (Phase order)을 전환합니다.
이 파라미터는 모터 케이블의 상순이 올바르지 않은 경우에 모터 회전 방향을 변경하기 위해 사용될 수 있습니다.
Notes:
- 이 파라미터를 변경하더라도 기준 속도를 양수로 입력하면 모터는 정방향으로 회전합니다.
- 이 파라미터를 변경한 후에 엔코더의 부호를 확인하십시오.
- 파라미터 90.41 Motor feedback selection을 Estimate로 설정하고 90.01 Motor speed for control에 선택한 90.10 Encoder 1 speed 또는 90.20 Encoder 2 speed의 측정 속도와 비교합니다.
- 추정 속도와 측정 속도의 부호가 반대인 경우에는 엔코더 결선을 바꾸거나 90.43 Motor gear numerator의 부호를 변경하십시오.
<p>| U V W | | 정상 운전. | 0 |
| U W V | | 역상 운전. | 1 |</p>
<table>
<thead>
<tr>
<th>번호</th>
<th>이름/값</th>
<th>설명</th>
<th>Def FbEq16</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.18</td>
<td>Sine filter inductance</td>
<td>사용자 사인 필터의 인덕턴스를 정의합니다. 파라미터 95.15의 비트 3을 1로 세트한 경우에 적용됩니다. Note: ABB 사인 필터 (95.15 Special HW settings의 비트 1)를 선택한 경우에 이 파라미터는 자동 설정되므로 입력할 필요가 없습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.000 ... 100000.000 mH 사용자 사인 필터 인덕턴스. 1000 = 1 mH</td>
<td></td>
</tr>
<tr>
<td>99.19</td>
<td>Sine filter capacitance</td>
<td>사용자 사인 필터의 커패시턴스를 정의합니다. 파라미터 95.15의 비트 3을 1로 세트한 경우에 적용됩니다. Note: ABB 사인 필터 (95.15 Special HW settings의 비트 1)를 선택한 경우에 이 파라미터는 자동 설정되므로 입력할 필요가 없습니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 ... 100000.00 µF 사용자 사인 필터 커패시턴스. 100 = 1 µF</td>
<td></td>
</tr>
</tbody>
</table>

200 Safety

FSO-xx 설정.

이 그룹에는 FSO-xx 안전 기능 옵션 모듈과 관련된 파라미터를 포함합니다. 이 그룹의 파라미터에 대한 자세한 사항은 FSO-xx 모듈의 사용자 매뉴얼을 참고하십시오.
Parameters
추가 파라미터 데이터

Additional parameter data

이 장의 내용

이 장에서는 파라미터의 데이터 범위와 필드버스 통신을 위한 32비트 스케일링 값을 확인할 수 있습니다. 파라미터 설명은 파라미터 (페이지 111) 장을 참고하십시오.

용어 및 약어

<table>
<thead>
<tr>
<th>용어</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual signal</td>
<td>드라이브에서 측정되거나 계산된 신호. 이것은 대부분 모니터링 전용이지만, 일부 카운터 타입 신호는 리셋시킬 수 있습니다.</td>
</tr>
<tr>
<td>Analog src</td>
<td>아날로그 소스. 해당 파라미터의 값은 다른 파라미터 ("Other" 선택)에서 얻을 수 있습니다. 단, 소스 파라미터는 반드시 32비트 실수형이어야 합니다.</td>
</tr>
<tr>
<td></td>
<td>Note: 만약 16비트 정수형 데이터를 소스 파라미터로 사용하는 것을 원한다면 32비트 데이터 저장 파라미터 (47.01…47.08)를 이용하십시오.</td>
</tr>
<tr>
<td>Binary src</td>
<td>2진수 소스. 해당 파라미터의 값은 다른 파라미터 ("Other" 선택)의 특정 비트에서 얻을 수 있으며, 필요에 따라서 0 (거짓) 또는 1 (참)로 고정시킬 수 있습니다.</td>
</tr>
<tr>
<td>Data</td>
<td>정보 제공 파라미터.</td>
</tr>
<tr>
<td>용어</td>
<td>정의</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>FbEq32</td>
<td>32비트 필드버스 통신 데이터. 드라이브의 32비트 데이터를 필드버스 통신으로 외부 시스템에 전송하기 위한 정수형 통신 데이터와 실수형 실제 데이터 사이의 스케일링 값을 나타냅니다. 16비트 스케일링 값은 [파라미터](페이지 111)에 나열되어 있습니다.</td>
</tr>
<tr>
<td>List</td>
<td>목록 선택형 파라미터.</td>
</tr>
<tr>
<td>PB</td>
<td>비트 선택형 파라미터.</td>
</tr>
<tr>
<td>Real</td>
<td>실수형 파라미터.</td>
</tr>
<tr>
<td>Type</td>
<td>파라미터 타입. Analog src, Binary src, List, PB, Real 확인하십시오.</td>
</tr>
</tbody>
</table>

필드버스 주소

필드버스 어댑터의 사용자 매뉴얼을 참고하십시오.
파라미터 그룹 1...9

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01</td>
<td>Motor speed used</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>01.02</td>
<td>Motor speed estimated</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>01.03</td>
<td>Motor speed %</td>
<td>Real</td>
<td>-1000.00 ... 1000.00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>01.04</td>
<td>Encoder 1 speed filtered</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>01.05</td>
<td>Encoder 2 speed filtered</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>01.06</td>
<td>Output frequency</td>
<td>Real</td>
<td>-500.00 ... 500.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>01.07</td>
<td>Motor current</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.08</td>
<td>Motor current % of motor nom</td>
<td>Real</td>
<td>0.0 ... 1000.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>01.10</td>
<td>Motor torque</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>01.11</td>
<td>DC voltage</td>
<td>Real</td>
<td>0.00 ... 2000.0</td>
<td>V</td>
<td>100 = 1 V</td>
</tr>
<tr>
<td>01.13</td>
<td>Output voltage</td>
<td>Real</td>
<td>0...2000</td>
<td>V</td>
<td>1 = 1 V</td>
</tr>
<tr>
<td>01.14</td>
<td>Output power</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>kW or hp</td>
<td>100 = 1 unit</td>
</tr>
<tr>
<td>01.15</td>
<td>Output power % of motor nom</td>
<td>Real</td>
<td>-300.00 ... 300.00</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>01.17</td>
<td>Motor shaft power</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>kW or hp</td>
<td>100 = 1 unit</td>
</tr>
<tr>
<td>01.18</td>
<td>Inverter GWh motoring</td>
<td>Real</td>
<td>0...32767</td>
<td>GWh</td>
<td>1 = 1 GWh</td>
</tr>
<tr>
<td>01.19</td>
<td>Inverter MWh motoring</td>
<td>Real</td>
<td>0...999</td>
<td>MWh</td>
<td>1 = 1 MWh</td>
</tr>
<tr>
<td>01.20</td>
<td>Inverter kW motoring</td>
<td>Real</td>
<td>0...999</td>
<td>kW</td>
<td>1 = 1 kW</td>
</tr>
<tr>
<td>01.21</td>
<td>U-phase current</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.22</td>
<td>V-phase current</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.23</td>
<td>W-phase current</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.24</td>
<td>Flux actual %</td>
<td>Real</td>
<td>0...200</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>01.25</td>
<td>INU momentary cos fii</td>
<td>Real</td>
<td>-1.00 ... 1.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>01.29</td>
<td>Speed change rate</td>
<td>Real</td>
<td>-15000 ... 15000</td>
<td>rpm/s</td>
<td>1 = 1 rpm/s</td>
</tr>
<tr>
<td>01.30</td>
<td>Nominal torque scale</td>
<td>Real</td>
<td>0.000...</td>
<td>N·m or lb·ft</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>01.31</td>
<td>Ambient temperature</td>
<td>Real</td>
<td>-40 ... 120</td>
<td>°C or °F</td>
<td>10 = 1°</td>
</tr>
<tr>
<td>01.32</td>
<td>Inverter GWh regenerating</td>
<td>Real</td>
<td>0...32767</td>
<td>GWh</td>
<td>1 = 1 GWh</td>
</tr>
<tr>
<td>01.33</td>
<td>Inverter MWh regenerating</td>
<td>Real</td>
<td>0...999</td>
<td>MWh</td>
<td>1 = 1 MWh</td>
</tr>
<tr>
<td>01.34</td>
<td>Inverter kW regenerating</td>
<td>Real</td>
<td>0...999</td>
<td>kW</td>
<td>1 = 1 kW</td>
</tr>
<tr>
<td>01.35</td>
<td>Mot - regen energy GWh</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>GWh</td>
<td>1 = 1 GWh</td>
</tr>
<tr>
<td>01.36</td>
<td>Mot - regen energy MWh</td>
<td>Real</td>
<td>-999...999</td>
<td>MWh</td>
<td>1 = 1 MWh</td>
</tr>
<tr>
<td>01.37</td>
<td>Mot - regen energy kW</td>
<td>Real</td>
<td>-999...999</td>
<td>kW</td>
<td>1 = 1 kW</td>
</tr>
<tr>
<td>01.61</td>
<td>Abs motor speed used</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>01.62</td>
<td>Abs motor speed %</td>
<td>Real</td>
<td>0.00 ... 1000.0</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>01.63</td>
<td>Abs output frequency</td>
<td>Real</td>
<td>0.00 ... 500.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>01.64</td>
<td>Abs motor torque</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>01.65</td>
<td>Abs output power</td>
<td>Real</td>
<td>0.00 ... 32767.00</td>
<td>kW or hp</td>
<td>100 = 1 unit</td>
</tr>
<tr>
<td>01.66</td>
<td>Abs output power % of motor nom</td>
<td>Real</td>
<td>0.00 ... 300.00</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
</tbody>
</table>
Additional parameter data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.68</td>
<td>Abs motor shaft power</td>
<td>Real</td>
<td>0.00 ... 32767.00</td>
<td>kW or hp</td>
<td>100 = 1 unit</td>
</tr>
<tr>
<td>01.70</td>
<td>Ambient temperature %</td>
<td>Real</td>
<td>-200.00 ... 200.00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>01.71</td>
<td>Step-up motor current</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.72</td>
<td>U-phase RMS current</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.73</td>
<td>V-phase RMS current</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.74</td>
<td>W-phase RMS current</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
</tbody>
</table>

(파라미터 01.102...01.164은 G5.20에서 IGBT 서플라이 유니트 제어를 허용할 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.102</td>
<td>Line current</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.104</td>
<td>Active current</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.106</td>
<td>Reactive current</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>01.108</td>
<td>Grid frequency</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>01.109</td>
<td>Grid voltage</td>
<td>Real</td>
<td>0.00 ... 2000.00</td>
<td>V</td>
<td>100 = 1 V</td>
</tr>
<tr>
<td>01.110</td>
<td>Grid apparent power</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>kVA</td>
<td>100 = 1 kVA</td>
</tr>
<tr>
<td>01.112</td>
<td>Grid power</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>kW</td>
<td>100 = 1 kW</td>
</tr>
<tr>
<td>01.114</td>
<td>Grid reactive power</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>kvar</td>
<td>100 = 1 kvar</td>
</tr>
<tr>
<td>01.116</td>
<td>LSU cos Φ</td>
<td>Real</td>
<td>-1.00 ... 1.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>01.164</td>
<td>LSU nominal power</td>
<td>Real</td>
<td>0...30000</td>
<td>kW</td>
<td>1 = 1 kW</td>
</tr>
</tbody>
</table>

03 Input references

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>03.01</td>
<td>Panel reference</td>
<td>Real</td>
<td>-100000.00 ... 100000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.02</td>
<td>Panel reference 2</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.05</td>
<td>FB A reference 1</td>
<td>Real</td>
<td>-100000.00 ... 100000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.06</td>
<td>FB A reference 2</td>
<td>Real</td>
<td>-100000.00 ... 100000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.07</td>
<td>FB B reference 1</td>
<td>Real</td>
<td>-100000.00 ... 100000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.08</td>
<td>FB B reference 2</td>
<td>Real</td>
<td>-100000.00 ... 100000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.09</td>
<td>EFB reference 1</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.10</td>
<td>EFB reference 2</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.11</td>
<td>DDCS controller ref 1</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.12</td>
<td>DDCS controller ref 2</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.13</td>
<td>M/F or D2D ref1</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>03.14</td>
<td>M/F or D2D ref2</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>

04 Warnings and faults

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.01</td>
<td>Tripping fault</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.02</td>
<td>Active fault 2</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.03</td>
<td>Active fault 3</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.04</td>
<td>Active fault 4</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.05</td>
<td>Active fault 5</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.06</td>
<td>Active warning 1</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.07</td>
<td>Active warning 2</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.08</td>
<td>Active warning 3</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.09</td>
<td>Active warning 4</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.10</td>
<td>Active warning 5</td>
<td>Data</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Type</td>
<td>Range</td>
<td>Unit</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>---------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>04.11</td>
<td>Latest fault</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.12</td>
<td>2nd latest fault</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.13</td>
<td>3rd latest fault</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.14</td>
<td>4th latest fault</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.15</td>
<td>5th latest fault</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.16</td>
<td>Latest warning</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.17</td>
<td>2nd latest warning</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.18</td>
<td>3rd latest warning</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.19</td>
<td>4th latest warning</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.20</td>
<td>5th latest warning</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.21</td>
<td>Fault word 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.22</td>
<td>Fault word 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.31</td>
<td>Warning word 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.32</td>
<td>Warning word 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.40</td>
<td>Event word 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.41</td>
<td>Event word 1 bit 0 code</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.42</td>
<td>Event word 1 bit 0 aux code</td>
<td>Data</td>
<td>0000 0000h … FFFF FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.43</td>
<td>Event word 1 bit 1 code</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.44</td>
<td>Event word 1 bit 1 aux code</td>
<td>Data</td>
<td>0000 0000h … FFFF FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>04.71</td>
<td>Event word 1 bit 15 code</td>
<td>Data</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.72</td>
<td>Event word 1 bit 15 aux code</td>
<td>Data</td>
<td>0000 0000h … FFFF FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>04.120</td>
<td>Fault/Warning word</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

05 Diagnostics

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Unit</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.01</td>
<td>On-time counter</td>
<td>Real</td>
<td>0…65535</td>
<td>d</td>
<td>1 = 1</td>
</tr>
<tr>
<td>05.02</td>
<td>Run-time counter</td>
<td>Real</td>
<td>0…65535</td>
<td>d</td>
<td>1 = 1</td>
</tr>
<tr>
<td>05.04</td>
<td>Fan on-time counter</td>
<td>Real</td>
<td>0…65535</td>
<td>d</td>
<td>1 = 1</td>
</tr>
<tr>
<td>05.11</td>
<td>Inverter temperature</td>
<td>Real</td>
<td>-40.0 … 160.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>05.22</td>
<td>Diagnostic word 3</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>05.41</td>
<td>Main fan service counter</td>
<td>Real</td>
<td>0…150</td>
<td>%</td>
<td>1 = 1</td>
</tr>
<tr>
<td>05.42</td>
<td>Aux. fan service counter</td>
<td>Real</td>
<td>0…150</td>
<td>%</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(파라미터 05.111…05.121은 95.20에서 IGBT 서플라이 유닛 제어를 허용할 경우에 표시됨.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Unit</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>05.111</td>
<td>Line converter temperature</td>
<td>Real</td>
<td>-40.0 … 160.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>05.121</td>
<td>MCB closing counter</td>
<td>Real</td>
<td>0…4294967295</td>
<td>%</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

06 Control and status words

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Type</th>
<th>Range</th>
<th>Unit</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.01</td>
<td>Main control word</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.02</td>
<td>Application control word</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.03</td>
<td>FBA A transparent control word</td>
<td>PB</td>
<td>00000000h…FFFFFFFF</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(전원공급 장치의 조작을 위해 기타 모드로 전환을 위한 대용량 제어 단위)
<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.04</td>
<td>FBA B transparent control word</td>
<td>PB</td>
<td>00000000h...FFFFFFFFFFh</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>06.05</td>
<td>EFB transparent control word</td>
<td>PB</td>
<td>00000000h...FFFFFFFFFFh</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>06.11</td>
<td>Main status word</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.16</td>
<td>Drive status word 1</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.17</td>
<td>Drive status word 2</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.18</td>
<td>Start inhibit status word</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.19</td>
<td>Speed control status word</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.20</td>
<td>Constant speed status word</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.21</td>
<td>Drive status word 3</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.25</td>
<td>Drive inhibit status word 2</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.29</td>
<td>MSW bit 10 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.30</td>
<td>MSW bit 11 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.31</td>
<td>MSW bit 12 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.32</td>
<td>MSW bit 13 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.33</td>
<td>MSW bit 14 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(파라미터 06.36…06.43은 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.36</td>
<td>LSU Status Word</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.39</td>
<td>Internal state machine LSU CW</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.40</td>
<td>LSU CW user bit 0 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.41</td>
<td>LSU CW user bit 1 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.42</td>
<td>LSU CW user bit 2 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.43</td>
<td>LSU CW user bit 3 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.45</td>
<td>Follower CW user bit 0 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.46</td>
<td>Follower CW user bit 1 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.47</td>
<td>Follower CW user bit 2 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.48</td>
<td>Follower CW user bit 3 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.50</td>
<td>User status word 1</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.60</td>
<td>User status word 1 bit 0 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.61</td>
<td>User status word 1 bit 1 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>06.62</td>
<td>User status word 1 bit 2 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.63</td>
<td>User status word 1 bit 3 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.64</td>
<td>User status word 1 bit 4 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.65</td>
<td>User status word 1 bit 5 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.66</td>
<td>User status word 1 bit 6 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.67</td>
<td>User status word 1 bit 7 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.68</td>
<td>User status word 1 bit 8 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.69</td>
<td>User status word 1 bit 9 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.70</td>
<td>User status word 1 bit 10 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.71</td>
<td>User status word 1 bit 11 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.72</td>
<td>User status word 1 bit 12 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.73</td>
<td>User status word 1 bit 13 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.74</td>
<td>User status word 1 bit 14 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.75</td>
<td>User status word 1 bit 15 sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.100</td>
<td>User control word 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.101</td>
<td>User control word 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(파라미터 06.116…06.118은 95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>06.116</td>
<td>LSU drive status word 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>06.118</td>
<td>LSU start inhibit status word</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

07 System info

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.03</td>
<td>Drive rating id</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.04</td>
<td>Firmware name</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.05</td>
<td>Firmware version</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.06</td>
<td>Loading package name</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.07</td>
<td>Loading package version</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.08</td>
<td>Bootloader version</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.11</td>
<td>Cpu usage</td>
<td>Real</td>
<td>0…100</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>07.13</td>
<td>PU logic version number</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(파라미터 07.21…07.24는 +N8010 응용 프로그램 라이선스를 보유한 경우에만 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.21</td>
<td>Application environment status 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------</td>
<td>--------------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>07.22</td>
<td>Application environment status 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.23</td>
<td>Application name</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.24</td>
<td>Application version</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.25</td>
<td>Customization package name</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.26</td>
<td>Customization package version</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.30</td>
<td>Adaptive program status</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(파라미터 07.40…07.41은 N8010 [응용 프로그램] 라이선스를 보유한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.40</td>
<td>IEC application Cpu usage peak</td>
<td>Real</td>
<td>0.0 … 100.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>07.41</td>
<td>IEC application Cpu load average</td>
<td>Real</td>
<td>0.0 … 100.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
</tbody>
</table>

(파라미터 07.106…07.107은 95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>07.106</td>
<td>LSU loading package name</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>07.107</td>
<td>LSU loading package version</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
파라미터 그룹 10...99

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.01</td>
<td>DI status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.02</td>
<td>DI delayed status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.03</td>
<td>DI force selection</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.04</td>
<td>DI force data</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.05</td>
<td>DI1 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.06</td>
<td>DI1 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.07</td>
<td>DI2 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.08</td>
<td>DI2 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.09</td>
<td>DI3 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.10</td>
<td>DI3 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.11</td>
<td>DI4 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.12</td>
<td>DI4 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.13</td>
<td>DI5 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.14</td>
<td>DI5 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.15</td>
<td>DI6 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.16</td>
<td>DI6 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.21</td>
<td>RO status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.24</td>
<td>RO1 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.25</td>
<td>RO1 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.26</td>
<td>RO1 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.27</td>
<td>RO2 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.28</td>
<td>RO2 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.29</td>
<td>RO2 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.30</td>
<td>RO3 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>10.31</td>
<td>RO3 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.32</td>
<td>RO3 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>10.51</td>
<td>DI filter time</td>
<td>Real</td>
<td>0.3 ... 100.0</td>
<td>ms</td>
<td>10 = 1 ms</td>
</tr>
<tr>
<td>10.99</td>
<td>RO/DIO control word</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

11 Standard DIO, FI, FO

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.01</td>
<td>DIO status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.02</td>
<td>DIO delayed status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.05</td>
<td>DIO1 function</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.06</td>
<td>DIO1 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.07</td>
<td>DIO1 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>11.08</td>
<td>DIO1 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>11.09</td>
<td>DIO2 function</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>--------</td>
<td>--------------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>11.10</td>
<td>DIO2 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.11</td>
<td>DIO2 ON delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>11.12</td>
<td>DIO2 OFF delay</td>
<td>Real</td>
<td>0.0 ... 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>11.38</td>
<td>Freq in 1 actual value</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.39</td>
<td>Freq in 1 scaled</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.42</td>
<td>Freq in 1 min</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.43</td>
<td>Freq in 1 max</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.44</td>
<td>Freq in 1 at scaled min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.45</td>
<td>Freq in 1 at scaled max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.54</td>
<td>Freq out 1 actual value</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.55</td>
<td>Freq out 1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>11.58</td>
<td>Freq out 1 src min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.59</td>
<td>Freq out 1 src max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>11.60</td>
<td>Freq out 1 at src min</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.61</td>
<td>Freq out 1 at src max</td>
<td>Real</td>
<td>0...16000</td>
<td>Hz</td>
<td>1 = 1 Hz</td>
</tr>
<tr>
<td>11.81</td>
<td>DIO filter time</td>
<td>Real</td>
<td>0.3 ... 100.0</td>
<td>ms</td>
<td>10 = 1 ms</td>
</tr>
</tbody>
</table>

12 Standard AI

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.01</td>
<td>AI tune</td>
<td>enum</td>
<td>0...4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12.03</td>
<td>AI supervision function</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.04</td>
<td>AI supervision selection</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.05</td>
<td>AI supervision force</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.11</td>
<td>AI1 actual value</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>12.12</td>
<td>AI1 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>12.15</td>
<td>AI1 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.16</td>
<td>AI1 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>12.17</td>
<td>AI1 min</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>12.18</td>
<td>AI1 max</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>12.19</td>
<td>AI1 scaled at AI1 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>12.20</td>
<td>AI1 scaled at AI1 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>12.21</td>
<td>AI2 actual value</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>12.22</td>
<td>AI2 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>12.25</td>
<td>AI2 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>12.26</td>
<td>AI2 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>12.27</td>
<td>AI2 min</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>12.28</td>
<td>AI2 max</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>12.29</td>
<td>AI2 scaled at AI2 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>-------------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>12.30</td>
<td>AI2 scaled at AI2 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
</tbody>
</table>

13 Standard AO

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.11</td>
<td>AO1 actual value</td>
<td>Real</td>
<td>0.000 ... 22.000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.12</td>
<td>AO1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>13.16</td>
<td>AO1 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000 s</td>
<td>1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>13.17</td>
<td>AO1 source min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0 mA</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>13.18</td>
<td>AO1 source max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0 mA</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>13.19</td>
<td>AO1 out at AO1 src min</td>
<td>Real</td>
<td>0.000 ... 22.000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.20</td>
<td>AO1 out at AO1 src max</td>
<td>Real</td>
<td>0.000 ... 22.000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.21</td>
<td>AO2 actual value</td>
<td>Real</td>
<td>0.000 ... 22.000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.22</td>
<td>AO2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>13.26</td>
<td>AO2 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000 s</td>
<td>1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>13.27</td>
<td>AO2 source min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0 mA</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>13.28</td>
<td>AO2 source max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0 mA</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>13.29</td>
<td>AO2 out at AO2 src min</td>
<td>Real</td>
<td>0.000 ... 22.000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.30</td>
<td>AO2 out at AO2 src max</td>
<td>Real</td>
<td>0.000 ... 22.000 mA</td>
<td>1000 = 1 mA</td>
<td></td>
</tr>
<tr>
<td>13.91</td>
<td>AO1 data storage</td>
<td>Real</td>
<td>-327.68 ... 327.67</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>13.92</td>
<td>AO2 data storage</td>
<td>Real</td>
<td>-327.68 ... 327.67</td>
<td>-</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>

14 I/O extension module 1

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.01</td>
<td>Module 1 type</td>
<td>List</td>
<td>0..4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.02</td>
<td>Module 1 location</td>
<td>Real</td>
<td>1...254</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.03</td>
<td>Module 1 status</td>
<td>List</td>
<td>0..4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

Dlx (14.01 Module 1 type = FDIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.05</td>
<td>DI status</td>
<td>PB</td>
<td>00000000h...FFFFFFFHh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.06</td>
<td>DI delayed status</td>
<td>PB</td>
<td>00000000h...FFFFFFFHh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.08</td>
<td>DI filter time</td>
<td>Real</td>
<td>0.8 ... 100.0 ms</td>
<td>10 = 1 ms</td>
<td></td>
</tr>
<tr>
<td>14.12</td>
<td>DI1 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00 s</td>
<td>100 = 1 s</td>
<td></td>
</tr>
<tr>
<td>14.13</td>
<td>DI1 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00 s</td>
<td>100 = 1 s</td>
<td></td>
</tr>
<tr>
<td>14.17</td>
<td>DI2 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00 s</td>
<td>100 = 1 s</td>
<td></td>
</tr>
<tr>
<td>14.18</td>
<td>DI2 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00 s</td>
<td>100 = 1 s</td>
<td></td>
</tr>
<tr>
<td>14.22</td>
<td>DI3 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00 s</td>
<td>100 = 1 s</td>
<td></td>
</tr>
<tr>
<td>14.23</td>
<td>DI3 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00 s</td>
<td>100 = 1 s</td>
<td></td>
</tr>
</tbody>
</table>

DIOx 공통 파라미터 (14.01 Module 1 type = FIO-01 또는 FIO-11)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.05</td>
<td>DIO status</td>
<td>PB</td>
<td>00000000h...FFFFFFFHh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.06</td>
<td>DIO delayed status</td>
<td>PB</td>
<td>00000000h...FFFFFFFHh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

DIO1/DIO2 (14.01 Module 1 type = FIO-01 또는 FIO-11)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.08</td>
<td>DIO filter time</td>
<td>Real</td>
<td>0.8 ... 100.0 ms</td>
<td>10 = 1 ms</td>
<td></td>
</tr>
<tr>
<td>14.09</td>
<td>DIO1 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.11</td>
<td>DIO1 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>-------</td>
<td>------------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>14.12</td>
<td>DIO1 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>14.13</td>
<td>DIO1 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>14.14</td>
<td>DIO2 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.16</td>
<td>DIO2 output source</td>
<td>Binary</td>
<td></td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.17</td>
<td>DIO2 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>14.18</td>
<td>DIO2 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

DIO3/DIO4 (14.01 Module 1 type = FIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.19</td>
<td>DIO3 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.21</td>
<td>DIO3 output source</td>
<td>Binary</td>
<td></td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.22</td>
<td>DIO3 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>14.23</td>
<td>DIO3 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>14.24</td>
<td>DIO4 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.26</td>
<td>DIO4 output source</td>
<td>Binary</td>
<td></td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.27</td>
<td>DIO4 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>14.28</td>
<td>DIO4 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

RO1/RO2 (14.01 Module 1 type = FIO-01 또는 FDIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.31</td>
<td>RO status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.34</td>
<td>RO1 source</td>
<td>Binary</td>
<td></td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.35</td>
<td>RO1 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>14.36</td>
<td>RO1 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>14.37</td>
<td>RO2 source</td>
<td>Binary</td>
<td></td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.38</td>
<td>RO2 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>14.39</td>
<td>RO2 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

A1x 공통 파라미터 (14.01 Module 1 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.19</td>
<td>AI supervision function</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.20</td>
<td>AI supervision selection</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.21</td>
<td>AI tune</td>
<td>List</td>
<td>0...6 (FIO-11)</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.22</td>
<td>AI force selection</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

A11/A12 (14.01 Module 1 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.26</td>
<td>A11 actual value</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>14.27</td>
<td>A11 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>14.28</td>
<td>A11 force data</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>14.29</td>
<td>A11 HW switch position</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.30</td>
<td>A11 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.31</td>
<td>A11 filter gain</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.32</td>
<td>A11 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>--------</td>
<td>----------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>14.33</td>
<td>AI1 min</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>14.34</td>
<td>AI1 max</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>14.35</td>
<td>AI1 scaled at AI1 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>14.36</td>
<td>AI1 scaled at AI1 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>14.41</td>
<td>AI2 actual value</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>14.42</td>
<td>AI2 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>14.43</td>
<td>AI2 force data</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>14.44</td>
<td>AI2 HW switch position</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.45</td>
<td>AI2 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.46</td>
<td>AI2 filter gain</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.47</td>
<td>AI2 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>14.48</td>
<td>AI2 min</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>14.49</td>
<td>AI2 max</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>14.50</td>
<td>AI2 scaled at AI2 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>14.51</td>
<td>AI2 scaled at AI2 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
</tbody>
</table>

AI3 (14.01 Module 1 type = FIO-11)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.56</td>
<td>AI3 actual value</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>14.57</td>
<td>AI3 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>14.58</td>
<td>AI3 force data</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>14.59</td>
<td>AI3 HW switch position</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.60</td>
<td>AI3 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.61</td>
<td>AI3 filter gain</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.62</td>
<td>AI3 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>14.63</td>
<td>AI3 min</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>14.64</td>
<td>AI3 max</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>14.65</td>
<td>AI3 scaled at AI3 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>14.66</td>
<td>AI3 scaled at AI3 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
</tbody>
</table>

AOx 공통 파라미터 (14.01 Module 1 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.71</td>
<td>AO force selection</td>
<td>PB</td>
<td>00000000h...FFFFFFFH</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

AO1 (14.01 Module 1 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.76</td>
<td>AO1 actual value</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.77</td>
<td>AO1 source</td>
<td>Analog</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.78</td>
<td>AO1 force data</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.79</td>
<td>AO1 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>14.80</td>
<td>AO1 source min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>14.81</td>
<td>AO1 source max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
</tbody>
</table>

Additional parameter data 443
AO2 (14.01 Module 1 type = FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.82</td>
<td>AO1 out at AO1 src min</td>
<td>Real</td>
<td>0.00 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.83</td>
<td>AO1 out at AO1 src max</td>
<td>Real</td>
<td>0.00 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.86</td>
<td>AO2 actual value</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.87</td>
<td>AO2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>14.88</td>
<td>AO2 force data</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.89</td>
<td>AO2 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>14.90</td>
<td>AO2 source min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>14.91</td>
<td>AO2 source max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>14.92</td>
<td>AO2 out at AO2 src min</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>14.93</td>
<td>AO2 out at AO2 src max</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
</tbody>
</table>

15 I/O extension module 2

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.01</td>
<td>Module 2 type</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.02</td>
<td>Module 2 location</td>
<td>Real</td>
<td>1...254</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.03</td>
<td>Module 2 status</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

Dlx (15.01 Module 2 type = FDIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.05</td>
<td>DI status</td>
<td>PB</td>
<td>00000000...FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.06</td>
<td>DI delayed status</td>
<td>PB</td>
<td>00000000...FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.08</td>
<td>DI filter time</td>
<td>Real</td>
<td>0.8 ... 100.0</td>
<td>ms</td>
<td>10 = 1 ms</td>
</tr>
<tr>
<td>15.12</td>
<td>DI1 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.13</td>
<td>DI1 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.17</td>
<td>DI2 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.18</td>
<td>DI2 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.22</td>
<td>DI3 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.23</td>
<td>DI3 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

DIOx 공통 파라미터 (15.01 Module 2 type = FIO-01 또는 FIO-11)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.05</td>
<td>DIO status</td>
<td>PB</td>
<td>00000000...FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.06</td>
<td>DIO delayed status</td>
<td>PB</td>
<td>00000000...FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

DIO1/DIO2 (15.01 Module 2 type = FIO-01 또는 FIO-11)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.08</td>
<td>DIO filter time</td>
<td>Real</td>
<td>0.8 ... 100.0</td>
<td>ms</td>
<td>10 = 1 ms</td>
</tr>
<tr>
<td>15.09</td>
<td>DIO1 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.11</td>
<td>DIO1 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.12</td>
<td>DIO1 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.13</td>
<td>DIO1 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.14</td>
<td>DIO2 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.16</td>
<td>DIO2 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.17</td>
<td>DIO2 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.18</td>
<td>DIO2 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>-----------------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>15.19</td>
<td>DIO3 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.21</td>
<td>DIO3 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.22</td>
<td>DIO3 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.23</td>
<td>DIO3 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.24</td>
<td>DIO4 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.26</td>
<td>DIO4 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.27</td>
<td>DIO4 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.28</td>
<td>DIO4 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.31</td>
<td>RO status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.34</td>
<td>RO1 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.35</td>
<td>RO1 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.36</td>
<td>RO1 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.37</td>
<td>RO2 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.38</td>
<td>RO2 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.39</td>
<td>RO2 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>15.19</td>
<td>Al supervision function</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.20</td>
<td>Al supervision selection</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.21</td>
<td>Al tune</td>
<td>List</td>
<td>0...6 (FIO-11)</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.22</td>
<td>Al force selection</td>
<td>PB</td>
<td>00000000h...FFFFF</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.26</td>
<td>Al1 actual value</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>15.27</td>
<td>Al1 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>15.28</td>
<td>Al1 force data</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>15.29</td>
<td>Al1 HW switch position</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.30</td>
<td>Al1 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.31</td>
<td>Al1 filter gain</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.32</td>
<td>Al1 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>15.33</td>
<td>Al1 min</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>15.34</td>
<td>Al1 max</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>15.35</td>
<td>Al1 scaled at Al1 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>15.36</td>
<td>Al1 scaled at Al1 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>15.41</td>
<td>Al2 actual value</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>15.42</td>
<td>Al2 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
</tbody>
</table>
Additional parameter data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.43</td>
<td>AI2 force data</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>15.44</td>
<td>AI2 HW switch position</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.45</td>
<td>AI2 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.46</td>
<td>AI2 filter gain</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.47</td>
<td>AI2 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>15.48</td>
<td>AI2 min</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>15.49</td>
<td>AI2 max</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>15.50</td>
<td>AI2 scaled at AI2 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>15.51</td>
<td>AI2 scaled at AI2 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
</tbody>
</table>

AI3 (15.01 Module 2 type = FIO-11)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.56</td>
<td>AI3 actual value</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>15.57</td>
<td>AI3 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>15.58</td>
<td>AI3 force data</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>15.59</td>
<td>AI3 HW switch position</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.60</td>
<td>AI3 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.61</td>
<td>AI3 filter gain</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.62</td>
<td>AI3 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>15.63</td>
<td>AI3 min</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>15.64</td>
<td>AI3 max</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>15.65</td>
<td>AI3 scaled at AI3 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>15.66</td>
<td>AI3 scaled at AI3 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
</tbody>
</table>

AOx 공통 파라미터 (15.01 Module 2 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.71</td>
<td>AO force selection</td>
<td>PB</td>
<td>00000000h...FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

AO1 (15.01 Module 2 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.76</td>
<td>AO1 actual value</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>15.77</td>
<td>AO1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.78</td>
<td>AO1 force data</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>15.79</td>
<td>AO1 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>15.80</td>
<td>AO1 source min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>15.81</td>
<td>AO1 source max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>15.82</td>
<td>AO1 out at AO1 src min</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>15.83</td>
<td>AO1 out at AO1 src max</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
</tbody>
</table>

AO2 (15.01 Module 2 type = FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.86</td>
<td>AO2 actual value</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>15.87</td>
<td>AO2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>15.88</td>
<td>AO2 force data</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>15.89</td>
<td>AO2 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>------</td>
<td>-----------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>15.90</td>
<td>AO2 source min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>15.91</td>
<td>AO2 source max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>15.92</td>
<td>AO2 out at AO2 src min</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>15.93</td>
<td>AO2 out at AO2 src max</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
</tbody>
</table>

16 I/O extension module 3

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.01</td>
<td>Module 3 type</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.02</td>
<td>Module 3 location</td>
<td>Real</td>
<td>1...254</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.03</td>
<td>Module 3 status</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

DIx (16.01 Module 3 type = FDIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.05</td>
<td>DI status</td>
<td>PB</td>
<td>00000000h...FFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.06</td>
<td>DI delayed status</td>
<td>PB</td>
<td>00000000h...FFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.08</td>
<td>DI filter time</td>
<td>Real</td>
<td>0.8 ... 100.0</td>
<td>ms</td>
<td>10 = 1 ms</td>
</tr>
<tr>
<td>16.12</td>
<td>DI1 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.13</td>
<td>DI1 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.17</td>
<td>DI2 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.18</td>
<td>DI2 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.22</td>
<td>DI3 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.23</td>
<td>DI3 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

DIOx 공통 파라미터 (16.01 Module 3 type = FIO-01 또는 FIO-11)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.05</td>
<td>DIO status</td>
<td>PB</td>
<td>00000000h...FFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.06</td>
<td>DIO delayed status</td>
<td>PB</td>
<td>00000000h...FFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

DIO1/DIO2 (16.01 Module 3 type = FIO-01 또는 FIO-11)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.08</td>
<td>DIO filter time</td>
<td>Real</td>
<td>0.8 ... 100.0</td>
<td>ms</td>
<td>10 = 1 ms</td>
</tr>
<tr>
<td>16.09</td>
<td>DIO1 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.11</td>
<td>DIO1 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.12</td>
<td>DIO1 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.13</td>
<td>DIO1 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.14</td>
<td>DIO2 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.16</td>
<td>DIO2 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.17</td>
<td>DIO2 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.18</td>
<td>DIO2 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

DIO3/DIO4 (16.01 Module 3 type = FIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.19</td>
<td>DIO3 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.21</td>
<td>DIO3 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.22</td>
<td>DIO3 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.23</td>
<td>DIO3 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.24</td>
<td>DIO4 function</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.26</td>
<td>DIO4 output source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>----------------------</td>
<td>--------</td>
<td>---------------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>16.27</td>
<td>DIO4 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.28</td>
<td>DIO4 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

RO1/RO2 (16.01 Module 3 type = FIO-01 또는 FDIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.31</td>
<td>RO status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.34</td>
<td>RO1 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.35</td>
<td>RO1 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.36</td>
<td>RO1 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.37</td>
<td>RO2 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.38</td>
<td>RO2 ON delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>16.39</td>
<td>RO2 OFF delay</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

A1x 공통 파라미터 (16.01 Module 3 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.19</td>
<td>A1 supervision function</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.20</td>
<td>A1 supervision selection</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.21</td>
<td>A1 tune</td>
<td>List</td>
<td>0...6 (FIO-11)</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.22</td>
<td>A1 force selection</td>
<td>PB</td>
<td>00000000h...FFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

A11/A12 (16.01 Module 3 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.26</td>
<td>A11 actual value</td>
<td>Real</td>
<td>-22.00 ... 22.00</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>16.27</td>
<td>A11 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>16.28</td>
<td>A11 force data</td>
<td>Real</td>
<td>-22.00 ... 22.00</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>16.29</td>
<td>A11 HW switch position</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.30</td>
<td>A11 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.31</td>
<td>A11 filter gain</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.32</td>
<td>A11 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>16.33</td>
<td>A11 min</td>
<td>Real</td>
<td>-22.00 ... 22.00</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>16.34</td>
<td>A11 max</td>
<td>Real</td>
<td>-22.00 ... 22.00</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>16.35</td>
<td>A11 scaled at A11 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>16.36</td>
<td>A11 scaled at A11 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>16.41</td>
<td>A12 actual value</td>
<td>Real</td>
<td>-22.00 ... 22.00</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>16.42</td>
<td>A12 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>16.43</td>
<td>A12 force data</td>
<td>Real</td>
<td>-22.00 ... 22.00</td>
<td>mA or V</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>16.44</td>
<td>A12 HW switch position</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.45</td>
<td>A12 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.46</td>
<td>A12 filter gain</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.47</td>
<td>A12 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>16.48</td>
<td>A12 min</td>
<td>Real</td>
<td>-22.00 ... 22.00</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>16.49</td>
<td>A12 max</td>
<td>Real</td>
<td>-22.00 ... 22.00</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>16.50</td>
<td>Al2 scaled at Al2 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>16.51</td>
<td>Al2 scaled at Al2 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
</tbody>
</table>

Al3 (16.01 Module 3 type = FIO-11)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.56</td>
<td>Al3 actual value</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>16.57</td>
<td>Al3 scaled value</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>16.58</td>
<td>Al3 force data</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>16.59</td>
<td>Al3 HW switch position</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.60</td>
<td>Al3 unit selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.61</td>
<td>Al3 filter gain</td>
<td>List</td>
<td>0…7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.62</td>
<td>Al3 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>16.63</td>
<td>Al3 min</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>16.64</td>
<td>Al3 max</td>
<td>Real</td>
<td>-22.000 ... 22.000</td>
<td>mA or V</td>
<td>1000 = 1 mA or V</td>
</tr>
<tr>
<td>16.65</td>
<td>Al3 scaled at Al3 min</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>16.66</td>
<td>Al3 scaled at Al3 max</td>
<td>Real</td>
<td>-32768.000 ... 32767.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
</tbody>
</table>

AOx 공통 파라미터 (16.01 Module 3 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.71</td>
<td>AO force selection</td>
<td>PB</td>
<td>0000000h…FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

AO1 (16.01 Module 3 type = FIO-11 또는 FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.76</td>
<td>AO1 actual value</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>16.77</td>
<td>AO1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.78</td>
<td>AO1 force data</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>16.79</td>
<td>AO1 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>16.80</td>
<td>AO1 source min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>16.81</td>
<td>AO1 source max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>16.82</td>
<td>AO1 out at AO1 src min</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>16.83</td>
<td>AO1 out at AO1 src max</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
</tbody>
</table>

AO2 (16.01 Module 3 type = FAIO-01)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.86</td>
<td>AO2 actual value</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>16.87</td>
<td>AO2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>16.88</td>
<td>AO2 force data</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>16.89</td>
<td>AO2 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>16.90</td>
<td>AO2 source min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>16.91</td>
<td>AO2 source max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>16.92</td>
<td>AO2 out at AO2 src min</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
<tr>
<td>16.93</td>
<td>AO2 out at AO2 src max</td>
<td>Real</td>
<td>0.000 ... 22.000</td>
<td>mA</td>
<td>1000 = 1 mA</td>
</tr>
</tbody>
</table>

19 Operation mode

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.01</td>
<td>Actual operation mode</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>19.11</td>
<td>Ext1/Ext2 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>19.12</td>
<td>Ext1 control mode</td>
<td>List</td>
<td>1...6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Additional parameter data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.14</td>
<td>Ext2 control mode</td>
<td>List</td>
<td>1...6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>19.16</td>
<td>Local control mode</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>19.17</td>
<td>Local control disable</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>19.20</td>
<td>Scalar control reference unit</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

20 Start/stop/direction

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.01</td>
<td>Ext1 commands</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.02</td>
<td>Ext1 start trigger type</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.03</td>
<td>Ext1 in1 trigger type</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.04</td>
<td>Ext1 in2 trigger type</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.05</td>
<td>Ext1 in3 trigger type</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.06</td>
<td>Ext2 commands</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.07</td>
<td>Ext2 start trigger type</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.08</td>
<td>Ext2 in1 trigger type</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.09</td>
<td>Ext2 in2 trigger type</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.10</td>
<td>Ext2 in3 trigger type</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.11</td>
<td>Run enable stop mode</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.12</td>
<td>Run enable 1 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.19</td>
<td>Enable start command</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.23</td>
<td>Positive speed enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.24</td>
<td>Negative speed enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.25</td>
<td>Jogging enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.26</td>
<td>Jogging 1 start source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.27</td>
<td>Jogging 2 start source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.29</td>
<td>Local start trigger type</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>20.30</td>
<td>Enable signals warning function</td>
<td>PB</td>
<td>00b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

21 Start/stop mode

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.01</td>
<td>Start mode</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.02</td>
<td>Magnetization time</td>
<td>Real</td>
<td>0...10000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>21.03</td>
<td>Stop mode</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.04</td>
<td>Emergency stop mode</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.05</td>
<td>Emergency stop source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>21.06</td>
<td>Zero speed limit</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>21.07</td>
<td>Zero speed delay</td>
<td>Real</td>
<td>0...30000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>21.08</td>
<td>DC current control</td>
<td>PB</td>
<td>00b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.09</td>
<td>DC hold speed</td>
<td>Real</td>
<td>0.00 ... 1000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>21.10</td>
<td>DC current reference</td>
<td>Real</td>
<td>0.0 ... 100.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>21.11</td>
<td>Post magnetization time</td>
<td>Real</td>
<td>0...3000</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>21.12</td>
<td>Continuous magnetization command</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.13</td>
<td>Autophasing mode</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.14</td>
<td>Pre-heating input source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.16</td>
<td>Pre-heating current</td>
<td>Real</td>
<td>0.0 ... 30.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>21.18</td>
<td>Auto restart time</td>
<td>Real</td>
<td>0.0, 0.1 ... 5.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>21.19</td>
<td>Scalar start mode</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>21.20</td>
<td>Follower force ramp stop</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

22 Speed reference selection

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.01</td>
<td>Speed ref unlimited</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.11</td>
<td>Speed ref1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.12</td>
<td>Speed ref2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.13</td>
<td>Speed ref1 function</td>
<td>List</td>
<td>0...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.14</td>
<td>Speed ref1/2 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.15</td>
<td>Speed additive 1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.16</td>
<td>Speed share</td>
<td>Real</td>
<td>-8.000 ... 8.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>22.17</td>
<td>Speed additive 2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.21</td>
<td>Constant speed function</td>
<td>PB</td>
<td>00b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.22</td>
<td>Constant speed sel1</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.23</td>
<td>Constant speed sel2</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.24</td>
<td>Constant speed sel3</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.26</td>
<td>Constant speed 1</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.27</td>
<td>Constant speed 2</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.28</td>
<td>Constant speed 3</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.29</td>
<td>Constant speed 4</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.30</td>
<td>Constant speed 5</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.31</td>
<td>Constant speed 6</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.32</td>
<td>Constant speed 7</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.41</td>
<td>Speed ref safe</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>22.42</td>
<td>Jogging 1 ref</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.43</td>
<td>Jogging 2 ref</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.51</td>
<td>Critical speed function</td>
<td>PB</td>
<td>0b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.52</td>
<td>Critical speed 1 low</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.53</td>
<td>Critical speed 1 high</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.54</td>
<td>Critical speed 2 low</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.55</td>
<td>Critical speed 2 high</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.56</td>
<td>Critical speed 3 low</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.57</td>
<td>Critical speed 3 high</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.71</td>
<td>Motor potentiometer function</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.72</td>
<td>Motor potentiometer initial value</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.73</td>
<td>Motor potentiometer up source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.74</td>
<td>Motor potentiometer down source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>22.75</td>
<td>Motor potentiometer ramp time</td>
<td>Real</td>
<td>0.0 ... 3600.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>22.76</td>
<td>Motor potentiometer min value</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.77</td>
<td>Motor potentiometer max value</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.80</td>
<td>Motor potentiometer ref act</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>22.81</td>
<td>Speed reference act 1</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.82</td>
<td>Speed reference act 2</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.83</td>
<td>Speed reference act 3</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.84</td>
<td>Speed reference act 4</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.85</td>
<td>Speed reference act 5</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.86</td>
<td>Speed reference act 6</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>22.87</td>
<td>Speed reference act 7</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.01</td>
<td>Speed ref ramp input</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>23.02</td>
<td>Speed ref ramp output</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>23.11</td>
<td>Ramp set selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>23.12</td>
<td>Acceleration time 1</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.13</td>
<td>Deceleration time 1</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.14</td>
<td>Acceleration time 2</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.15</td>
<td>Deceleration time 2</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.16</td>
<td>Shape time acc 1</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.17</td>
<td>Shape time acc 2</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.18</td>
<td>Shape time dec 1</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.19</td>
<td>Shape time dec 2</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.20</td>
<td>Acc time jogging</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.21</td>
<td>Dec time jogging</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>23.23</td>
<td>Emergency stop time</td>
<td>Real</td>
<td>0.000 ... 1800.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>23.24</td>
<td>Speed ramp in zero source</td>
<td>Binary sr</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>23.26</td>
<td>Ramp out balancing enable</td>
<td>Binary sr</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>23.27</td>
<td>Ramp out balancing ref</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>23.28</td>
<td>Variable slope enable</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>23.29</td>
<td>Variable slope rate</td>
<td>Real</td>
<td>2...30000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>23.39</td>
<td>Follower speed correction out</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>23.40</td>
<td>Follower speed correction enable</td>
<td>Binary sr</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>23.41</td>
<td>Follower speed correction gain</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
<td>100 = 1 %</td>
</tr>
<tr>
<td>23.42</td>
<td>Follower speed corr torq source</td>
<td>Analog sr</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

24 Speed reference conditioning

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.01</td>
<td>Used speed reference</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>24.02</td>
<td>Used speed feedback</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>24.03</td>
<td>Speed error filtered</td>
<td>Real</td>
<td>-3000.0 ... 3000.0</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>24.04</td>
<td>Speed error inverted</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>24.11</td>
<td>Speed correction</td>
<td>Real</td>
<td>-10000.00 ... 10000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>24.12</td>
<td>Speed error filter time</td>
<td>Real</td>
<td>0...10000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>24.13</td>
<td>RFE speed filter</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>24.14</td>
<td>Frequency of zero</td>
<td>Real</td>
<td>0.50 ... 500.00</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>24.15</td>
<td>Damping of zero</td>
<td>Real</td>
<td>-1.000 ... 1.000</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>24.16</td>
<td>Frequency of pole</td>
<td>Real</td>
<td>0.50 ... 500.00</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>24.17</td>
<td>Damping of pole</td>
<td>Real</td>
<td>-1.000 ... 1.000</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>24.41</td>
<td>Speed error window control enable</td>
<td>Binary sr</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>24.42</td>
<td>Speed window control mode</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>24.43</td>
<td>Speed error window high</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>24.44</td>
<td>Speed error window low</td>
<td>Real</td>
<td>0.00 ... 3000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>24.46</td>
<td>Speed error step</td>
<td>Real</td>
<td>-30000.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
</tbody>
</table>

25 Speed control

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.01</td>
<td>Torque reference speed control</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1 %</td>
</tr>
<tr>
<td>25.02</td>
<td>Speed proportional gain</td>
<td>Real</td>
<td>0.00 ... 250.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>25.03</td>
<td>Speed integration time</td>
<td>Real</td>
<td>0.00 ... 1000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>25.04</td>
<td>Speed derivation time</td>
<td>Real</td>
<td>0.000 ... 10.00</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>25.05</td>
<td>Derivation filter time</td>
<td>Real</td>
<td>0...10000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>25.06</td>
<td>Acc comp derivation time</td>
<td>Real</td>
<td>0.00 ... 1000.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>25.07</td>
<td>Acc comp filter time</td>
<td>Real</td>
<td>0.0 ... 1000.0</td>
<td>ms</td>
<td>10 = 1 ms</td>
</tr>
<tr>
<td>25.08</td>
<td>Drooping rate</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
<td>100 = 1 %</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>25.09</td>
<td>Speed ctrl balancing enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>25.10</td>
<td>Speed ctrl balancing ref</td>
<td>Real</td>
<td>-300.0 ... 300.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.11</td>
<td>Speed control min torque</td>
<td>Real</td>
<td>-1600.0 ... 0.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.12</td>
<td>Speed control max torque</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.13</td>
<td>Min torq sp ctrl em stop</td>
<td>Real</td>
<td>-1600 ... 0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.14</td>
<td>Max torq sp ctrl em stop</td>
<td>Real</td>
<td>0 ... 1600</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.15</td>
<td>Proportional gain em stop</td>
<td>Real</td>
<td>1.00 ... 250.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>25.18</td>
<td>Speed adapt min limit</td>
<td>Real</td>
<td>0 ... 30000</td>
<td>rpm</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>25.19</td>
<td>Speed adapt max limit</td>
<td>Real</td>
<td>0 ... 30000</td>
<td>rpm</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>25.21</td>
<td>Kp adapt coef at min speed</td>
<td>Real</td>
<td>0.000 ... 10.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>25.22</td>
<td>Ti adapt coef at min speed</td>
<td>Real</td>
<td>0.000 ... 10.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>25.25</td>
<td>Torque adapt max limit</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.26</td>
<td>Torque adapt fil time</td>
<td>Real</td>
<td>0.000 ... 100.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>25.27</td>
<td>Kp adapt coef at min torque</td>
<td>Real</td>
<td>0.000 ... 10.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>25.30</td>
<td>Flux adaption enable</td>
<td>List</td>
<td>0 ... 1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>25.33</td>
<td>Speed controller autotune</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>25.34</td>
<td>Speed controller autotune mode</td>
<td>List</td>
<td>0 ... 2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>25.37</td>
<td>Mechanical time constant</td>
<td>Real</td>
<td>0.00 ... 100.000</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>25.38</td>
<td>Autotune torque step</td>
<td>Real</td>
<td>0.00 ... 100.000</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>25.39</td>
<td>Autotune speed step</td>
<td>Real</td>
<td>0.00 ... 100.000</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>25.40</td>
<td>Autotune repeat times</td>
<td>Real</td>
<td>1 ... 10</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>25.53</td>
<td>Torque prop reference</td>
<td>Real</td>
<td>-30000.0 ... 30000.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.54</td>
<td>Torque integral reference</td>
<td>Real</td>
<td>-30000.0 ... 30000.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.55</td>
<td>Torque deriv reference</td>
<td>Real</td>
<td>-30000.0 ... 30000.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.56</td>
<td>Torque acc compensation</td>
<td>Real</td>
<td>-30000.0 ... 30000.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>25.57</td>
<td>Torque reference unbalanced</td>
<td>Real</td>
<td>-30000.0 ... 30000.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
</tbody>
</table>

26 Torque reference chain

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.01</td>
<td>Torque reference to TC</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.02</td>
<td>Torque reference used</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.08</td>
<td>Minimum torque ref</td>
<td>Real</td>
<td>-1000.0 ... 0.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.09</td>
<td>Maximum torque ref</td>
<td>Real</td>
<td>0.0 ... 1000.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.11</td>
<td>Torque ref1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.12</td>
<td>Torque ref2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.13</td>
<td>Torque ref1 function</td>
<td>List</td>
<td>0 ... 5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.14</td>
<td>Torque ref1/2 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.15</td>
<td>Load share</td>
<td>Real</td>
<td>-8.000 ... 8.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>26.16</td>
<td>Torque additive 1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.17</td>
<td>Torque ref filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>26.18</td>
<td>Torque ramp up time</td>
<td>Real</td>
<td>0.000 ... 60.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>26.19</td>
<td>Torque ramp down time</td>
<td>Real</td>
<td>0.000 ... 60.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>26.25</td>
<td>Torque additive 2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.26</td>
<td>Force torque ref add 2 zero</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.41</td>
<td>Torque step</td>
<td>Real</td>
<td>-300.0 ... 300.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.42</td>
<td>Torque step enable</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.51</td>
<td>Oscillation damping</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.52</td>
<td>Oscillation damping out enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.53</td>
<td>Oscillation compensation input</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>26.55</td>
<td>Oscillation damping frequency</td>
<td>Real</td>
<td>0.1 ... 60.0</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>26.56</td>
<td>Oscillation damping phase</td>
<td>Real</td>
<td>0...360</td>
<td>deg</td>
<td>1 = 1 deg</td>
</tr>
<tr>
<td>26.57</td>
<td>Oscillation damping gain</td>
<td>Real</td>
<td>0.0 ... 100.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.58</td>
<td>Oscillation damping output</td>
<td>Real</td>
<td>-1600.000 ... 1600.000</td>
<td>%</td>
<td>1000 = 1%</td>
</tr>
<tr>
<td>26.70</td>
<td>Torque reference act 1</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.71</td>
<td>Torque reference act 2</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.72</td>
<td>Torque reference act 3</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.73</td>
<td>Torque reference act 4</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.74</td>
<td>Torque reference act 5</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.75</td>
<td>Torque reference act 6</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.77</td>
<td>Torque ref add A actual</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.78</td>
<td>Torque ref add B actual</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>26.81</td>
<td>Rush control gain</td>
<td>Real</td>
<td>0.0 ... 10000.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>26.82</td>
<td>Rush control integration time</td>
<td>Real</td>
<td>0.0 ... 10.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

28 Frequency reference chain

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.01</td>
<td>Frequency ref ramp input</td>
<td>Real</td>
<td>-500.00 ... 500.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.02</td>
<td>Frequency ref ramp output</td>
<td>Real</td>
<td>-500.00 ... 500.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>28.11</td>
<td>Frequency ref1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.12</td>
<td>Frequency ref2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.13</td>
<td>Frequency ref1 function</td>
<td>List</td>
<td>0...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.14</td>
<td>Frequency ref1/2 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.21</td>
<td>Constant frequency function</td>
<td>PB</td>
<td>00b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.22</td>
<td>Constant frequency sel1</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>28.23</td>
<td>Constant frequency sel2</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.24</td>
<td>Constant frequency sel3</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.26</td>
<td>Constant frequency 1</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.27</td>
<td>Constant frequency 2</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.28</td>
<td>Constant frequency 3</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.29</td>
<td>Constant frequency 4</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.30</td>
<td>Constant frequency 5</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.31</td>
<td>Constant frequency 6</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.32</td>
<td>Constant frequency 7</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.41</td>
<td>Frequency ref safe</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.51</td>
<td>Critical frequency function</td>
<td>PB</td>
<td>00b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.52</td>
<td>Critical frequency 1 low</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.53</td>
<td>Critical frequency 1 high</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.54</td>
<td>Critical frequency 2 low</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.55</td>
<td>Critical frequency 2 high</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.56</td>
<td>Critical frequency 3 low</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.57</td>
<td>Critical frequency 3 high</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.71</td>
<td>Freq ramp set selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.72</td>
<td>Freq acceleration time 1</td>
<td>Real</td>
<td>0.000 ... 1800.000 s</td>
<td>1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>28.73</td>
<td>Freq deceleration time 1</td>
<td>Real</td>
<td>0.000 ... 1800.000 s</td>
<td>1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>28.74</td>
<td>Freq acceleration time 2</td>
<td>Real</td>
<td>0.000 ... 1800.000 s</td>
<td>1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>28.75</td>
<td>Freq deceleration time 2</td>
<td>Real</td>
<td>0.000 ... 1800.000 s</td>
<td>1000 = 1 s</td>
<td></td>
</tr>
<tr>
<td>28.76</td>
<td>Freq ramp in zero source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.77</td>
<td>Freq ramp hold</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.78</td>
<td>Freq ramp output balancing</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.79</td>
<td>Freq ramp out balancing enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>28.90</td>
<td>Frequency ref act 1</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.91</td>
<td>Frequency ref act 2</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.92</td>
<td>Frequency ref act 3</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.96</td>
<td>Frequency ref act 7</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>28.97</td>
<td>Frequency ref unlimited</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
</tbody>
</table>

30 Limits

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.01</td>
<td>Limit word 1</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.02</td>
<td>Torque limit status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.11</td>
<td>Minimum speed</td>
<td>Real</td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>100 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>30.12</td>
<td>Maximum speed</td>
<td>Real</td>
<td>-30000.00 ... 30000.00 rpm</td>
<td>100 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>30.13</td>
<td>Minimum frequency</td>
<td>Real</td>
<td>-500.00 ... 500.00 Hz</td>
<td>100 = 1 Hz</td>
<td></td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>---------</td>
<td>------------------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>30.14</td>
<td>Maximum frequency</td>
<td>Real</td>
<td>-500.00 … 500.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>30.15</td>
<td>Maximum start current enable</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.16</td>
<td>Maximum start current</td>
<td>Real</td>
<td>0.00 … 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>30.17</td>
<td>Maximum current</td>
<td>Real</td>
<td>0.00 … 30000.00</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>30.18</td>
<td>Minimum torque sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.19</td>
<td>Minimum torque 1</td>
<td>Real</td>
<td>-1600.0 … 0.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>30.20</td>
<td>Maximum torque 1</td>
<td>Real</td>
<td>0.0 … 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>30.21</td>
<td>Minimum torque 2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.22</td>
<td>Maximum torque 2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.23</td>
<td>Minimum torque 2</td>
<td>Real</td>
<td>-1600.0 … 0.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>30.24</td>
<td>Maximum torque 2</td>
<td>Real</td>
<td>0.0 … 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>30.25</td>
<td>Maximum torque sel</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.26</td>
<td>Power motoring limit</td>
<td>Real</td>
<td>0.00 … 600.00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>30.27</td>
<td>Power generating limit</td>
<td>Real</td>
<td>-600.00 … 0.00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>30.30</td>
<td>Overvoltage control</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>30.31</td>
<td>Undervoltage control</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(파라미터 30.101…30.149은 95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.101</td>
<td>LSU limit word 1</td>
<td>PB</td>
<td>FFFh…FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>30.102</td>
<td>LSU limit word 2</td>
<td>PB</td>
<td>FFFh…FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>30.103</td>
<td>LSU limit word 3</td>
<td>PB</td>
<td>FFFh…FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>30.104</td>
<td>LSU limit word 4</td>
<td>PB</td>
<td>FFFh…FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>30.148</td>
<td>LSU minimum power limit</td>
<td>Real</td>
<td>-200.0 … 0.0</td>
<td>%</td>
</tr>
<tr>
<td>30.149</td>
<td>LSU maximum power limit</td>
<td>Real</td>
<td>0.0 … 200.0</td>
<td>%</td>
</tr>
</tbody>
</table>

31 Fault functions

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.01</td>
<td>External event 1 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31.02</td>
<td>External event 1 type</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
</tr>
<tr>
<td>31.03</td>
<td>External event 2 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31.04</td>
<td>External event 2 type</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
</tr>
<tr>
<td>31.05</td>
<td>External event 3 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31.06</td>
<td>External event 3 type</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
</tr>
<tr>
<td>31.07</td>
<td>External event 4 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31.08</td>
<td>External event 4 type</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
</tr>
<tr>
<td>31.09</td>
<td>External event 5 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31.10</td>
<td>External event 5 type</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
</tr>
<tr>
<td>------</td>
<td>-------------------------------------</td>
<td>----------</td>
<td>------------------------</td>
<td>------</td>
</tr>
<tr>
<td>31.11</td>
<td>Fault reset selection</td>
<td>Binary</td>
<td>src</td>
<td>-</td>
</tr>
<tr>
<td>31.12</td>
<td>Autoreset selection</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>31.13</td>
<td>User selectable fault</td>
<td>Real</td>
<td>0000h...FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>31.14</td>
<td>Number of trials</td>
<td>Real</td>
<td>0…5</td>
<td>-</td>
</tr>
<tr>
<td>31.15</td>
<td>Total trials time</td>
<td>Real</td>
<td>1.0 ... 600.0</td>
<td>s</td>
</tr>
<tr>
<td>31.16</td>
<td>Delay time</td>
<td>Real</td>
<td>0.0 ... 120.0</td>
<td>s</td>
</tr>
<tr>
<td>31.19</td>
<td>Motor phase loss</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
</tr>
<tr>
<td>31.20</td>
<td>Earth fault</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
</tr>
<tr>
<td>31.21</td>
<td>Supply phase loss</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
</tr>
<tr>
<td>31.22</td>
<td>STO indication run/stop</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
</tr>
<tr>
<td>31.23</td>
<td>Wiring or earth fault</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
</tr>
<tr>
<td>31.24</td>
<td>Stall function</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
</tr>
<tr>
<td>31.25</td>
<td>Stall current limit</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
</tr>
<tr>
<td>31.26</td>
<td>Stall speed limit</td>
<td>Real</td>
<td>0.00 ... 10000.00</td>
<td>rpm</td>
</tr>
<tr>
<td>31.27</td>
<td>Stall frequency limit</td>
<td>Real</td>
<td>0.00 ... 500.00</td>
<td>Hz</td>
</tr>
<tr>
<td>31.28</td>
<td>Stall time</td>
<td>Real</td>
<td>0…3600</td>
<td>s</td>
</tr>
<tr>
<td>31.30</td>
<td>Overspeed trip margin</td>
<td>Real</td>
<td>0.00 ... 10000.00</td>
<td>rpm</td>
</tr>
<tr>
<td>31.32</td>
<td>Emergency ramp supervision</td>
<td>Real</td>
<td>0…300</td>
<td>%</td>
</tr>
<tr>
<td>31.33</td>
<td>Emergency ramp supervision delay</td>
<td>Real</td>
<td>0…32767</td>
<td>s</td>
</tr>
<tr>
<td>31.35</td>
<td>Main fan fault function</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
</tr>
<tr>
<td>31.36</td>
<td>Aux fan fault function</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
</tr>
<tr>
<td>31.37</td>
<td>Ramp stop supervision</td>
<td>Real</td>
<td>0…300</td>
<td>%</td>
</tr>
<tr>
<td>31.38</td>
<td>Ramp stop supervision delay</td>
<td>Real</td>
<td>0…32767</td>
<td>s</td>
</tr>
<tr>
<td>31.40</td>
<td>Disable warning messages</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>31.42</td>
<td>Overcurrent fault limit</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>A</td>
</tr>
</tbody>
</table>

(따라서 31.120…31.121은 95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

31.120 LSU earth fault | List | 0…1 | - | 1 = 1 |
31.121 LSU supply phase loss | List | 0…1 | - | 1 = 1 |

32 Supervision

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>32.01</td>
<td>Supervision status</td>
<td>PB</td>
<td>000b…111b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.05</td>
<td>Supervision 1 function</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.06</td>
<td>Supervision 1 action</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.07</td>
<td>Supervision 1 signal</td>
<td>Analog</td>
<td>src</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>32.08</td>
<td>Supervision 1 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.09</td>
<td>Supervision 1 low</td>
<td>Real</td>
<td>-21474830.00 ... 21474830.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.10</td>
<td>Supervision 1 high</td>
<td>Real</td>
<td>-21474830.00 ... 21474830.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>32.15</td>
<td>Supervision 2 function</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.16</td>
<td>Supervision 2 action</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------</td>
<td>-------</td>
<td>-----------------------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>32.17</td>
<td>Supervision 2 signal</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.18</td>
<td>Supervision 2 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.19</td>
<td>Supervision 2 low</td>
<td>Real</td>
<td>-21474830.00 ...</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21474830.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.20</td>
<td>Supervision 2 high</td>
<td>Real</td>
<td>-21474830.00 ...</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21474830.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.25</td>
<td>Supervision 3 function</td>
<td>List</td>
<td>0...6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.26</td>
<td>Supervision 3 action</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.27</td>
<td>Supervision 3 signal</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>32.28</td>
<td>Supervision 3 filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>32.29</td>
<td>Supervision 3 low</td>
<td>Real</td>
<td>-21474830.00 ...</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21474830.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.30</td>
<td>Supervision 3 high</td>
<td>Real</td>
<td>-21474830.00 ...</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21474830.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

33 Generic timer & counter

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.01</td>
<td>Counter status</td>
<td>PB</td>
<td>000000b...111111b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.10</td>
<td>On-time 1 actual</td>
<td>Real</td>
<td>0...4294967295</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>33.11</td>
<td>On-time 1 warn limit</td>
<td>Real</td>
<td>0...4294967295</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>33.12</td>
<td>On-time 1 function</td>
<td>PB</td>
<td>00b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.13</td>
<td>On-time 1 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.14</td>
<td>On-time 1 warn message</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.20</td>
<td>On-time 2 actual</td>
<td>Real</td>
<td>0...4294967295</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>33.21</td>
<td>On-time 2 warn limit</td>
<td>Real</td>
<td>0...4294967295</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>33.22</td>
<td>On-time 2 function</td>
<td>PB</td>
<td>00b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.23</td>
<td>On-time 2 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.24</td>
<td>On-time 2 warn message</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.30</td>
<td>Edge counter 1 actual</td>
<td>Real</td>
<td>0...4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.31</td>
<td>Edge counter 1 warn limit</td>
<td>Real</td>
<td>0...4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.32</td>
<td>Edge counter 1 function</td>
<td>PB</td>
<td>0000b...1111b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.33</td>
<td>Edge counter 1 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.34</td>
<td>Edge counter 1 divider</td>
<td>Real</td>
<td>1...4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.35</td>
<td>Edge counter 1 warn message</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.40</td>
<td>Edge counter 2 actual</td>
<td>Real</td>
<td>0...4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.41</td>
<td>Edge counter 2 warn limit</td>
<td>Real</td>
<td>0...4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.42</td>
<td>Edge counter 2 function</td>
<td>PB</td>
<td>0000b...1111b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.43</td>
<td>Edge counter 2 source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.44</td>
<td>Edge counter 2 divider</td>
<td>Real</td>
<td>1...4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.45</td>
<td>Edge counter 2 warn message</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
35 Motor thermal protection

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.50</td>
<td>Value counter 1 actual</td>
<td>Real</td>
<td>-2147483008 ... 2147483008</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.51</td>
<td>Value counter 1 warn limit</td>
<td>Real</td>
<td>-2147483008 ... 2147483008</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.52</td>
<td>Value counter 1 function</td>
<td>PB</td>
<td>00b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.53</td>
<td>Value counter 1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.54</td>
<td>Value counter 1 divider</td>
<td>Real</td>
<td>0.001 ... 2147483.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>33.55</td>
<td>Value counter 1 warn message</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.60</td>
<td>Value counter 2 actual</td>
<td>Real</td>
<td>-2147483008 ... 2147483008</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.61</td>
<td>Value counter 2 warn limit</td>
<td>Real</td>
<td>-2147483008 ... 2147483008</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.62</td>
<td>Value counter 2 function</td>
<td>PB</td>
<td>00b...11b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.63</td>
<td>Value counter 2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>33.64</td>
<td>Value counter 2 divider</td>
<td>Real</td>
<td>0.001 ... 2147483.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>33.65</td>
<td>Value counter 2 warn message</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

Additional parameter data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.01</td>
<td>Motor estimated temperature</td>
<td>Real</td>
<td>-60 ... 1000</td>
<td>°C or °F</td>
<td>1 = 1°</td>
</tr>
<tr>
<td>35.02</td>
<td>Measured temperature 1</td>
<td>Real</td>
<td>-60 ... 1000 °C, -76 ... 1832 °F, 0...5000 ohm</td>
<td>°C, °F or ohm</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.03</td>
<td>Measured temperature 2</td>
<td>Real</td>
<td>-60 ... 1000 °C, -76 ... 1832 °F, 0...5000 ohm</td>
<td>°C, °F or ohm</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.04</td>
<td>FPTC status word</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.11</td>
<td>Temperature 1 source</td>
<td>List</td>
<td>0...11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.12</td>
<td>Temperature 1 fault limit</td>
<td>Real</td>
<td>-60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm</td>
<td>°C, °F or ohm</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.13</td>
<td>Temperature 1 warning limit</td>
<td>Real</td>
<td>-60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm</td>
<td>°C, °F or ohm</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.14</td>
<td>Temperature 1 AI source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.21</td>
<td>Temperature 2 source</td>
<td>List</td>
<td>0...11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.22</td>
<td>Temperature 2 fault limit</td>
<td>Real</td>
<td>-60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm</td>
<td>°C, °F or ohm</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.23</td>
<td>Temperature 2 warning limit</td>
<td>Real</td>
<td>-60 ... 1000 °C, -76 ... 1832 °F or 0...5000 ohm</td>
<td>°C, °F or ohm</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>35.24</td>
<td>Temperature 2 AI source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.30</td>
<td>FPTC configuration word</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.50</td>
<td>Motor ambient temperature</td>
<td>Real</td>
<td>-60 ... 100 °C or -76 ... 212 °F</td>
<td>°C or °F</td>
<td>1 = 1°</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------</td>
</tr>
<tr>
<td>35.51</td>
<td>Motor load curve</td>
<td>Real</td>
<td>50…150</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>35.52</td>
<td>Zero speed load</td>
<td>Real</td>
<td>50…150</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>35.53</td>
<td>Break point</td>
<td>Real</td>
<td>1.00 ... 500.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>35.54</td>
<td>Motor nominal temperature rise</td>
<td>Real</td>
<td>0…300 °C or 32…572 °F</td>
<td>°C or °F</td>
<td>1 = 1 °</td>
</tr>
<tr>
<td>35.55</td>
<td>Motor thermal time constant</td>
<td>Real</td>
<td>100…10000</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>35.60</td>
<td>Cable temperature</td>
<td>Real</td>
<td>0.0 ... 200.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>35.61</td>
<td>Cable nominal current</td>
<td>Real</td>
<td>0.00 ... 10000.0</td>
<td>A</td>
<td>100 = 1 A</td>
</tr>
<tr>
<td>35.62</td>
<td>Cable thermal rise time</td>
<td>Real</td>
<td>0…50000</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>35.100</td>
<td>DOL starter control source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.101</td>
<td>DOL starter on delay</td>
<td>Real</td>
<td>0…42949673</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>35.102</td>
<td>DOL starter off delay</td>
<td>Real</td>
<td>0…715828</td>
<td>min</td>
<td>1 = 1 min</td>
</tr>
<tr>
<td>35.103</td>
<td>DOL starter feedback source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.104</td>
<td>DOL starter feedback delay</td>
<td>Real</td>
<td>0…42949673</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>35.105</td>
<td>DOL starter status word</td>
<td>PB</td>
<td>0000b…1111b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>35.106</td>
<td>DOL starter event type</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

36 Load analyzer

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.01</td>
<td>PVL signal source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36.02</td>
<td>PVL filter time</td>
<td>Real</td>
<td>0.00 ... 120.00</td>
<td>s</td>
</tr>
<tr>
<td>36.06</td>
<td>AL2 signal source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36.07</td>
<td>AL2 signal source</td>
<td>Real</td>
<td>0.00 ... 32767.00</td>
<td>-</td>
</tr>
<tr>
<td>36.09</td>
<td>Reset loggers</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
</tr>
<tr>
<td>36.10</td>
<td>PVL peak value</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>-</td>
</tr>
<tr>
<td>36.11</td>
<td>PVL peak date</td>
<td>Data</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36.12</td>
<td>PVL peak time</td>
<td>Data</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36.13</td>
<td>PVL current at peak</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>A</td>
</tr>
<tr>
<td>36.14</td>
<td>PVL DC voltage at peak</td>
<td>Real</td>
<td>0.00 ... 2000.00</td>
<td>V</td>
</tr>
<tr>
<td>36.15</td>
<td>PVL speed at peak</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm</td>
</tr>
<tr>
<td>36.16</td>
<td>PVL reset date</td>
<td>Data</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36.17</td>
<td>PVL reset time</td>
<td>Data</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36.20</td>
<td>AL1 below 10%</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.21</td>
<td>AL1 10 to 20%</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.22</td>
<td>AL1 20 to 30%</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.23</td>
<td>AL1 30 to 40%</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.24</td>
<td>AL1 40 to 50%</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.25</td>
<td>AL1 50 to 60%</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.26</td>
<td>AL1 60 to 70%</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.27</td>
<td>AL1 70 to 80%</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.28</td>
<td>AL1 80 to 90%</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>%</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>------</td>
<td>-----------------------</td>
<td>------</td>
</tr>
<tr>
<td>36.29</td>
<td>AL1 over 90%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.40</td>
<td>AL2 below 10%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.41</td>
<td>AL2 10 to 20%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.42</td>
<td>AL2 20 to 30%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.43</td>
<td>AL2 30 to 40%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.44</td>
<td>AL2 40 to 50%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.45</td>
<td>AL2 50 to 60%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.46</td>
<td>AL2 60 to 70%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.47</td>
<td>AL2 70 to 80%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.48</td>
<td>AL2 80 to 90%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.49</td>
<td>AL2 over 90%</td>
<td>Real</td>
<td>0.00 … 100.00</td>
<td>%</td>
</tr>
<tr>
<td>36.50</td>
<td>AL2 reset date</td>
<td>Data</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36.51</td>
<td>AL2 reset time</td>
<td>Data</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

37 User load curve

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.01</td>
<td>ULC output status word</td>
<td>PB</td>
<td>0000h...FFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>37.02</td>
<td>ULC supervision signal</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>37.03</td>
<td>ULC overload actions</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>37.04</td>
<td>ULC underload actions</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>37.11</td>
<td>ULC speed table point 1</td>
<td>Real</td>
<td>0.0 ... 30000.0</td>
<td>rpm</td>
<td>10 = 1 rpm</td>
</tr>
<tr>
<td>37.12</td>
<td>ULC speed table point 2</td>
<td>Real</td>
<td>0.0 ... 30000.0</td>
<td>rpm</td>
<td>10 = 1 rpm</td>
</tr>
<tr>
<td>37.13</td>
<td>ULC speed table point 3</td>
<td>Real</td>
<td>0.0 ... 30000.0</td>
<td>rpm</td>
<td>10 = 1 rpm</td>
</tr>
<tr>
<td>37.14</td>
<td>ULC speed table point 4</td>
<td>Real</td>
<td>0.0 ... 30000.0</td>
<td>rpm</td>
<td>10 = 1 rpm</td>
</tr>
<tr>
<td>37.15</td>
<td>ULC speed table point 5</td>
<td>Real</td>
<td>0.0 ... 30000.0</td>
<td>rpm</td>
<td>10 = 1 rpm</td>
</tr>
<tr>
<td>37.16</td>
<td>ULC frequency table point 1</td>
<td>Real</td>
<td>0.0 ... 500.0</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>37.17</td>
<td>ULC frequency table point 2</td>
<td>Real</td>
<td>0.0 ... 500.0</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>37.18</td>
<td>ULC frequency table point 3</td>
<td>Real</td>
<td>0.0 ... 500.0</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>37.19</td>
<td>ULC frequency table point 4</td>
<td>Real</td>
<td>0.0 ... 500.0</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>37.20</td>
<td>ULC frequency table point 5</td>
<td>Real</td>
<td>0.0 ... 500.0</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>37.21</td>
<td>ULC underload point 1</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.22</td>
<td>ULC underload point 2</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.23</td>
<td>ULC underload point 3</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.24</td>
<td>ULC underload point 4</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.25</td>
<td>ULC underload point 5</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.31</td>
<td>ULC overload point 1</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.32</td>
<td>ULC overload point 2</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.33</td>
<td>ULC overload point 3</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.34</td>
<td>ULC overload point 4</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.35</td>
<td>ULC overload point 5</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>37.41</td>
<td>ULC overload timer</td>
<td>Real</td>
<td>0.0 ... 10000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>37.42</td>
<td>ULC underload timer</td>
<td>Real</td>
<td>0.0 ... 10000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>40.01</td>
<td>Process PID output actual</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.02</td>
<td>Process PID feedback actual</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.03</td>
<td>Process PID setpoint actual</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.04</td>
<td>Process PID deviation actual</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.05</td>
<td>Process PID trim output act</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.06</td>
<td>Process PID status word</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.07</td>
<td>Set 1 PID operation mode</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.08</td>
<td>Set 1 feedback 1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.09</td>
<td>Set 1 feedback 2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.10</td>
<td>Set 1 feedback function</td>
<td>List</td>
<td>0...11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.11</td>
<td>Set 1 feedback filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>40.12</td>
<td>Set 1 unit selection</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.14</td>
<td>Set 1 setpoint scaling</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.15</td>
<td>Set 1 output scaling</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.16</td>
<td>Set 1 setpoint 1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.17</td>
<td>Set 1 setpoint 2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.18</td>
<td>Set 1 setpoint function</td>
<td>List</td>
<td>0...11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.19</td>
<td>Set 1 internal setpoint sel1</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.20</td>
<td>Set 1 internal setpoint sel2</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.21</td>
<td>Set 1 internal setpoint 1</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.22</td>
<td>Set 1 internal setpoint 2</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.23</td>
<td>Set 1 internal setpoint 3</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.24</td>
<td>Set 1 internal setpoint 4</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.25</td>
<td>Set 1 setpoint selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.26</td>
<td>Set 1 setpoint min</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.27</td>
<td>Set 1 setpoint max</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.28</td>
<td>Set 1 setpoint increase time</td>
<td>Real</td>
<td>0.0 ... 1800.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.29</td>
<td>Set 1 setpoint decrease time</td>
<td>Real</td>
<td>0.0 ... 1800.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.30</td>
<td>Set 1 setpoint freeze enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>--------------------</td>
<td>--------</td>
</tr>
<tr>
<td>40.31</td>
<td>Set 1 deviation inversion</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.32</td>
<td>Set 1 gain</td>
<td>Real</td>
<td>0.10 … 100.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.33</td>
<td>Set 1 integration time</td>
<td>Real</td>
<td>0.0 … 32767.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.34</td>
<td>Set 1 derivation time</td>
<td>Real</td>
<td>0.000 … 10.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>40.35</td>
<td>Set 1 derivation filter time</td>
<td>Real</td>
<td>0.0 … 10.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.36</td>
<td>Set 1 output min</td>
<td>Real</td>
<td>-32768.0 … 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>40.37</td>
<td>Set 1 output max</td>
<td>Real</td>
<td>-32768.0 … 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>40.38</td>
<td>Set 1 output freeze enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.39</td>
<td>Set 1 deadband range</td>
<td>Real</td>
<td>0.0 … 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>40.40</td>
<td>Set 1 deadband delay</td>
<td>Real</td>
<td>0.0 … 3600.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.41</td>
<td>Set 1 sleep mode</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.42</td>
<td>Set 1 sleep enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.43</td>
<td>Set 1 sleep level</td>
<td>Real</td>
<td>0.0 … 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>40.44</td>
<td>Set 1 sleep delay</td>
<td>Real</td>
<td>0.0 … 3600.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.45</td>
<td>Set 1 sleep boost time</td>
<td>Real</td>
<td>0.0 … 3600.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>40.46</td>
<td>Set 1 sleep boost step</td>
<td>Real</td>
<td>0.0 … 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>40.47</td>
<td>Set 1 wake-up deviation</td>
<td>Real</td>
<td>-32768.00 … 32767.0</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>40.48</td>
<td>Set 1 wake-up delay</td>
<td>Real</td>
<td>0.00 … 60.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>40.49</td>
<td>Set 1 tracking mode</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.50</td>
<td>Set 1 tracking ref selection</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.51</td>
<td>Set 1 trim mode</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.52</td>
<td>Set 1 trim selection</td>
<td>List</td>
<td>1…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.53</td>
<td>Set 1 trimmed ref pointer</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.54</td>
<td>Set 1 trim mix</td>
<td>Real</td>
<td>0.000 … 1.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>40.55</td>
<td>Set 1 trim adjust</td>
<td>Real</td>
<td>-100.000 … 100.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>40.56</td>
<td>Set 1 trim source</td>
<td>List</td>
<td>1…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.57</td>
<td>PID set1/set2 selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.60</td>
<td>Set 1 PID activation source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>40.91</td>
<td>Feedback data storage</td>
<td>Real</td>
<td>-327.68 … 327.67</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>40.92</td>
<td>Setpoint data storage</td>
<td>Real</td>
<td>-327.68 … 327.67</td>
<td>-</td>
<td>100 = 1</td>
</tr>
</tbody>
</table>

41 Process PID set 2

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>41.07</td>
<td>Set 2 PID operation mode</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.08</td>
<td>Set 2 feedback 1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.09</td>
<td>Set 2 feedback 2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>41.10</td>
<td>Set 2 feedback function</td>
<td>List</td>
<td>0…11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.11</td>
<td>Set 2 feedback filter time</td>
<td>Real</td>
<td>0.000 ... 30.000</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>41.12</td>
<td>Set 2 unit selection</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.14</td>
<td>Set 2 setpoint scaling</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>41.15</td>
<td>Set 2 output scaling</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>41.16</td>
<td>Set 2 setpoint 1 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.17</td>
<td>Set 2 setpoint 2 source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.18</td>
<td>Set 2 setpoint function</td>
<td>List</td>
<td>0…11</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.19</td>
<td>Set 2 internal setpoint sel1</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.20</td>
<td>Set 2 internal setpoint sel2</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.21</td>
<td>Set 2 internal setpoint 1</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>41.22</td>
<td>Set 2 internal setpoint 2</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>41.23</td>
<td>Set 2 internal setpoint 3</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>41.24</td>
<td>Set 2 internal setpoint 4</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>41.25</td>
<td>Set 2 setpoint selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.26</td>
<td>Set 2 setpoint min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>41.27</td>
<td>Set 2 setpoint max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>41.28</td>
<td>Set 2 setpoint increase time</td>
<td>Real</td>
<td>0.0 ... 1800.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>41.29</td>
<td>Set 2 setpoint decrease time</td>
<td>Real</td>
<td>0.0 ... 1800.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>41.30</td>
<td>Set 2 setpoint freeze enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.31</td>
<td>Set 2 deviation inversion</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.32</td>
<td>Set 2 gain</td>
<td>Real</td>
<td>0.1 ... 100.0</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>41.33</td>
<td>Set 2 integration time</td>
<td>Real</td>
<td>0.0 ... 3600.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>41.34</td>
<td>Set 2 derivation time</td>
<td>Real</td>
<td>0.0 ... 10.0</td>
<td>s</td>
<td>1000 = 1 s</td>
</tr>
<tr>
<td>41.35</td>
<td>Set 2 derivation filter time</td>
<td>Real</td>
<td>0.0 ... 10.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>41.36</td>
<td>Set 2 output min</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>41.37</td>
<td>Set 2 output max</td>
<td>Real</td>
<td>-32768.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>41.38</td>
<td>Set 2 output freeze enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.39</td>
<td>Set 2 deadband range</td>
<td>Real</td>
<td>0.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>41.40</td>
<td>Set 2 deadband delay</td>
<td>Real</td>
<td>0.0 ... 3600.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>41.41</td>
<td>Set 2 sleep mode</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.42</td>
<td>Set 2 sleep enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>41.43</td>
<td>Set 2 sleep level</td>
<td>Real</td>
<td>0.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>41.44</td>
<td>Set 2 sleep delay</td>
<td>Real</td>
<td>0.0 ... 3600.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>41.45</td>
<td>Set 2 sleep boost time</td>
<td>Real</td>
<td>0.0 ... 3600.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>41.46</td>
<td>Set 2 sleep boost step</td>
<td>Real</td>
<td>0.0 ... 32767.0</td>
<td>-</td>
<td>10 = 1</td>
</tr>
<tr>
<td>41.47</td>
<td>Set 2 wake-up deviation</td>
<td>Real</td>
<td>-32768.00 ... 32767.00</td>
<td>rpm, % or Hz</td>
<td>100 = 1 rpm, % or Hz</td>
</tr>
<tr>
<td>41.48</td>
<td>Set 2 wake-up delay</td>
<td>Real</td>
<td>0.00 ... 60.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>41.49</td>
<td>Set 2 tracking mode</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.50</td>
<td>Set 2 tracking ref selection</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.51</td>
<td>Set 2 trim mode</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.52</td>
<td>Set 2 trim selection</td>
<td>List</td>
<td>1...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.53</td>
<td>Set 2 trimmed ref pointer</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.54</td>
<td>Set 2 trim mix</td>
<td>Real</td>
<td>0.000 ... 1.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>41.55</td>
<td>Set 2 trim adjust</td>
<td>Real</td>
<td>-100.000 ... 100.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>41.56</td>
<td>Set 2 trim source</td>
<td>List</td>
<td>1...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>41.60</td>
<td>Set 2 PID activation source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

43 Brake chopper

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>43.01</td>
<td>Braking resistor temperature</td>
<td>Real</td>
<td>0.0 ... 120.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>43.06</td>
<td>Brake chopper function</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>43.07</td>
<td>Brake chopper run enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>43.08</td>
<td>Brake resistor thermal tc</td>
<td>Real</td>
<td>0...10000</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>43.09</td>
<td>Brake resistor Pmax cont</td>
<td>Real</td>
<td>0.00 ... 10000.00</td>
<td>kW</td>
<td>100 = 1 kW</td>
</tr>
<tr>
<td>43.10</td>
<td>Brake resistance</td>
<td>Real</td>
<td>0.0 ... 1000.0</td>
<td>ohm</td>
<td>10 = 1 ohm</td>
</tr>
<tr>
<td>43.11</td>
<td>Brake resistor fault limit</td>
<td>Real</td>
<td>0...150</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>43.12</td>
<td>Brake resistor warning limit</td>
<td>Real</td>
<td>0...150</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
</tbody>
</table>

44 Mechanical brake control

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>44.01</td>
<td>Brake control status</td>
<td>PB</td>
<td>0000000b...1111111b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>44.02</td>
<td>Brake torque memory</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>44.03</td>
<td>Brake open torque reference</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>44.06</td>
<td>Brake control enable</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>44.07</td>
<td>Brake acknowledge selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>44.08</td>
<td>Brake open delay</td>
<td>Real</td>
<td>0.00 ... 5.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>44.09</td>
<td>Brake open torque source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>44.10</td>
<td>Brake open torque</td>
<td>Real</td>
<td>-1000...1000</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>44.11</td>
<td>Keep brake closed</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>----------</td>
<td>---------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>44.12</td>
<td>Brake close request</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>44.13</td>
<td>Brake close delay</td>
<td>Real</td>
<td>0.00 ... 60.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>44.14</td>
<td>Brake close level</td>
<td>Real</td>
<td>0.0 ... 1000.0</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>44.15</td>
<td>Brake close level delay</td>
<td>Real</td>
<td>0.00 ... 10.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>44.16</td>
<td>Brake reopen delay</td>
<td>Real</td>
<td>0.00 ... 10.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
<tr>
<td>44.17</td>
<td>Brake fault function</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>44.18</td>
<td>Brake fault delay</td>
<td>Real</td>
<td>0.00 ... 60.00</td>
<td>s</td>
<td>100 = 1 s</td>
</tr>
</tbody>
</table>

45 Energy efficiency

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>45.01</td>
<td>Saved GW hours</td>
<td>Real</td>
<td>0…65535</td>
<td>GWh</td>
<td>1 = 1 GWh</td>
</tr>
<tr>
<td>45.02</td>
<td>Saved MW hours</td>
<td>Real</td>
<td>0…999</td>
<td>MWh</td>
<td>1 = 1 MWh</td>
</tr>
<tr>
<td>45.03</td>
<td>Saved kW hours</td>
<td>Real</td>
<td>0.0 ... 999.0</td>
<td>kWh</td>
<td>10 = 1 kW</td>
</tr>
<tr>
<td>45.05</td>
<td>Saved money x1000</td>
<td>Real</td>
<td>0...4294967295</td>
<td>thousand</td>
<td>1 = 1 thousand</td>
</tr>
<tr>
<td>45.06</td>
<td>Saved money</td>
<td>Real</td>
<td>0.00 ... 999.99</td>
<td>(selectable)</td>
<td>100 = 1 unit</td>
</tr>
<tr>
<td>45.08</td>
<td>CO2 reduction in kilotons</td>
<td>Real</td>
<td>0…65535</td>
<td>metric kiloton</td>
<td>1 = 1 metric kiloton</td>
</tr>
<tr>
<td>45.09</td>
<td>CO2 reduction in tons</td>
<td>Real</td>
<td>0.0 ... 999.9</td>
<td>metric ton</td>
<td>10 = 1 metric ton</td>
</tr>
<tr>
<td>45.11</td>
<td>Energy optimizer</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>45.12</td>
<td>Energy tariff 1</td>
<td>Real</td>
<td>0.000 ... 4294967.295</td>
<td>(selectable)</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>45.13</td>
<td>Energy tariff 2</td>
<td>Real</td>
<td>0.000 ... 4294967.295</td>
<td>(selectable)</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>45.14</td>
<td>Tariff selection</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>45.17</td>
<td>Tariff currency unit</td>
<td>List</td>
<td>100...102</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>45.18</td>
<td>CO2 conversion factor</td>
<td>Real</td>
<td>0.000 ... 65.535</td>
<td>metric ton/ MWh</td>
<td>1000 = 1 metric ton/MWh</td>
</tr>
<tr>
<td>45.19</td>
<td>Comparison power</td>
<td>Real</td>
<td>0.0 ... 100000.0</td>
<td>kW</td>
<td>10 = 1 kW</td>
</tr>
<tr>
<td>45.21</td>
<td>Energy calculations reset</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

46 Monitoring/scaling settings

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.01</td>
<td>Speed scaling</td>
<td>Real</td>
<td>0.10 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>46.02</td>
<td>Frequency scaling</td>
<td>Real</td>
<td>0.10 ... 1000.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>46.03</td>
<td>Torque scaling</td>
<td>Real</td>
<td>0.1 ... 1000.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>46.04</td>
<td>Power scaling</td>
<td>Real</td>
<td>0.10 ... 30000.00 kW or 0.10 ... 40214.48 hp</td>
<td>kW or hp</td>
<td>100 = 1 unit</td>
</tr>
<tr>
<td>46.05</td>
<td>Current scaling</td>
<td>Real</td>
<td>0...30000</td>
<td>A</td>
<td>1 = 1 A</td>
</tr>
<tr>
<td>46.06</td>
<td>Speed ref zero scaling</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>46.07</td>
<td>Frequency ref zero scaling</td>
<td>Real</td>
<td>0.00 ... 1000.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>46.11</td>
<td>Filter time motor speed</td>
<td>Real</td>
<td>0...20000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>46.12</td>
<td>Filter time output frequency</td>
<td>Real</td>
<td>0...20000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>46.13</td>
<td>Filter time motor torque</td>
<td>Real</td>
<td>0...20000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
</tbody>
</table>

Additional parameter data 467
<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>46.14</td>
<td>Filter time power out</td>
<td>Real</td>
<td>0...20000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>46.21</td>
<td>At speed hysteresis</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>46.22</td>
<td>At frequency hysteresis</td>
<td>Real</td>
<td>0.00 ... 1000.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>46.23</td>
<td>At torque hysteresis</td>
<td>Real</td>
<td>0.0 ... 300.0</td>
<td>%</td>
<td>1 = 1 %</td>
</tr>
<tr>
<td>46.31</td>
<td>Above speed limit</td>
<td>Real</td>
<td>0.00 ... 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>46.32</td>
<td>Above frequency limit</td>
<td>Real</td>
<td>0.00 ... 1000.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>46.33</td>
<td>Above torque limit</td>
<td>Real</td>
<td>0.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1 %</td>
</tr>
<tr>
<td>46.42</td>
<td>Torque decimals</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

47 Data storage

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.01</td>
<td>Data storage 1 real32</td>
<td>Real</td>
<td>Defined by 47.31</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.02</td>
<td>Data storage 2 real32</td>
<td>Real</td>
<td>Defined by 47.32</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.03</td>
<td>Data storage 3 real32</td>
<td>Real</td>
<td>Defined by 47.33</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.04</td>
<td>Data storage 4 real32</td>
<td>Real</td>
<td>Defined by 47.34</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.05</td>
<td>Data storage 5 real32</td>
<td>Real</td>
<td>Defined by 47.35</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.06</td>
<td>Data storage 6 real32</td>
<td>Real</td>
<td>Defined by 47.36</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.07</td>
<td>Data storage 7 real32</td>
<td>Real</td>
<td>Defined by 47.37</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.08</td>
<td>Data storage 8 real32</td>
<td>Real</td>
<td>Defined by 47.38</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>47.11</td>
<td>Data storage 1 int32</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.12</td>
<td>Data storage 2 int32</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.13</td>
<td>Data storage 3 int32</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.14</td>
<td>Data storage 4 int32</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.15</td>
<td>Data storage 5 int32</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.16</td>
<td>Data storage 6 int32</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.17</td>
<td>Data storage 7 int32</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.18</td>
<td>Data storage 8 int32</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.21</td>
<td>Data storage 1 int16</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.22</td>
<td>Data storage 2 int16</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.23</td>
<td>Data storage 3 int16</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.24</td>
<td>Data storage 4 int16</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.25</td>
<td>Data storage 5 int16</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.26</td>
<td>Data storage 6 int16</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.27</td>
<td>Data storage 7 int16</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.28</td>
<td>Data storage 8 int16</td>
<td>Real</td>
<td>-32768 ... 32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.31</td>
<td>Data storage 1 real32 type</td>
<td>List</td>
<td>0...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.32</td>
<td>Data storage 2 real32 type</td>
<td>List</td>
<td>0...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>47.33</td>
<td>Data storage 3 real32 type</td>
<td>List</td>
<td>0...5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
49 Panel port communication

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>49.01</td>
<td>Node ID number</td>
<td>Real</td>
<td>1…32</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.03</td>
<td>Baud rate</td>
<td>List</td>
<td>1…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.04</td>
<td>Communication loss time</td>
<td>Real</td>
<td>0.3 … 3000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>49.05</td>
<td>Communication loss action</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.06</td>
<td>Refresh settings</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.07</td>
<td>Panel comm supervision force</td>
<td>PB</td>
<td>0000h…FFFFHh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.08</td>
<td>Secondary comm. loss action</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.14</td>
<td>Panel speed reference unit</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>49.15</td>
<td>Minimum ext speed ref panel</td>
<td>Real</td>
<td>-30000.00 … 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>49.16</td>
<td>Maximum ext speed ref panel</td>
<td>Real</td>
<td>-30000.00 … 30000.00</td>
<td>rpm</td>
<td>100 = 1 rpm</td>
</tr>
<tr>
<td>49.17</td>
<td>Minimum ext frequency ref panel</td>
<td>Real</td>
<td>-500.00 … 500.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>49.18</td>
<td>Maximum ext frequency ref panel</td>
<td>Real</td>
<td>-500.00 … 500.00</td>
<td>Hz</td>
<td>100 = 1 Hz</td>
</tr>
<tr>
<td>49.24</td>
<td>Panel actual source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

50 Fieldbus adapter (FBA)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.01</td>
<td>FBA A enable</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.02</td>
<td>FBA A comm loss func</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.03</td>
<td>FBA A comm loss t out</td>
<td>Real</td>
<td>0.3 … 6553.5</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>50.04</td>
<td>FBA A ref1 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.05</td>
<td>FBA A ref2 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.07</td>
<td>FBA A actual 1 type</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.08</td>
<td>FBA A actual 2 type</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.09</td>
<td>FBA A SW transparent source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.10</td>
<td>FBA A act1 transparent source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.11</td>
<td>FBA A act2 transparent source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.12</td>
<td>FBA A debug mode</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.13</td>
<td>FBA A control word</td>
<td>Data</td>
<td>00000000h … FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.14</td>
<td>FBA A reference 1</td>
<td>Real</td>
<td>-2147483648 … 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.15</td>
<td>FBA A reference 2</td>
<td>Real</td>
<td>-2147483648 … 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.16</td>
<td>FBA A status word</td>
<td>Data</td>
<td>00000000h … FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Additional parameter data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.17</td>
<td>FBA A actual value 1</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.18</td>
<td>FBA A actual value 2</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.21</td>
<td>FBA A timelevel sel</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.26</td>
<td>FBA A comm supervision force</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.31</td>
<td>FBA B enable</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.32</td>
<td>FBA B comm loss func</td>
<td>Real</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.33</td>
<td>FBA B comm loss timeout</td>
<td>List</td>
<td>0.3 ... 6553.5s</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>50.34</td>
<td>FBA B ref1 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.35</td>
<td>FBA B ref2 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.37</td>
<td>FBA B actual 1 type</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.38</td>
<td>FBA B actual 2 type</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.39</td>
<td>FBA B SW transparent source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.40</td>
<td>FBA B act1 transparent source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.41</td>
<td>FBA B act2 transparent source</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.42</td>
<td>FBA B debug mode</td>
<td>Data</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.43</td>
<td>FBA B control word</td>
<td>Real</td>
<td>00000000h ... FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.44</td>
<td>FBA B reference 1</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.45</td>
<td>FBA B reference 2</td>
<td>Data</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.46</td>
<td>FBA B status word</td>
<td>Real</td>
<td>00000000h ... FFFFFFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.47</td>
<td>FBA B actual value 1</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.48</td>
<td>FBA B actual value 2</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.51</td>
<td>FBA B timelevel sel</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>50.56</td>
<td>FBA B comm supervision force</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

51 FBA A settings

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.01</td>
<td>FBA A type</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.02</td>
<td>FBA A Par2</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>51.26</td>
<td>FBA A Par26</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.27</td>
<td>FBA A par refresh</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.28</td>
<td>FBA A par table ver</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.29</td>
<td>FBA A drive type code</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.30</td>
<td>FBA A mapping file ver</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.31</td>
<td>D2FBA A comm status</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.32</td>
<td>FBA A comm SW ver</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>51.33</td>
<td>FBA A appl SW ver</td>
<td>Data</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--------------------</td>
<td>--------</td>
<td>--------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>52</td>
<td>FBA A data in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52.01</td>
<td>FBA A data in1</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>52.12</td>
<td>FBA A data in12</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>53</td>
<td>FBA A data out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53.01</td>
<td>FBA A data out1</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>53.12</td>
<td>FBA A data out12</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>54</td>
<td>FBA B settings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.01</td>
<td>FBA B type</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54.02</td>
<td>FBA B Par2</td>
<td>UINT16</td>
<td>0…65535</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>54.26</td>
<td>FBA B Par26</td>
<td>UINT16</td>
<td>0…65535</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54.27</td>
<td>FBA B par refresh</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54.28</td>
<td>FBA B par table ver</td>
<td>UINT16</td>
<td>0…65535</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54.29</td>
<td>FBA B drive type code</td>
<td>UINT16</td>
<td>0…65535</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54.30</td>
<td>FBA B mapping file ver</td>
<td>UINT16</td>
<td>0…65535</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54.31</td>
<td>D2FBA B comm status</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54.32</td>
<td>FBA B comm SW ver</td>
<td>UINT16</td>
<td>0…65535</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>54.33</td>
<td>FBA B appl SW ver</td>
<td>UINT16</td>
<td>0…65535</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>FBA B data in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.01</td>
<td>FBA B data in1</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>55.12</td>
<td>FBA B data in12</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>56</td>
<td>FBA B data out</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56.01</td>
<td>FBA B data out1</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>56.12</td>
<td>FBA B data out12</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58</td>
<td>Embedded fieldbus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.01</td>
<td>Protocol enable</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.02</td>
<td>Protocol ID</td>
<td>Real</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.03</td>
<td>Node address</td>
<td>Real</td>
<td>0…255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.04</td>
<td>Baud rate</td>
<td>List</td>
<td>2…7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.05</td>
<td>Parity</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.06</td>
<td>Communication control</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.07</td>
<td>Communication diagnostics</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.08</td>
<td>Received packets</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.09</td>
<td>Transmitted packets</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.10</td>
<td>All packets</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.11</td>
<td>UART errors</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.12</td>
<td>CRC errors</td>
<td>Real</td>
<td>0…4294967295</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Additional parameter data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.14</td>
<td>Communication loss action</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.15</td>
<td>Communication loss mode</td>
<td>List</td>
<td>1…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.16</td>
<td>Communication loss time</td>
<td>Real</td>
<td>0.0 … 6000.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>58.17</td>
<td>Transmit delay</td>
<td>Real</td>
<td>0…65535</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>58.18</td>
<td>EFB control word</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.19</td>
<td>EFB status word</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.25</td>
<td>Control profile</td>
<td>List</td>
<td>0, 2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.26</td>
<td>EFB ref1 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.27</td>
<td>EFB ref2 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.28</td>
<td>EFB act1 type</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.29</td>
<td>EFB act2 type</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.30</td>
<td>EFB status word transparent source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.31</td>
<td>EFB act1 transparent source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.32</td>
<td>EFB act2 transparent source</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.33</td>
<td>Addressing mode</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.34</td>
<td>Word order</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.36</td>
<td>EFB comm supervision force</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.101</td>
<td>Data I/O 1</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.102</td>
<td>Data I/O 2</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.103</td>
<td>Data I/O 3</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.104</td>
<td>Data I/O 4</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.105</td>
<td>Data I/O 5</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.106</td>
<td>Data I/O 6</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>58.107</td>
<td>Data I/O 7</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>58.124</td>
<td>Data I/O 24</td>
<td>Analog src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

60 DDCS communication

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.01</td>
<td>M/F communication port</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.02</td>
<td>M/F node address</td>
<td>Real</td>
<td>1…254</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.03</td>
<td>M/F mode</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.05</td>
<td>M/F HW connection</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.07</td>
<td>M/F link control</td>
<td>Real</td>
<td>1…15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.08</td>
<td>M/F comm loss timeout</td>
<td>Real</td>
<td>0…65535</td>
<td>ms</td>
<td>-</td>
</tr>
<tr>
<td>60.09</td>
<td>M/F comm loss function</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
<td>------------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>60.10</td>
<td>M/F ref1 type</td>
<td>List</td>
<td>0...5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.11</td>
<td>M/F ref2 type</td>
<td>List</td>
<td>0...5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.12</td>
<td>M/F act1 type</td>
<td>List</td>
<td>0...5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.13</td>
<td>M/F act2 type</td>
<td>List</td>
<td>0...5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.14</td>
<td>M/F follower selection</td>
<td>Real</td>
<td>0…16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.15</td>
<td>Force master</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.16</td>
<td>Force follower</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.17</td>
<td>Follower fault action</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.18</td>
<td>Follower enable</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.19</td>
<td>M/F comm supervision sel 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.20</td>
<td>M/F comm supervision sel 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.23</td>
<td>M/F status supervision sel 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.24</td>
<td>M/F status supervision sel 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.27</td>
<td>M/F status supv mode sel 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.28</td>
<td>M/F status supv mode sel 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.31</td>
<td>M/F wake up delay</td>
<td>Real</td>
<td>0.0 ... 180.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
<tr>
<td>60.32</td>
<td>M/F comm supervision force</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.41</td>
<td>Extension adapter com port</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.50</td>
<td>DDCS controller drive type</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.51</td>
<td>DDCS controller comm port</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.52</td>
<td>DDCS controller node address</td>
<td>Real</td>
<td>1…254</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.55</td>
<td>DDCS controller HW connection</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.56</td>
<td>DDCS controller baud rate</td>
<td>List</td>
<td>1, 2, 4, 8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.57</td>
<td>DDCS controller link control</td>
<td>Real</td>
<td>1…15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.58</td>
<td>DDCS controller comm loss time</td>
<td>Real</td>
<td>0…60000</td>
<td>ms</td>
<td>-</td>
</tr>
<tr>
<td>60.59</td>
<td>DDCS controller comm loss function</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.60</td>
<td>DDCS controller ref1 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.61</td>
<td>DDCS controller ref2 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.62</td>
<td>DDCS controller act1 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.63</td>
<td>DDCS controller act2 type</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.64</td>
<td>Mailbox dataset selection</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.65</td>
<td>DDCS controller comm supervision force</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(파라미터 60.71…60.79은 95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.71</td>
<td>INU-LSU communication port</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>60.77</td>
<td>INU-LSU link control</td>
<td>Real</td>
<td>1…15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60.78</td>
<td>INU-LSU comm loss timeout</td>
<td>Real</td>
<td>0…65535</td>
<td>ms</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>60.79</td>
<td>INU-LSU comm loss function</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

61 D2D and DDCS transmit data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.01</td>
<td>M/F data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.02</td>
<td>M/F data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.03</td>
<td>M/F data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.25</td>
<td>M/F data 1 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.26</td>
<td>M/F data 2 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.27</td>
<td>M/F data 3 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.45</td>
<td>Data set 2 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.46</td>
<td>Data set 2 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.47</td>
<td>Data set 2 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.48</td>
<td>Data set 4 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.49</td>
<td>Data set 4 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.50</td>
<td>Data set 4 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.51</td>
<td>Data set 11 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.52</td>
<td>Data set 11 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.53</td>
<td>Data set 11 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.54</td>
<td>Data set 13 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.55</td>
<td>Data set 13 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.56</td>
<td>Data set 13 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.57</td>
<td>Data set 15 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.58</td>
<td>Data set 15 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.59</td>
<td>Data set 15 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.60</td>
<td>Data set 17 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.61</td>
<td>Data set 17 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.62</td>
<td>Data set 17 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.63</td>
<td>Data set 19 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.64</td>
<td>Data set 19 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.65</td>
<td>Data set 19 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.66</td>
<td>Data set 21 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.67</td>
<td>Data set 21 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.68</td>
<td>Data set 21 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.69</td>
<td>Data set 23 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.70</td>
<td>Data set 23 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.71</td>
<td>Data set 23 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.72</td>
<td>Data set 25 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.73</td>
<td>Data set 25 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.74</td>
<td>Data set 25 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.95</td>
<td>Data set 2 data 1 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.96</td>
<td>Data set 2 data 2 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>61.97</td>
<td>Data set 2 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.98</td>
<td>Data set 4 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.99</td>
<td>Data set 4 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.100</td>
<td>Data set 4 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.101</td>
<td>Data set 11 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.102</td>
<td>Data set 11 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.103</td>
<td>Data set 11 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.104</td>
<td>Data set 13 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.105</td>
<td>Data set 13 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.106</td>
<td>Data set 13 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.107</td>
<td>Data set 15 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.108</td>
<td>Data set 15 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.109</td>
<td>Data set 15 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.110</td>
<td>Data set 17 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.111</td>
<td>Data set 17 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.112</td>
<td>Data set 17 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.113</td>
<td>Data set 19 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.114</td>
<td>Data set 19 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.115</td>
<td>Data set 19 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.116</td>
<td>Data set 21 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.117</td>
<td>Data set 21 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.118</td>
<td>Data set 21 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.119</td>
<td>Data set 23 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.120</td>
<td>Data set 23 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.121</td>
<td>Data set 23 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.122</td>
<td>Data set 25 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.123</td>
<td>Data set 25 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.124</td>
<td>Data set 25 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(파라미터 61.151~61.203은 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
</tr>
</thead>
<tbody>
<tr>
<td>61.151</td>
<td>INU-LSU data set 10 data 1 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.152</td>
<td>INU-LSU data set 10 data 2 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.153</td>
<td>INU-LSU data set 10 data 3 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>61.201</td>
<td>INU-LSU data set 10 data 1 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
</tr>
<tr>
<td>61.202</td>
<td>INU-LSU data set 10 data 2 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
</tr>
<tr>
<td>61.203</td>
<td>INU-LSU data set 10 data 3 value</td>
<td>Real</td>
<td>0~65535</td>
<td>-</td>
</tr>
</tbody>
</table>

62 D2D and DDCS receive data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.01</td>
<td>M/F data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------</td>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>62.02</td>
<td>M/F data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.03</td>
<td>M/F data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.04</td>
<td>Follower node 2 data 1 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.05</td>
<td>Follower node 2 data 2 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.06</td>
<td>Follower node 2 data 3 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.07</td>
<td>Follower node 3 data 1 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.08</td>
<td>Follower node 3 data 2 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.09</td>
<td>Follower node 3 data 3 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.10</td>
<td>Follower node 4 data 1 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.11</td>
<td>Follower node 4 data 2 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.12</td>
<td>Follower node 4 data 3 sel</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.25</td>
<td>MF data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.26</td>
<td>MF data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.27</td>
<td>MF data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.28</td>
<td>Follower node 2 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.29</td>
<td>Follower node 2 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.30</td>
<td>Follower node 2 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.31</td>
<td>Follower node 3 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.32</td>
<td>Follower node 3 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.33</td>
<td>Follower node 3 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.34</td>
<td>Follower node 4 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.35</td>
<td>Follower node 4 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.36</td>
<td>Follower node 4 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.37</td>
<td>M/F communication status 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>62.38</td>
<td>M/F communication status 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>62.41</td>
<td>M/F follower ready status 1</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>62.42</td>
<td>M/F follower ready status 2</td>
<td>PB</td>
<td>0000h…FFFFh</td>
<td>-</td>
</tr>
<tr>
<td>62.45</td>
<td>Data set 1 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.46</td>
<td>Data set 1 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.47</td>
<td>Data set 1 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.48</td>
<td>Data set 3 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.49</td>
<td>Data set 3 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.50</td>
<td>Data set 3 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.51</td>
<td>Data set 10 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.52</td>
<td>Data set 10 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.53</td>
<td>Data set 10 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.54</td>
<td>Data set 12 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.55</td>
<td>Data set 12 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.56</td>
<td>Data set 12 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.57</td>
<td>Data set 14 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.58</td>
<td>Data set 14 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>62.59</td>
<td>Data set 14 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.60</td>
<td>Data set 16 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.61</td>
<td>Data set 16 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.62</td>
<td>Data set 16 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.63</td>
<td>Data set 18 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.64</td>
<td>Data set 18 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.65</td>
<td>Data set 18 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.66</td>
<td>Data set 20 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.67</td>
<td>Data set 20 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.68</td>
<td>Data set 20 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.69</td>
<td>Data set 22 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.70</td>
<td>Data set 22 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.71</td>
<td>Data set 22 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.72</td>
<td>Data set 24 data 1 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.73</td>
<td>Data set 24 data 2 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.74</td>
<td>Data set 24 data 3 selection</td>
<td>List</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.95</td>
<td>Data set 1 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.96</td>
<td>Data set 1 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.97</td>
<td>Data set 1 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.98</td>
<td>Data set 3 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.99</td>
<td>Data set 3 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.100</td>
<td>Data set 3 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.101</td>
<td>Data set 10 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.102</td>
<td>Data set 10 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.103</td>
<td>Data set 10 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.104</td>
<td>Data set 12 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.105</td>
<td>Data set 12 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.106</td>
<td>Data set 12 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.107</td>
<td>Data set 14 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.108</td>
<td>Data set 14 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.109</td>
<td>Data set 14 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.110</td>
<td>Data set 16 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.111</td>
<td>Data set 16 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.112</td>
<td>Data set 16 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.113</td>
<td>Data set 18 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.114</td>
<td>Data set 18 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.115</td>
<td>Data set 18 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.116</td>
<td>Data set 20 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.117</td>
<td>Data set 20 data 2 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.118</td>
<td>Data set 20 data 3 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>62.119</td>
<td>Data set 22 data 1 value</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>62.120</td>
<td>Data set 22 data 2 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
</tr>
<tr>
<td>62.121</td>
<td>Data set 22 data 3 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
</tr>
<tr>
<td>62.122</td>
<td>Data set 24 data 1 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
</tr>
<tr>
<td>62.123</td>
<td>Data set 24 data 2 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
</tr>
<tr>
<td>62.124</td>
<td>Data set 24 data 3 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
</tr>
</tbody>
</table>

(파라미터 62.151~62.203은 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>62.151</td>
<td>INU-LSU data set 11 data 1 sel</td>
<td>Real</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.152</td>
<td>INU-LSU data set 11 data 2 sel</td>
<td>Real</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.153</td>
<td>INU-LSU data set 11 data 3 sel</td>
<td>Real</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.201</td>
<td>INU-LSU data set 11 data 1 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.202</td>
<td>INU-LSU data set 11 data 2 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>62.203</td>
<td>INU-LSU data set 11 data 3 value</td>
<td>Real</td>
<td>0...65535</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

90 Feedback selection

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.01</td>
<td>Motor speed for control</td>
<td>Real</td>
<td>-32768.00 ... 32767.00 rpm</td>
<td>100 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>90.02</td>
<td>Motor position</td>
<td>Real</td>
<td>0.000000000 ... 1.000000000 rev</td>
<td>1000000000 = 1 rev</td>
<td></td>
</tr>
<tr>
<td>90.03</td>
<td>Load speed</td>
<td>Real</td>
<td>-32768.00 ... 32767.00 rpm</td>
<td>100 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>90.04</td>
<td>Load position</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.05</td>
<td>Load position scaled</td>
<td>Real</td>
<td>-2147483.648 ... 2147483.647</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>90.06</td>
<td>Motor position scaled</td>
<td>Real</td>
<td>-2147483.648 ... 2147483.647</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
<tr>
<td>90.07</td>
<td>Load position scaled int</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.10</td>
<td>Encoder 1 speed</td>
<td>Real</td>
<td>-32768.00 ... 32767.00 rpm</td>
<td>100 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>90.11</td>
<td>Encoder 1 position</td>
<td>Real</td>
<td>0.000000000 ... 1.000000000 rev</td>
<td>1000000000 = 1 rev</td>
<td></td>
</tr>
<tr>
<td>90.12</td>
<td>Encoder 1 multturn revolutions</td>
<td>Real</td>
<td>0…16777215</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.13</td>
<td>Encoder 1 revolution extension</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.14</td>
<td>Encoder 1 position raw</td>
<td>Real</td>
<td>0…16777215</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.15</td>
<td>Encoder 1 revolutions raw</td>
<td>Real</td>
<td>0…16777215</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.20</td>
<td>Encoder 2 speed</td>
<td>Real</td>
<td>-32768.00 ... 32767.00 rpm</td>
<td>100 = 1 rpm</td>
<td></td>
</tr>
<tr>
<td>90.21</td>
<td>Encoder 2 position</td>
<td>Real</td>
<td>0.000000000 ... 1.000000000 rev</td>
<td>1000000000 = 1 rev</td>
<td></td>
</tr>
<tr>
<td>90.22</td>
<td>Encoder 2 multturn revolutions</td>
<td>Real</td>
<td>0…16777215</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.23</td>
<td>Encoder 2 revolution extension</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.24</td>
<td>Encoder 2 position raw</td>
<td>Real</td>
<td>0…16777215</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.25</td>
<td>Encoder 2 revolutions raw</td>
<td>Real</td>
<td>0…16777215</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------------------------------</td>
<td>-------</td>
<td>--</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>90.26</td>
<td>Motor revolution extension</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.27</td>
<td>Load revolution extension</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.35</td>
<td>Pos counter status</td>
<td>PB</td>
<td>000000b...111111b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.38</td>
<td>Pos counter decimals</td>
<td>List</td>
<td>0...9</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.41</td>
<td>Motor feedback selection</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.42</td>
<td>Motor speed filter time</td>
<td>Real</td>
<td>0...10000 ms</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>90.43</td>
<td>Motor gear numerator</td>
<td>Real</td>
<td>-32768...32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.44</td>
<td>Motor gear denominator</td>
<td>Real</td>
<td>-32768...32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.45</td>
<td>Motor feedback fault</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.46</td>
<td>Force open loop</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.48</td>
<td>Motor position axis mode</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.49</td>
<td>Motor position resolution</td>
<td>Real</td>
<td>0...31</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.51</td>
<td>Load feedback selection</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.52</td>
<td>Load speed filter time</td>
<td>Real</td>
<td>0...10000 ms</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>90.53</td>
<td>Load gear numerator</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.54</td>
<td>Load gear denominator</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.55</td>
<td>Load feedback fault</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.56</td>
<td>Load position offset</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>rev</td>
<td>1 = 1 rev</td>
</tr>
<tr>
<td>90.57</td>
<td>Load position resolution</td>
<td>Real</td>
<td>0...31</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.58</td>
<td>Pos counter init value int</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.59</td>
<td>Pos counter init value int source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.60</td>
<td>Pos counter error and boot action</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.61</td>
<td>Gear numerator</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.62</td>
<td>Gear denominator</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.63</td>
<td>Feed constant numerator</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.64</td>
<td>Feed constant denominator</td>
<td>Real</td>
<td>-2147483648 ... 2147483647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.65</td>
<td>Pos counter init value</td>
<td>Real</td>
<td>-2147483.648 ... 2147483.647</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.66</td>
<td>Pos counter init value source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.67</td>
<td>Pos counter init cmd source</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>90.68</td>
<td>Disable pos counter initialization</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
91 Encoder module settings

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.69</td>
<td>Reset pos counter init ready</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.01</td>
<td>FEN DI status</td>
<td>PB</td>
<td>000000b...11111b</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.02</td>
<td>Module 1 status</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.03</td>
<td>Module 2 status</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.04</td>
<td>Module 1 temperature</td>
<td>Real</td>
<td>0…1000</td>
<td>ºC, ºF or ohm</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>91.06</td>
<td>Module 2 temperature</td>
<td>Real</td>
<td>0…1000</td>
<td>ºC, ºF or ohm</td>
<td>1 = 1 unit</td>
</tr>
<tr>
<td>91.10</td>
<td>Encoder parameter refresh</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.11</td>
<td>Module 1 type</td>
<td>List</td>
<td>0…4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.12</td>
<td>Module 1 location</td>
<td>Real</td>
<td>1…254</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.13</td>
<td>Module 2 type</td>
<td>List</td>
<td>0…4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.14</td>
<td>Module 2 location</td>
<td>Real</td>
<td>1…254</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.21</td>
<td>Module 1 temp sensor type</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.22</td>
<td>Module 1 temp filter time</td>
<td>Real</td>
<td>0…1000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>91.24</td>
<td>Module 2 temp sensor type</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.25</td>
<td>Module 2 temp filter time</td>
<td>Real</td>
<td>0…1000</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>91.31</td>
<td>Module 1 TTL output source</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.32</td>
<td>Module 1 emulation pulses/rev</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.33</td>
<td>Module 1 emulated Z-pulse offset</td>
<td>Real</td>
<td>0.00000 ... 1.00000</td>
<td>rev</td>
<td>100000 = 1 rev</td>
</tr>
<tr>
<td>91.41</td>
<td>Module 2 TTL output source</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.42</td>
<td>Module 2 emulation pulses/rev</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>91.43</td>
<td>Module 2 emulated Z-pulse offset</td>
<td>Real</td>
<td>0.00000 ... 1.00000</td>
<td>rev</td>
<td>100000 = 1 rev</td>
</tr>
</tbody>
</table>

92 Encoder 1 configuration

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.01</td>
<td>Encoder 1 type</td>
<td>List</td>
<td>0…7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.02</td>
<td>Encoder 1 source</td>
<td>List</td>
<td>1…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

TTL, TTL+ 및 HTL 엔코더가 선택된 경우에 이 그룹의 파라미터는 다르게 표시됩니다.

(파라미터 92.17, 92.23...92.25는 엔코더 타입 선택에 따라 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.10</td>
<td>Pulses/revolution</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.11</td>
<td>Pulse encoder type</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.12</td>
<td>Speed calculation mode</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.13</td>
<td>Position estimation enable</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.14</td>
<td>Speed estimation enable</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.15</td>
<td>Transient filter</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.17</td>
<td>Accepted pulse freq of encoder 1</td>
<td>Real</td>
<td>0…300</td>
<td>kHz</td>
<td>1 = 1 kHz</td>
</tr>
<tr>
<td>92.21</td>
<td>Encoder cable fault mode</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>92.23</td>
<td>Maximum pulse waiting time</td>
<td>Real</td>
<td>1…200</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>92.24</td>
<td>Pulse edge filtering</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.25</td>
<td>Pulse overfrequency function</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

아래 파라미터는 절대치형 코더가 선택된 경우에 표시됩니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.10</td>
<td>Sine/cosine number</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.11</td>
<td>Absolute position source</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.12</td>
<td>Zero pulse enable</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.13</td>
<td>Position data width</td>
<td>Real</td>
<td>0…32</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.14</td>
<td>Revolution data width</td>
<td>Real</td>
<td>0…32</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.30</td>
<td>Serial link mode</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.31</td>
<td>EnDat max calculation time</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.32</td>
<td>SSI cycle time</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.33</td>
<td>SSI clock cycles</td>
<td>Real</td>
<td>2…127</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.34</td>
<td>SSI position msb</td>
<td>Real</td>
<td>1…126</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.35</td>
<td>SSI revolution msb</td>
<td>Real</td>
<td>1…126</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.36</td>
<td>SSI data format</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.37</td>
<td>SSI baud rate</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.40</td>
<td>SSI zero phase</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.45</td>
<td>Hiperface parity</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.46</td>
<td>Hiperface baud rate</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>92.47</td>
<td>Hiperface node address</td>
<td>Real</td>
<td>0…255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

아래 파라미터는 레즈버가 선택된 경우에 표시됩니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>92.10</td>
<td>Excitation signal frequency</td>
<td>Real</td>
<td>1…20</td>
<td>kHz</td>
<td>1 = 1 kHz</td>
</tr>
<tr>
<td>92.11</td>
<td>Excitation signal amplitude</td>
<td>Real</td>
<td>4.0…12.0</td>
<td>V</td>
<td>10 = 1 V</td>
</tr>
<tr>
<td>92.12</td>
<td>Resolver polepairs</td>
<td>List</td>
<td>1…32</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

93 Encoder 2 configuration

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.01</td>
<td>Encoder 2 type</td>
<td>List</td>
<td>0…7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.02</td>
<td>Encoder 2 source</td>
<td>List</td>
<td>1…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

TTL, TTL+ 및 HTL 코더가 선택된 경우에 이 그룹의 파라미터는 다르게 표시됩니다.

(파라미터 93.17, 93.23…93.25는 코더 타입 선택에 따라 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.10</td>
<td>Pulses/rev</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.11</td>
<td>Pulse encoder type</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.12</td>
<td>Speed calculation mode</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.13</td>
<td>Position estimation enable</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.14</td>
<td>Speed estimation enable</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.15</td>
<td>Transient filter</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.17</td>
<td>Accepted pulse freq of encoder 2</td>
<td>Real</td>
<td>0…300</td>
<td>kHz</td>
<td>1 = 1 kHz</td>
</tr>
<tr>
<td>93.21</td>
<td>Encoder cable fault mode</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.23</td>
<td>Maximum pulse waiting time</td>
<td>Real</td>
<td>1…200</td>
<td>ms</td>
<td>1 = 1 ms</td>
</tr>
<tr>
<td>93.24</td>
<td>Pulse edge filtering</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
482 Additional parameter data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.25</td>
<td>Pulse overfrequency function</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

아래 파라미터는 절대치형 엔코더가 선택된 경우에 표시됩니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.10</td>
<td>Sine/cosine number</td>
<td>Real</td>
<td>0…65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.11</td>
<td>Absolute position source</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.12</td>
<td>Zero pulse enable</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.13</td>
<td>Position data width</td>
<td>Real</td>
<td>0…32</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.14</td>
<td>Revolution data width</td>
<td>Real</td>
<td>0…32</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.30</td>
<td>Serial link mode</td>
<td>List</td>
<td>0…2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.31</td>
<td>EnDat calc time</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.32</td>
<td>SSI cycle time</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.33</td>
<td>SSI clock cycles</td>
<td>Real</td>
<td>2…127</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.34</td>
<td>SSI position msb</td>
<td>Real</td>
<td>1…126</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.35</td>
<td>SSI revolution msb</td>
<td>Real</td>
<td>1…126</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.36</td>
<td>SSI data format</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.37</td>
<td>SSI baud rate</td>
<td>List</td>
<td>0…5</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.40</td>
<td>SSI zero phase</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.45</td>
<td>Hiperface parity</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.46</td>
<td>Hiperface baud rate</td>
<td>List</td>
<td>0…3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>93.47</td>
<td>Hiperface node address</td>
<td>Real</td>
<td>0…255</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

아래 파라미터는 레줄버가 선택된 경우에 표시됩니다.

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>93.10</td>
<td>Excitation signal frequency</td>
<td>Real</td>
<td>1…20</td>
<td>kHz</td>
<td>1 = 1 kHz</td>
</tr>
<tr>
<td>93.11</td>
<td>Excitation signal amplitude</td>
<td>Real</td>
<td>4.0 … 12.0</td>
<td>V</td>
<td>10 = 1 V</td>
</tr>
<tr>
<td>93.12</td>
<td>Resolver polepairs</td>
<td>List</td>
<td>1…32</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

94 LSU control

(이 파라미터 그룹은 95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.01</td>
<td>LSU control</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>94.02</td>
<td>LSU panel communication</td>
<td>List</td>
<td>0…1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>94.10</td>
<td>LSU max charging time</td>
<td>Real</td>
<td>0…65535</td>
<td>s</td>
<td>1 = 1 s</td>
</tr>
<tr>
<td>94.11</td>
<td>LSU stop delay</td>
<td>Real</td>
<td>0.0 … 3600.0</td>
<td>s</td>
<td>10 = 1 s</td>
</tr>
</tbody>
</table>

(파라미터 94.20…94.32은 95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.20</td>
<td>DC voltage reference</td>
<td>Real</td>
<td>0.0 … 2000.0</td>
<td>V</td>
<td>10 = 1 V</td>
</tr>
<tr>
<td>94.21</td>
<td>DC voltage ref source</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>94.22</td>
<td>User DC voltage reference</td>
<td>Real</td>
<td>0.0 … 2000.0</td>
<td>V</td>
<td>10 = 1 V</td>
</tr>
<tr>
<td>94.30</td>
<td>Reactive power reference</td>
<td>Real</td>
<td>-3276.8 … 3276.7</td>
<td>kvar</td>
<td>10 = 1 kvar</td>
</tr>
<tr>
<td>94.31</td>
<td>Reactive power ref source</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>94.32</td>
<td>User reactive power reference</td>
<td>Real</td>
<td>-3276.8 … 3276.7</td>
<td>kvar</td>
<td>10 = 1 kvar</td>
</tr>
</tbody>
</table>

(파라미터 94.40 및 94.41은 95.20에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>94.40</td>
<td>Power mot limit on net loss</td>
<td>Real</td>
<td>0.00 … 600.00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>94.41</td>
<td>Power gen limit on net loss</td>
<td>Real</td>
<td>-600.00 … 0.00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
</tbody>
</table>

95 HW configuration

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.01</td>
<td>Supply voltage</td>
<td>List</td>
<td>0…6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>
Additional parameter data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>95.02</td>
<td>Adaptive voltage limits</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.04</td>
<td>Control board supply</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.08</td>
<td>DC switch monitoring</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.09</td>
<td>Switch fuse controller</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.13</td>
<td>Reduced run mode</td>
<td>List</td>
<td>0...65535</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.14</td>
<td>Connected modules</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.15</td>
<td>Special HW settings</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.20</td>
<td>HW options word 1</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.21</td>
<td>HW options word 2</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.30</td>
<td>Parallel type filter</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.31</td>
<td>Parallel connection rating id</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>95.40</td>
<td>Transformation ratio</td>
<td>Real</td>
<td>0.000 ... 100.000</td>
<td>-</td>
<td>1000 = 1</td>
</tr>
</tbody>
</table>

96 System

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.01</td>
<td>Language</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.02</td>
<td>Pass code</td>
<td>Data</td>
<td>0...99999999</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.03</td>
<td>Access levels active</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.04</td>
<td>Macro select</td>
<td>List</td>
<td>0...6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.05</td>
<td>Macro active</td>
<td>List</td>
<td>1...6</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.06</td>
<td>Parameter restore</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.07</td>
<td>Parameter save manually</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.08</td>
<td>Control board boot</td>
<td>Real</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.09</td>
<td>FSO reboot</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.10</td>
<td>User set status</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.11</td>
<td>User set save/load</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.12</td>
<td>User set I/O mode in1</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.13</td>
<td>User set I/O mode in2</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.16</td>
<td>Unit selection</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.20</td>
<td>Time sync primary source</td>
<td>List</td>
<td>0...9</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.23</td>
<td>M/F and D2D clock synchronization</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.24</td>
<td>Full days since 1st Jan 1980</td>
<td>Real</td>
<td>1...59999</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.25</td>
<td>Time in minutes within 24 h</td>
<td>Real</td>
<td>0...1439</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.26</td>
<td>Time in ms within one minute</td>
<td>Real</td>
<td>0...59999</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.29</td>
<td>Time sync source status</td>
<td>PB</td>
<td>0000h...FFFFh</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.31</td>
<td>Drive ID number</td>
<td>Real</td>
<td>0...32767</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.39</td>
<td>Power up event logging</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>96.53</td>
<td>Actual checksum</td>
<td>Real</td>
<td>00000000h...FFFFFFFH</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.54</td>
<td>Checksum action</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.55</td>
<td>Checksum control word</td>
<td>PB</td>
<td>000h...FFFFH</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.56</td>
<td>Approved checksum 1</td>
<td>Real</td>
<td>00000000h...FFFFFFFH</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.57</td>
<td>Approved checksum 2</td>
<td>Real</td>
<td>00000000h...FFFFFFFH</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.58</td>
<td>Approved checksum 3</td>
<td>Real</td>
<td>00000000h...FFFFFFFH</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.59</td>
<td>Approved checksum 4</td>
<td>Real</td>
<td>00000000h...FFFFFFFH</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.61</td>
<td>User data logger status word</td>
<td>PB</td>
<td>000h...FFFFH</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.63</td>
<td>User data logger trigger</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.64</td>
<td>User data logger start</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96.65</td>
<td>Factory data logger time level</td>
<td>List</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.70</td>
<td>Disable adaptive program</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(파라미터 96.100...96.102는 파라미터 96.02에서 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>96.100</td>
<td>Change user pass code</td>
<td>Data</td>
<td>10000000...99999999</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.101</td>
<td>Confirm user pass code</td>
<td>Data</td>
<td>10000000...99999999</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>96.102</td>
<td>User lock functionality</td>
<td>PB</td>
<td>000h...FFFFH</td>
<td>-</td>
<td>1 = 1</td>
</tr>
</tbody>
</table>

(파라미터 96.108 은 95.20 에서 IGBT 서플라이 유닛 제어를 허용한 경우에 표시됨.)

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>97.01</td>
<td>Switching frequency reference</td>
<td>Real</td>
<td>0.000 ... 24.000kHz</td>
<td>kHz</td>
<td>1000 = 1%</td>
</tr>
<tr>
<td>97.02</td>
<td>Minimum switching frequency</td>
<td>Real</td>
<td>0.000 ... 24.000kHz</td>
<td>kHz</td>
<td>1000 = 1%</td>
</tr>
<tr>
<td>97.03</td>
<td>Slip gain</td>
<td>Real</td>
<td>0...200</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>97.04</td>
<td>Voltage reserve</td>
<td>Real</td>
<td>-4...50</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>97.05</td>
<td>Flux braking</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.06</td>
<td>Flux reference select</td>
<td>Binary src</td>
<td>-</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.07</td>
<td>User flux reference</td>
<td>Real</td>
<td>0.00 ... 200.00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>97.08</td>
<td>Optimizer minimum torque</td>
<td>Real</td>
<td>0.0 ... 16000.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>97.09</td>
<td>Switching freq mode</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.10</td>
<td>Signal injection</td>
<td>List</td>
<td>0...4</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.11</td>
<td>TR tuning</td>
<td>Real</td>
<td>25...400</td>
<td>%</td>
<td>1 = 1%</td>
</tr>
<tr>
<td>97.12</td>
<td>IR comp step-up frequency</td>
<td>Real</td>
<td>0.0 ... 50.0Hz</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>97.13</td>
<td>IR compensation</td>
<td>Real</td>
<td>0.00 ... 50.00</td>
<td>%</td>
<td>100 = 1%</td>
</tr>
<tr>
<td>97.15</td>
<td>Motor model temperature adaptation</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.18</td>
<td>Hexagonal field weakening</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>97.19</td>
<td>Hexagonal field weakening point</td>
<td>Real</td>
<td>0.0 ... 500.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>97.32</td>
<td>Motor torque unfiltered</td>
<td>Real</td>
<td>-1600.0 ... 1600.0</td>
<td>%</td>
<td>10 = 1%</td>
</tr>
<tr>
<td>97.33</td>
<td>Speed estimate filter time</td>
<td>Real</td>
<td>0.00 ... 100.00</td>
<td>ms</td>
<td>100 = 1 ms</td>
</tr>
<tr>
<td>번호</td>
<td>이름</td>
<td>타입</td>
<td>범위</td>
<td>단위</td>
<td>FbEq32</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>98.01</td>
<td>User motor model mode</td>
<td>List</td>
<td>0...3</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>98.02</td>
<td>Rs user</td>
<td>Real</td>
<td>0.0000 ... 0.50000</td>
<td>p.u.</td>
<td>100000 = 1 p.u.</td>
</tr>
<tr>
<td>98.03</td>
<td>Rr user</td>
<td>Real</td>
<td>0.0000 ... 0.50000</td>
<td>p.u.</td>
<td>100000 = 1 p.u.</td>
</tr>
<tr>
<td>98.04</td>
<td>Lm user</td>
<td>Real</td>
<td>0.0000 ... 10.00000</td>
<td>p.u.</td>
<td>100000 = 1 p.u.</td>
</tr>
<tr>
<td>98.05</td>
<td>SigmaL user</td>
<td>Real</td>
<td>0.00000 ... 1.00000</td>
<td>p.u.</td>
<td>100000 = 1 p.u.</td>
</tr>
<tr>
<td>98.06</td>
<td>Ld user</td>
<td>Real</td>
<td>0.0000 ... 10.00000</td>
<td>p.u.</td>
<td>100000 = 1 p.u.</td>
</tr>
<tr>
<td>98.07</td>
<td>Lq user</td>
<td>Real</td>
<td>0.0000 ... 10.00000</td>
<td>p.u.</td>
<td>100000 = 1 p.u.</td>
</tr>
<tr>
<td>98.08</td>
<td>PM flux user</td>
<td>Real</td>
<td>0.0000 ... 2.00000</td>
<td>p.u.</td>
<td>100000 = 1 p.u.</td>
</tr>
<tr>
<td>98.09</td>
<td>Rs user SI</td>
<td>Real</td>
<td>0.00000 ... 100.00000</td>
<td>ohm</td>
<td>100000 = 1 p.u.</td>
</tr>
<tr>
<td>98.10</td>
<td>Rr user SI</td>
<td>Real</td>
<td>0.00000 ... 100.00000</td>
<td>ohm</td>
<td>100000 = 1 p.u.</td>
</tr>
<tr>
<td>98.11</td>
<td>Lm user SI</td>
<td>Real</td>
<td>0.00 ... 100000.00</td>
<td>mH</td>
<td>100 = 1 mH</td>
</tr>
<tr>
<td>98.12</td>
<td>SigmaL user SI</td>
<td>Real</td>
<td>0.00 ... 100000.00</td>
<td>mH</td>
<td>100 = 1 mH</td>
</tr>
<tr>
<td>98.13</td>
<td>Ld user SI</td>
<td>Real</td>
<td>0.00 ... 100000.00</td>
<td>mH</td>
<td>100 = 1 mH</td>
</tr>
<tr>
<td>98.14</td>
<td>Lq user SI</td>
<td>Real</td>
<td>0.00 ... 100000.00</td>
<td>mH</td>
<td>100 = 1 mH</td>
</tr>
<tr>
<td>98.15</td>
<td>Position offset user</td>
<td>Real</td>
<td>0...360</td>
<td>degrees electrical</td>
<td>1 = 1 deg</td>
</tr>
</tbody>
</table>

99 Motor data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>99.03</td>
<td>Motor type</td>
<td>List</td>
<td>0...2</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.04</td>
<td>Motor control mode</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.06</td>
<td>Motor nominal current</td>
<td>Real</td>
<td>0.0 ... 6400.0</td>
<td>A</td>
<td>10 = 1 A</td>
</tr>
<tr>
<td>99.07</td>
<td>Motor nominal voltage</td>
<td>Real</td>
<td>0.0 ... 800.0</td>
<td>V</td>
<td>10 = 1 V</td>
</tr>
<tr>
<td>99.08</td>
<td>Motor nominal frequency</td>
<td>Real</td>
<td>0.00 ... 1000.00</td>
<td>Hz</td>
<td>10 = 1 Hz</td>
</tr>
<tr>
<td>99.09</td>
<td>Motor nominal speed</td>
<td>Real</td>
<td>0 ... 30000</td>
<td>rpm</td>
<td>1 = 1 rpm</td>
</tr>
<tr>
<td>99.10</td>
<td>Motor nominal power</td>
<td>Real</td>
<td>0.00 ... 10000.00 kW or 0.00 ... 13404.83 hp</td>
<td>kW or hp</td>
<td>100 = 1 unit</td>
</tr>
<tr>
<td>99.11</td>
<td>Motor nominal cos Φ</td>
<td>Real</td>
<td>0.00 ... 1.00</td>
<td>-</td>
<td>100 = 1</td>
</tr>
<tr>
<td>99.12</td>
<td>Motor nominal torque</td>
<td>Real</td>
<td>0.000 ... 4000000.000</td>
<td>N-m or lb-ft</td>
<td>1000 = 1 unit</td>
</tr>
<tr>
<td>99.13</td>
<td>ID run requested</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.14</td>
<td>Last ID run performed</td>
<td>List</td>
<td>0...7</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.15</td>
<td>Motor polepairs calculated</td>
<td>Real</td>
<td>0...1000</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.16</td>
<td>Motor phase order</td>
<td>List</td>
<td>0...1</td>
<td>-</td>
<td>1 = 1</td>
</tr>
<tr>
<td>99.18</td>
<td>Sine filter inductance</td>
<td>Real</td>
<td>0.000 ... 100000.000</td>
<td>mH</td>
<td>1000 = 1 mH</td>
</tr>
<tr>
<td>99.19</td>
<td>Sine filter capacitance</td>
<td>Real</td>
<td>0.00 ... 100000.00</td>
<td>µF</td>
<td>100 = 1 µF</td>
</tr>
</tbody>
</table>
Additional parameter data

<table>
<thead>
<tr>
<th>번호</th>
<th>이름</th>
<th>타입</th>
<th>범위</th>
<th>단위</th>
<th>FbEq32</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>Safety</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

이 그룹에는 FSO-xx 안전 기능 음션 모듈과 관련된 파라미터를 포함합니다. 이 그룹의 파라미터에 대한 자세한 사항은 FSO-xx 모듈의 사용자 매뉴얼을 참고하십시오.
고장 추적 Fault tracing

이 장의 내용

이 장에서는 고장 원인 및 점검 사항을 포함하여 경고 및 폴트 메시지를 나열합니다. 대부분의 경고 및 폴트 상황은 이 장에서 제공하는 해결 방안을 통해 조치할 수 있습니다. 만약 조치가 불가능한 경우에는 가까운 ABB에 문의하십시오.

여기서 경고 및 폴트 메시지는 분리된 표로 제공되며, 16진수 코드로 확인할 수 있습니다.

안전 사항

⚠️ WARNING! 해당 매뉴얼의 첫 페이지와 하드웨어 매뉴얼의 안전 지침을 반드시 확인한 후에 올바르게 조치하십시오.

지시 사항

- 경고 및 폴트

드라이브는 비정상적인 운전 상태에서 경고 및 폴트를 발생시킵니다. 이때 사용자는 발생된 경고/폴트 코드 및 이름을 제어 패널 또는 PC 툴에서 확인할 수 있습니다. 그리고 필드버스 통신으로 경고 및 폴트 코드를 수신할 수 있습니다.

만약 경고가 발생하면 드라이브는 정지 없이 연속 운전을 수행하고 발생 원인이 제거 될 때까지 해당 경고 메시지를 표시합니다. 이에 비해 폴트가 발생하면 드라이브는 해당 폴트 메시지와 함께 트립 정지를됩니다. 그리고 발생 원인을 제거한 후에 제어 패널, PC 툴, 디지털 입력 또는 필드버스 통신으로 해당 폴트를 리셋시킬 경우에만 정상적인 운전이 가능합니다. 자세한 사항은 31.11 Fault reset selection을 참고하십시오.
단, 일부 폴트의 경우에는 전원을 켜거나 파라미터 96.08 Control board boot를 이용하여 드라이브 제어 유닛을 재부팅해야 합니다. 이에 대한 사항은 폴트 리스트에 별도로 언급하였습니다.

경고 및 폴트 상태는 릴레이 출력 또는 디지털 입력/출력으로 직접 출력할 수 있습니다. 아래 파라미터에서 원하는 출력 상태 (Warning, Fault, Fault (-1))를 선택하십시오.

- Programmable digital inputs and outputs (페이지 28 참고).
- Programmable relay outputs (페이지 29 참고).
- Programmable I/O extensions (페이지 29 참고).

■ 순수 이벤트 (Pure event)

경고 및 폴트 이외에도 이벤트 로그에만 기록되는 순수 이벤트가 있습니다. 여기서 해당 이벤트 코드는 경고 메시지 (페이지 491) 표에서 확인할 수 있습니다.

■ 편집 가능 메시지 (Editable messages)

일부 경고 및 폴트는 메시지, 이름, 관련 정보를 제어 패널의 Menu - Settings - Edit texts 또는 PC 툴의 Tools - Localization Editor에서 편집할 수 있습니다.

경고/폴트 이력 및 분석

■ 이벤트 로그 (Event log)

드라이브는 2개의 이벤트 로그를 가지고 있습니다. 1개의 로그는 폴트 및 폴트 리셋 정보를 포함하고 다른 로그는 경고 및 순수 이벤트 정보를 포함합니다. 여기서 각각의 이벤트 로그는 가장 최근에 발생한 64개의 이벤트, 발생 시간 및 기타 정보를 발생 순서대로 기록하고 있습니다.

이 로그는 제어 패널에서 각각 경고 및 이벤트 로그에서 독립적으로 접근할 수 있으나, PC 툴에서는 단일 이벤트 로그에서 확인할 수 있습니다.

보조 코드 (Auxiliary code)

일부 이벤트는 문제 해결에 도움을 주는 보조 코드를 생성합니다. 이 보조 코드는 이벤트 메시지와 함께 제어 패널 및 PC 툴에서 확인할 수 있습니다.

공장 데이터 로거 (Factory data logger)

드라이브는 운전 데이터를 500 μs 간격 (96.65 Factory data logger time level)으로 샘플링하여 저장하는 자체 데이터 로거 기능을 가지고 있습니다. 이것은 기본적으로 폴트 발생 전후에 데이터를 약 700개 정도 샘플링하여 메모리 유닛에 저장합니다.
여기서 데이터 로거 기능으로 저장된 폴트 데이터는 Drive composer pro PC 툴에서 최대 5개까지 확인할 수 있습니다. 단, 이 데이터는 제어 패널에서 확인할 수 없습니다.

공장 데이터 로거에서는 01.07 Motor current, 01.10 Motor torque, 01.11 DC voltage, 01.24 Flux actual %, 06.01 Main control word, 06.11 Main status word, 24.01 Used speed reference, 30.01 Limit word 1, 30.02 Torque limit status, 90.01 Motor speed for control의 운전 데이터를 저장하며, 이것은 사용자가 임의로 변경할 수 없습니다.

■ 기타 데이터 로거

사용자 데이터 로거 (User data logger)

사용자 데이터 로거는 Drive composer pro PC 툴에서 최대 8개까지 드라이브의 운전 정보를 자유롭게 구성하고 기록할 수 있습니다. 이 로거는 약 8000 샘플 내에서 트리거 조건 및 모니터링 시간을 사용자가 직접 구성할 수 있으며, 제어 패널 또는 PC 툴로 데이터 로거 상태를 96.61 User data logger status word에서 확인할 수 있습니다. 여기서 트리거 소스는 파라미터 96.63 User data logger trigger 및 96.64 User data logger start에서 선택할 수 있으며, 최근 상태 및 정보는 메모리 유닛에 저장됩니다.

PSL2 데이터 로거

특정 드라이브 타입 (예: 병렬 연결 인버터)에서 사용되는 BCU 제어 유닛은 폴트 추적을 위한 별도의 데이터 로거를 가지고 있습니다. 여기서 해당 데이터는 BCU 제어 유닛에 장착되어 있는 SD 카드에 저장되며 ABB 엔지니어에 의해 분석될 수 있습니다.

■ 경고/폴트 정보 파라미터

드라이브는 현재 발생한 폴트 항목을 파라미터 그룹 04 Warnings and faults (페이지 121)에 저장합니다. 이 그룹에는 이전에 발생한 경고 및 폴트 또한 저장하고 있습니다.

이벤트 워드 (파라미터 04.40…04.72)

파라미터 04.40 Event word 1에는 16개의 이벤트 (예: 순수 이벤트, 경고 또는 폴트)를 사용자가 자유롭게 구성할 수 있습니다. 그리고 각 이벤트에 대한 보조 코드를 구분하여 선택적으로 원하는 상태 정보를 표시할 수 있습니다.
모바일 QR 코드

경고 메시지

Note: 이 리스트는 이벤트 로그에만 기록되는 순수 이벤트도 포함하고 있습니다.

<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>경고 메시지</th>
<th>경고 원인</th>
<th>점검 사항</th>
</tr>
</thead>
</table>
| A2A1 | 전류 보정 경고
Current calibration | 전류 센서로부터 측정된 상전류 정보의 오프셋 오차 및 전압 변환 이득 오차를 보정하고 있습니다. | 드라이브의 상태 정보를 나타내립니다.
- 99.13 ID run requested를 참고하시십시오. |
| A2B3 | 출력 지락 경고
Earth leakage
프로그래밍 가능한 경고: 31.20 Earth fault | 모터 또는 모터 케이블이 지락되어 부하 불평형이 검출되었습니다. | 모터측에 역렬 보상 커패시터 또는 서치 흡수기가 설치되어 있는지 확인하고 이를 제거하십시오.
- 모터와 모터 케이블의 절연 상태를 확인하십시오. |
| A2B4 | 출력 단락 경고
Short circuit | 모터 또는 모터 케이블에서 단락이 발생하였습니다. | 모터측에 역렬 보상 커패시터 또는 서치 흡수기가 설치되어 있는지 확인하고 이를 제거하십시오.
- 모터와 모터 케이블의 절연 상태를 확인하십시오. |
| A2BA | IGBT 과부하 경고
IGBT overload | IGBT 접합면의 온도가 높습니다. 모터 케이블이 단락된 경우에도 발생할 수 있습니다. | 주변 온도가 높지 않은지 확인하십시오.
- 메인 냉각팬의 운전 상태를 확인하십시오.
- 인버터 내부를 청소하십시오.
- 드라이브가 과부하 상태인지 확인하십시오. |
| A3A1 | DC 링크 과전압 경고
DC link overvoltage | DC 링크 전압이 경고값보다 높습니다. 주로 모터 감속시 발생할 수 있습니다. | 전압 설정 (95.01 Supply voltage)이 올바르지 확인하십시오.
- 입력 전압이 높거나 낮은지 확인하십시오.
- 병렬 연결 인버터에서 A3A1 또는 A3A2가 발생한 경우에는 보조 코드를 확인하십시오 (000X XX00).
- "XXX"는 경고 발생 드라이브의 채널 번호입니다.
- 공급 전압 범위 설정에 따른 경고 레벨은 페이지 77에서 확인할 수 있습니다. |
| A3A2 | DC 링크 부족전압 경고
DC link undervoltage | DC 링크 전압이 경고값보다 낮습니다. | 전압 설정 (95.01 Supply voltage)이 올바르지 확인하십시오.
- 입력 전압이 높거나 낮은지 확인하십시오.
- 병렬 연결 인버터에서 A3A1 또는 A3A2가 발생한 경우에는 보조 코드를 확인하십시오 (000X XX00).
- "XXX"는 경고 발생 드라이브의 채널 번호입니다.
- 공급 전압 범위 설정에 따른 경고 레벨은 페이지 77에서 확인할 수 있습니다. |
| A3AA | DC 충전 회로 이상 경고
DC not charged | DC 링크 전압이 운전 가능 범위로 상승하지 않았습니다. | 전압 설정 (95.01 Supply voltage)이 올바르지 확인하십시오.
- 입력 전압이 높거나 낮은지 확인하십시오.
- 병렬 연결 인버터에서 A3A1 또는 A3A2가 발생한 경우에는 보조 코드를 확인하십시오 (000X XX00).
- "XXX"는 경고 발생 드라이브의 채널 번호입니다.
- 공급 전압 범위 설정에 따른 경고 레벨은 페이지 77에서 확인할 수 있습니다. |
| A480 | 모터 케이블 과부하 경고
Motor cable overload | 모터 케이블의 추정 온도가 경고값을 초과하였습니다. | 파라미터 35.61 및 35.62의 설정을 확인하십시오.
- 부하 용량에 적합한 케이블인지 확인하십시오. |
Fault Tracing

<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>경고 메시지</th>
<th>경고 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>A490</td>
<td>온도 센서 설정 경고</td>
<td>모터 온도 측정에 문제가 있습니다.</td>
<td>아래 보조 코드를 확인하십시오 (0XY YZZZ).</td>
</tr>
<tr>
<td></td>
<td>Incorrect temperature sensor setup</td>
<td></td>
<td>"X"는 측정 온도 1 또는 측정 온도 2를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0 = 35.17, 1 = 35.21).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"YY"는 선택된 온도 소스를 16진수로 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ZZZZ"는 아래 코드를 확인하십시오.</td>
</tr>
</tbody>
</table>

0001	센서 타입이 잘못 설정되었습니다.		파라미터 91.21/91.24에 대해 35.11/35.21의 설정이 올바르지 확인하십시오.
0002	온도 측정 결과가 올바르지 않습니다.		35.11...35.14/35.21...35.24를 확인하십시오.
	(만약 온도 센서가 엔코더 모듈에 접속된 경우에는 파라미터 91.21/91.24 또한 확인하십시오.)		
0003	온도 센서가 단락되었습니다.		센서 및 케이블의 결선 상태를 확인하십시오.
0004	온도 센서가 개방되었습니다.		

| A491 | 외부 온도 센서 1 경고 | 측정 온도 1이 경고값을 초과하였습니다. | 파라미터 35.02 Measured temperature 1에서 온도 측정값을 확인하십시오. |
| A492 | 외부 온도 센서 2 경고 | 측정 온도 2가 경고값을 초과하였습니다. | 파라미터 35.03 Measured temperature 2에서 온도 측정값을 확인하십시오. |

A497	모터 온도 1 경고	제어 유닛의 슬롯 1에 설치된 서미스터 열 보호 모듈 FPTC-xx에서 과열 경고가 발생하였습니다.	모터의 냉각 상태를 확인하십시오.
A498	모터 온도 2 경고	제어 유닛의 슬롯 2에 설치된 서미스터 열 보호 모듈 FPTC-xx에서 과열 경고가 발생하였습니다.	모터의 냉각 상태를 확인하십시오.
A499	모터 온도 3 경고	제어 유닛의 슬롯 3에 설치된 서미스터 열 보호 모듈 FPTC-xx에서 과열 경고가 발생하였습니다.	모터의 냉각 상태를 확인하십시오.
A4A0	제어 유닛 과열 경고	제어 유닛의 온도가 높습니다.	아래 보조 코드를 확인하십시오.

<p>| 코드 없음 | 내부 온도가 경고값을 초과하였습니다. | | 주변 온도가 높지 않은지 확인하십시오. |
| | | | 제어 유닛 내부의 온도 동안을 확인하십시오. |
| | | | 제어 유닛 내부를 청소하십시오. |
| 1 | 내부 온도 센서가 고장났습니다. | | 제어 유닛을 교체하십시오. |</p>
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>경고 메시지</th>
<th>경고 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4A9</td>
<td>냉각 성능 저하되어 드라이브 모듈의 온도가 높습니다.</td>
<td>- 주변 온도가 높지 않은지 확인하십시오.</td>
<td>- 주변 온도가 40 °C를 초과하는 경우 부하 전류가 정격 용량을 초과하지 않도록하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 드라이브의 부하 상태를 확인하십시오.</td>
<td>- 드라이브의 부하 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 메인 냉각판의 운전 상태를 확인하십시오.</td>
<td>- 인버터 내부를 정소하십시오.</td>
</tr>
<tr>
<td>A4B0</td>
<td>온도 초과 경고</td>
<td>파워 유닛의 온도가 높습니다.</td>
<td>- 주변 온도가 높지 않은지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 드라이브의 부하 상태를 확인하십시오.</td>
<td>- 메인 냉각판의 운전 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 인버터 내부를 정소하십시오.</td>
<td>- 주변 온도가 40 °C를 초과하는 경우 부하 전류가 정격 용량을 초과하지 않도록하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 아래 보조 코드를 확인하십시오 (XXX YYYZZ).</td>
<td>- 아래 보조 코드를 확인하십시오 (XXX YYYZZ).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- “YY”는 BCU를 사용하는 병렬 연결 인버터에서 경고 발생 드라이브의 채널 번호를 나타냅니다.</td>
<td>- “YY”는 BCU를 사용하는 병렬 연결 인버터에서 경고 발생 드라이브의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- “ZZ”는 발생 위치를 나타냅니다.</td>
<td>- “ZZ”는 발생 위치를 나타냅니다.</td>
</tr>
<tr>
<td>A4B1</td>
<td>각 상 온도 편차 경고</td>
<td>각 상 IGBT의 온도 편차가 큽니다.</td>
<td>- 보조 코드를 확인하십시오 (000 YYY 00).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 온도 편차의 측정 번호를 나타냅니다.</td>
<td>- “YY”는 BCU를 사용하는 병렬 연결 인버터에서 경고 발생 드라이브의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 아래 보조 코드를 확인하십시오 (XXX YYYZZ).</td>
<td>- “YY”는 BCU를 사용하는 병렬 연결 인버터에서 경고 발생 드라이브의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- “XXX”는 온도 편차 소스를 나타냅니다.</td>
<td>- “ZZ”는 발생 위치를 나타냅니다.</td>
</tr>
<tr>
<td>A4B2</td>
<td>PCB 냉각 상태 경고</td>
<td>주변 온도와 드라이브 내부 PCB 사이의 온도 편차가 큽니다.</td>
<td>PCB 냉각판의 운전 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- PCB 냉각판의 운전 상태를 확인하십시오.</td>
<td>- 아래 보조 코드를 확인하십시오 (000 YYY00).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 아래 보조 코드를 확인하십시오 (XXX YYYZZ).</td>
<td>- “YY”는 BCU를 사용하는 병렬 연결 인버터에서 경고 발생 드라이브의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- “ZZ”는 발생 위치를 나타냅니다.</td>
<td>- “ZZ”는 발생 위치를 나타냅니다.</td>
</tr>
<tr>
<td>A4F6</td>
<td>IGBT 온도 경고</td>
<td>드라이브 IGBT의 온도가 경고값 (94 %) 보다 높습니다.</td>
<td>- 주변 온도가 높지 않은지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>통상 IGBT 온도는 주변 온도 40 °C에서 정격 부하로 운전 중일 때 05.11 Inverter temperature에 표시된 인버터 온도 정보는 80 % 정도임니다.</td>
<td>- 드라이브의 부하 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 메인 냉각판의 운전 상태를 확인하십시오.</td>
<td>- 메인 냉각판의 운전 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 인버터 내부를 정소하십시오.</td>
<td>- 인버터 내부를 정소하십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>A580</td>
<td>파워 유닛 통신 상태 경고</td>
<td>PU communication</td>
<td>드라이브 제어 유닛과 파워 유닛 간의 통신 오류가 발생하였습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 드라이브 제어 유닛과 파워 유닛 간의 접속 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 아래 보조 코드를 확인하십시오 (XXXY YYYZ).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "YY"는 BCU를 사용하는 병렬 연결 인버터에서 경고 발생 드라이브의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "ZZ"는 오류 정보를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- (8: PSL 링크 전송 오류, 9: 전송 FIFO 경고).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "XXX"는 전송 경로 및 경고 코드를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "Y YY"는 BCU 제어 유닛에 연결된 드라이브 채널의 북쪽을 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "ZZ"는 냉각팬의 위치를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- (1: 메인 팬 1, 2: 메인 팬 2, 3: 메인 팬 3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 메인 냉각팬의 운전 상태를 확인하십시오.</td>
</tr>
<tr>
<td>A581</td>
<td>메인 냉각팬 상태 경고</td>
<td>Fan</td>
<td>메인 냉각팬의 피드백 신호가 올바르지 않습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 파라미터 95.20 HW options word 1의 비트 14를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 아래 보조 코드를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 코드 0은 메인 냉각팬 1을 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 다른 코드는 다음과 같습니다(형식 XYZ).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "X"는 상태 코드를 나타냅니다(1: ID run 상태, 2: 정상 운전).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "Y"는 BCU 제어 유닛에 연결된 드라이브 채널을 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "Z"는 냉각팬의 위치를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- (1: 메인 팬 1, 2: 메인 팬 2, 3: 메인 팬 3).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 메인 냉각팬의 운전 상태를 확인하십시오.</td>
</tr>
<tr>
<td>A582</td>
<td>제어 유닛 냉각팬 상태 경고</td>
<td>Auxiliary fan not running</td>
<td>제어 유닛에 설치된 냉각팬이 정상적으로 동작하지 않았습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 메인 냉각팬의 운전 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 해당 보조 코드를 확인하십시오. (1: 팬 1, 2: 팬 2).</td>
</tr>
<tr>
<td>A5A0</td>
<td>안전 토크 차단 동작 경고</td>
<td>Safe torque off</td>
<td>안전 토크 차단 기능이 동작하였습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- STO 신호선의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XSTO 단자의 접속 상태를 확인하십시오.</td>
</tr>
<tr>
<td>A5EA</td>
<td>온도 측정 회로 상태 경고</td>
<td>Measurement circuit temperature</td>
<td>드라이브의 내부 온도 측정 회로에서 문제가 발생하였습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 아래 보조 코드를 확인하십시오 (XXXY YYYZ).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "YY"는 BCU 제어 유닛에 연결된 드라이브 채널을 나타냅니다 (ZCU 제어 유닛은 "0 00").</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- "ZZ"는 발생 위치를 나타냅니다.</td>
</tr>
<tr>
<td>A5EB</td>
<td>파워 유닛 전원 상태 경고</td>
<td>PU board powerfail</td>
<td>파워 유닛에 정상적으로 제어 전원이 공급되지 않았습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 기가온 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>A5EC</td>
<td>파워 유닛 통신 상태 경고</td>
<td>드라이브 제어 유닛과 파워 유닛 간의 통신 오류가 발생하였습니다.</td>
<td>- 드라이브 제어 유닛과 파워 유닛 간의 접속 상태를 확인하십시오.</td>
</tr>
<tr>
<td>A5ED</td>
<td>측정 회로 ADC 상태 경고</td>
<td>파워 유닛의 측정 회로 (ADC)에서 문제가 발생하였습니다.</td>
<td>- 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>A5EE</td>
<td>측정 회로 DFF 상태 경고</td>
<td>파워 유닛의 전압/전류 측정 회로에서 문제가 발생하였습니다.</td>
<td>- 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>A5EF</td>
<td>파워 유닛 상태 피드백 경고</td>
<td>드라이브의 출력 상태 피드백 신호가 제어 신호와 일치하지 않습니다.</td>
<td>- 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>A5F0</td>
<td>중전 상태 피드백 경고</td>
<td>DC 링크를 중전하고 있습니다.</td>
<td>- 드라이브의 상태 정보를 나타내십시오.</td>
</tr>
<tr>
<td>A5F3</td>
<td>스위칭 주파수 제한 경고</td>
<td>스위칭 주파수가 제한되어 요구된 출력 주파수에 도달할 수 없습니다. (파라미터 95.15 설정).</td>
<td>- 드라이브의 상태 정보를 나타내십시오.</td>
</tr>
<tr>
<td>A5F4</td>
<td>제어 유닛 배터리 상태 경고</td>
<td>제어 유닛의 배터리가 방전되었습니다.</td>
<td>- 제어 유닛 배터리를 교체하십시오.</td>
</tr>
<tr>
<td>A682</td>
<td>플래시 메모리 수명 경고</td>
<td>쓰기 반복으로 메모리 유닛의 수명이 저하되었습니다.</td>
<td>- 메모리에 불필요하게 데이터를 쓰지 마십시오.</td>
</tr>
<tr>
<td>A683</td>
<td>파워 유닛 데이터 저장 경고</td>
<td>파워 유닛의 데이터 저장 과정에서 오류가 발생하였습니다.</td>
<td>- 아래 보조 코드를 확인하십시오.</td>
</tr>
<tr>
<td>A684</td>
<td>SD 카드 상태 경고</td>
<td>SD 카드에서 오류가 발생하였습니다.</td>
<td>- 아래 보조 코드를 확인하십시오.</td>
</tr>
<tr>
<td>A686</td>
<td>파라미터 체크섬 불일치 경고</td>
<td>계산된 파라미터 체크섬이 기준값과 일치하지 않습니다.</td>
<td>- 96.55 Checksum control word에서 기준 체크섬 (96.56... 96.59)이 하용되었는지 확인하십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>A687</td>
<td>파라미터 체크섬 구성 경고 Checksum configuration</td>
<td>파라미터 체크섬 기능을 허용하였지만, 파라미터가 구성되지 않았습니다.</td>
<td>· 파라미터 96.54 Checksum action을 No action으로 변경하십시오.</td>
</tr>
<tr>
<td>A688</td>
<td>파라미터 매핑 구성 경고 Parameter map configuration</td>
<td>Drive customizer에서 생성된 파라미터 매핑 테이블이 너무 많습니다.</td>
<td>· Drive customizer 사용자 매뉴얼을 참고하십시오.</td>
</tr>
<tr>
<td>A689</td>
<td>매핑 파라미터 값 초과 경고 Mapped parameter value cut</td>
<td>Drive customizer에서 생성된 파라미터 값이 초과되었습니다.</td>
<td>· 생성된 파라미터 매핑 테이블에서 스케일링 값과 포맷 형식을 확인하십시오. · Drive customizer 사용자 매뉴얼을 참고하십시오.</td>
</tr>
<tr>
<td>A6A4</td>
<td>모터 데이터 불일치 경고 Motor nominal value</td>
<td>모터 데이터가 잘못 설정되었습니다.</td>
<td>· 아래 보조 코드를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>드라이브 용량이 정확하지 않습니다.</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>속립 주파수가 너무 낮습니다.</td>
<td>· 모터 명판 데이터를 정확하게 입력하십시오. · 파라미터 그룹 98과 99에서 모터 구성 데이터를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>동기 속도와 정격 속도 차이가 큽니다.</td>
<td>· 모터 명판 데이터를 정확하게 입력하십시오. · 파라미터 그룹 98과 99에서 모터 구성 데이터를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>정격 속도가 동기 속도보다 높습니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>정격 전류 범위를 초과하였습니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>정격 전압 범위를 초과하였습니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>정격 전력이 피상 전력보다 큽니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>정격 속도와 토크에 대한 모터 용량이 정확하지 않습니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A6A5</td>
<td>모터 데이터 입력 상태 경고 No motor data</td>
<td>파라미터 그룹 99에 모터 데이터가 입력되지 않았습니다.</td>
<td>· 모터 명판 데이터를 모두 입력하십시오. · 전압, 전류, 주파수, 속도, 용량을 입력하십시오.</td>
</tr>
<tr>
<td>A6A6</td>
<td>공급 전압 설정 상태 경고 Supply voltage unselected</td>
<td>공급 전압이 설정되지 않았습니다.</td>
<td>· 파라미터 95.01 Supply voltage에 해당되는 공급 전압 범위를 설정하십시오.</td>
</tr>
<tr>
<td>A6B0</td>
<td>사용자 잠금 기능 경고 User lock is open</td>
<td>사용자 잠금 기능이 열렸습니다.</td>
<td>· 드라이브의 상태 정보를 나타냅니다. · 파라미터 96.02 Pass code에 유의하지 않은 사용자 암호를 입력하여 사용자 잠금 기능을 닫으십시오.</td>
</tr>
<tr>
<td>A6B1</td>
<td>사용자 암호 불일치 경고 User pass code not confirmed</td>
<td>신규 사용자 암호가 파라미터 96.100에 입력되었지만, 96.101에서 확인되지 않았습니다.</td>
<td>· 파라미터 96.101에 동일한 암호를 입력하십시오. · 암호 변경을 취소하려면 확인 없이 사용자 잠금 기능을 닫으십시오.</td>
</tr>
<tr>
<td>A6D1</td>
<td>FBA A 파라미터 충돌 경고 FBA A parameter conflict</td>
<td>외부 컨트롤러에서 필드버스 어댑터 A로 요청한 기능이 많거나 허용되지 않았습니다.</td>
<td>· PLC 프로그램을 확인하십시오. · 파라미터 그룹 50 Fieldbus adapter (FBA) 및 51 FBA A settings의 설정을 확인하십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>A6D2</td>
<td>FBA B 파라미터 충돌 경고</td>
<td>외부 컨트롤러에서 필드버스 아답터B로 요청한 기능이 없거나 허용되지 않았습니다.</td>
<td>- PLC 프로그램을 확인하십시오.</td>
</tr>
<tr>
<td>ASDA</td>
<td>기준 소스 충돌 경고</td>
<td>기준 소스가 다른 단위 (예: 속도, 토크, 주파수)의 파라미터에 중복 설정되어 있습니다.</td>
<td>- 기준 소스 선택 파라미터를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Reference source parameterization</td>
<td></td>
<td>- 아래 보조 코드를 확인하십시오 (XXYY 00ZZ). “XX”와 “YY”는 기준 소스가 중복해서 연결된 파라미터의 정보를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 아래 보조 코드를 확인하십시오 (XXYY 00ZZ). “XX”와 “YY”는 기준 소스가 중복해서 연결된 파라미터의 정보를 나타냅니다.</td>
</tr>
<tr>
<td>A6E5</td>
<td>AI 입력 소스 설정 경고</td>
<td>AI 입력의 하드웨어 (접입/전류 점퍼 또는 스위치) 설정이 파라미터 설정과 일치하지 않습니다.</td>
<td>- 해당 보조 코드는 경고를 발생시킨 AI 입력의 하드웨어 (접입/전류 점퍼 또는 스위치) 설정이 파라미터 설정과 일치시키는 조건을 나타내는 것입니다.</td>
</tr>
<tr>
<td></td>
<td>ULC configuration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0000</td>
<td>속도 구간이 잘못 설정되었습니다.</td>
<td>이전 구간보다 낮게 설정된 속도 (37.11…37.15)가 있는지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>주파수 구간이 잘못 설정되었습니다.</td>
<td>이전 구간보다 낮게 설정된 주파수 (37.16…37.20)가 있는지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>과부하 구간 위에 부족부하 구간이 있습니다.</td>
<td>부족부하 (37.21…37.25)보다 낮게 설정된 과부하 구간 (37.31…37.35)가 있는지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>부족부하 구간 아래에 과부하 구간이 있습니다.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A780</td>
<td>모터 스톨 경고</td>
<td>모터가 과부하 상태이거나 용량이 부족하여 스톨 영역에 있습니다.</td>
<td>- 모터의 부하 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Motor stall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 경고: 31.24 Stall function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A781</td>
<td>모터 냉각팬 상태 경고</td>
<td>모터 냉각팬의 피드백 신호가 올바르지 않습니다.</td>
<td>- 모터 냉각팬의 제어 로직을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Motor fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 경고: 35.106 DOL starter event type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>코드(hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| A782 | FEN 온도 센서 상태 경고 | 온도 센서 (KTY 또는 PTC)가 엔코더 인터페이스 모듈에 설치되었지만, 온도 측정에 오류가 발생하였습니다. | - 파라미터 35.11 Temperature 1 source / 35.21 Temperature 2 source에서 온도 센서의 타입 및 엔코더 모듈의 채널 번호를 확인하십시오.
- 파라미터 91.21 및 91.24를 확인하십시오.
- 파라미터 91.11...91.14를 확인하십시오.
- 파라미터 91.10 Encoder parameter refresh에서 Refresh를 선택하여 새로고침하십시오. |
| | FEN 온도 센서 | | - 엔코더 인터페이스 모듈 FEN-01에 KTY 타입 온도 센서가 연결되었습니다.
- FEN-01은 KTY 센서를 지원하지 않습니다.
- PTC 센서를 사용하십시오. |
| A791 | 제동저항 상태 경고 | 제동저항이 고장났거나 올바르게 접속되지 않았습니다. | - 제동저항의 접속 상태를 확인하십시오.
- 제동저항의 저항값을 확인하십시오.
- 제동저항이 올바르게 설정되었는지 확인하십시오. |
| A793 | 제동저항 과열 경고 | 저항 온도가 경고값을 초과하였습니다. | - 온전을 정지시키고 제동저항을 넉넉시켜십시오.
- 파라미터 그룹 43 Brake chopper에서 제동저항 과부하 보호 기능 설정을 확인하십시오.
- 파라미터 43.12 Brake resistor warning limit에서 경고값을 확인하십시오.
- 제동저항이 올바르게 신정되었는지 확인하십시오.
- 현재의 제동 주기를 만족하는지 확인하십시오. |
| A794 | 제동저항 데이터 입력 상태 경고 | 제동저항 데이터가 입력되지 않았습니다. | - 파라미터 43.08...43.10에 정확한 저항 데이터를 입력하십시오.
- 아래 보조 코드를 확인하십시오. |
| | BR data | | - 0000 0001 저항값이 너무 낮습니다.
- 파라미터 43.10을 확인하십시오. |
| | | | - 0000 0002 열 시정수가 입력되지 않았습니다.
- 파라미터 43.08을 확인하십시오. |
| | | | - 0000 0003 최대 연속 부하가 입력되지 않았습니다.
- 파라미터 43.09를 확인하십시오. |
| A797 | 속도 피드백 구성 상태 경고 | 속도 피드백 구성이 변경되었습니다. | - 아래 보조 코드를 확인하십시오 (XXYY ZZZZ).
- "XX"는 엔코더 모듈 번호입니다.
(01: 91.11/91.12, 02: 91.13/91.14),
- "YY"는 엔코더 채널 번호입니다.
(01: 92 Encoder 1 configuration, 02: 93 Encoder 2 configuration).
- "ZZZZ"는 아래 보조 코드를 확인하십시오. |
| | Speed feedback configuration | | - 0001 지정 송곳에서 엔코더 모듈을 찾을 수 없습니다.
- 엔코더 모듈의 송곳 위치를 확인하십시오.
- 파라미터 91.12 및 91.14를 확인하십시오. |
| | | | - 0002 검출된 엔코더 모듈과 파라미터 설정이 일치하지 않습니다.
- 모듈 검출 상태 (91.02/91.03)와 모듈 타입 (91.11/91.13)을 확인하십시오. |
| | | | - 0003 로직 버전이 오래되었습니다.
- 가까운 ABB에 연락하여 점검을 받으십시오. |
| | | | - 0004 소프트웨어 버전이 오래되었습니다.
- 가까운 ABB에 연락하여 점검을 받으십시오. |
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>경고 메시지</th>
<th>경고 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>0006</td>
<td>엔코더 타입이 인터페이스 모듈과 호환되지 않습니다.</td>
<td>• 엔코더 타입 (92.01/93.01)과 모듈 타입 (91.11/91.13)을 확인하시십시오.</td>
<td></td>
</tr>
<tr>
<td>0007</td>
<td>엔코더 모듈이 구성되지 않았습니다.</td>
<td>• 모듈 설치 솔롯 (91.12/91.14)를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>0008</td>
<td>속도 피드백 구성이 변경되었습니다.</td>
<td>• 파라미터 91.10 Encoder parameter refresh에서 Refresh를 선택하여 새로운고침하십시오.</td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>엔코더 모듈에 엔코더 타입이 구성되지 않았습니다.</td>
<td>• 파라미터 그룹 92 Encoder 1 configuration 또는 93 Encoder 2 configuration을 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>000A</td>
<td>애플레이션 입력이 존재하지 않습니다.</td>
<td>• 엔코더 모듈 입력 (91.31/91.41)을 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>000B</td>
<td>선택 입력에서 에코 모드를 지원하지 않습니다.</td>
<td>• 엔코더 모듈 입력 (91.31/91.41)을 확인하십시오. • 엔코더 모듈 타입 및 엔코더 타입을 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>000C</td>
<td>애플레이션에서 엔코더 모듈을 지원하지 않습니다.</td>
<td>• 엔코더 모듈 입력 (91.31/91.41)을 확인하십시오. • 직렬 링크 모드 (92.30/93.30)를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>A798</td>
<td>엔코더 모듈 통신 상태 경고 Encoder option comm loss</td>
<td>• 선택 피드백 소스 (90.41/90.51)를 확인하십시오. • 엔코더 모듈의 입력 솔롯에 올바르게 장착되었는지 확인하십시오. • 엔코더 모듈과 솔롯의 접속 상태를 확인하십시오. • 엔코더 모듈을 다른 솔롯에 설치해 보십시오. • 만약 엔코더 모듈이 FEA-03 확장 어댑터에 설치된 경우에는 광통신선의 연결 상태를 확인하십시오. • 아래 보조 코드를 확인하십시오 (XXXX YYYY). "YYYY"는 경고 발생 정보를 나타냅니다.</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>엔코더 구성 응답이 없습니다.</td>
<td>• 가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>모듈 워치독 (Watchdog) 해제 응답이 없습니다.</td>
<td>• 가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>모듈 워치독 (Watchdog) 해지 응답이 없습니다.</td>
<td>• 가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>엔코더 모듈 구성 응답이 없습니다.</td>
<td>• 가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>0005</td>
<td>속도 및 위치 응답이 너무 많습니다.</td>
<td>• 가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>0006</td>
<td>DDCS 통신 오류가 발생하였습니다.</td>
<td>• 가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>A79B</td>
<td>제동초퍼 단락 경고 BC short circuit</td>
<td>• 제동초퍼에서 단락이 발생하였습니다. • 제동저항의 접촉 상태를 확인하십시오. • 제동저항의 저항값을 확인하십시오. • 모두 정상인 경우에 제동초퍼를 교체하십시오.</td>
<td></td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>A7A1</td>
<td>기계 브레이크 닫힘 상태 경고 Mechanical brake closing failed</td>
<td>브레이크 닫힘 동작 중 설정 시간 안에 상태 확인 신호가 입력되지 않았습니다.</td>
<td>- 기계 브레이크의 동작 상태를 확인하십시오. - 기계 브레이크 설정 (44 Mechanical brake control) 을 확인하십시오. - 브레이크 동작 상태가 상태 확인 신호와 일치하는지 확인하십시오.</td>
</tr>
<tr>
<td>A7A2</td>
<td>기계 브레이크 열림 상태 경고 Mechanical brake opening failed</td>
<td>브레이크 열림 동작 중 설정 시간 안에 상태 확인 신호가 입력되지 않았습니다.</td>
<td>- 기계 브레이크의 동작 상태를 확인하십시오. - 기계 브레이크 설정 (44 Mechanical brake control) 을 확인하십시오. - 브레이크 동작 상태가 상태 확인 신호와 일치하는지 확인하십시오.</td>
</tr>
<tr>
<td>A7A5</td>
<td>기계 브레이크 열림 허용 경고 Mechanical brake opening not allowed</td>
<td>기계 브레이크의 열림 동작이 허용되지 않았습니다.</td>
<td>- 기계 브레이크 설정 (44 Mechanical brake control) 을 확인하십시오. - 44.11 Keep brake closed 에서 열림 동작이 금지 되었는지 확인하십시오. - 브레이크 동작 상태가 상태 확인 신호와 일치하는지 확인하십시오.</td>
</tr>
<tr>
<td>A7AA</td>
<td>확장 AI 입력 소스 설정 경고 Extension AI parameterization</td>
<td>아날로그 입력의 하드웨어 (전압/전류 점퍼 또는 스위치) 설정이 파라미터 설정과 일치하지 않습니다.</td>
<td>- 아날로그 입력의 하드웨어 (XX00 00YY). - "XX"는 I/O 확장 모듈의 채널 번호를 나타냅니다. (01: 14 I/O extension module 1, 02: 15 I/O extension module 2, 03: 16 I/O extension module 3). - “YY”는 모듈의 아날로그 입력을 나타냅니다. 예를 들어, I/O 확장 모듈 1, 아날로그 입력 AI1은 보조 코드 0000 0101입니다. - 파라미터 14.29 에서 전압/전류 하드웨어 설정의 14.30과 일치하지 않는지 확인하십시오. - 단, 하드웨어 설정을 변경시킨 경우에는 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| A7AB | 확장 I/O 구성 상태 경고 Extension I/O configuration failure | I/O 확장 모듈 타입과 솔롯 위치가 검출된 구성과 일치되지 않습니다. | - 모듈 타입과 솔롯 위치 설정을 확인하십시오.
 (14.01/14.02, 15.01/15.02, 16.01/16.02),
 - 확장 모듈의 설치 상태를 확인하십시오. |
| | 모터 속도 피드백 상태 경고 Motor speed feedback | 모터 속도 피드백 신호가 없습니다. | - 아래 보조 코드를 확인하십시오 (XXYY ZZZZ).
 “XX”는 엔코더 모듈 번호입니다.
 (01: 91.11/91.12, 02: 91.13/91.14),
 “YY”는 엔코더 채널 번호입니다.
 (01: 92 Encoder 1 configuration, 02: 93 Encoder 2 configuration),
 “ZZZZ”는 아래 보조 코드를 확인하십시오. |
| A7B0 | 모터 속도 피드백 상태 경고 Motor speed feedback | 모터 속도 피드백 신호가 없습니다. | - 모터 가이버 설정이 유효하지 않습니다.
 - 모터 가이버 설정 (90.43/90.44)을 확인하십시오. |
| | 모터 속도 피드백 상태 경고 Motor speed feedback | 모터 속도 피드백 신호가 없습니다. | - 엔코더가 구성되지 않았습니다.
 - 엔코더 설정 (그룹 92/93)을 확인하십시오.
 - 파라미터 91.10 Encoder parameter refresh에서 Refresh를 선택하여 NGO고침하십시오. |
| | 모터 속도 피드백 상태 경고 Motor speed feedback | 모터 속도 피드백 신호가 없습니다. | - 엔코더 신호가 중단되었습니다.
 - 엔코더의 상태를 확인하십시오. |
| | 모터 속도 피드백 상태 경고 Motor speed feedback | 모터 속도 피드백 신호가 없습니다. | - 엔코더 신호에서 드리프트 현상이 감지되었습니다.
 - 엔코더의 기계적인 설치 상태를 확인하십시오. |
| A7B1 | 부하 속도 피드백 상태 경고 Load speed feedback | 부하 속도 피드백 신호가 없습니다. | - 아래 보조 코드를 확인하십시오 (XXYY ZZZZ).
 “XX”는 엔코더 모듈 번호입니다.
 (01: 91.11/91.12, 02: 91.13/91.14),
 “YY”는 엔코더 채널 번호입니다.
 (01: 92 Encoder 1 configuration, 02: 93 Encoder 2 configuration),
 “ZZZZ”는 아래 보조 코드를 확인하십시오. |
| | 부하 속도 피드백 상태 경고 Load speed feedback | 부하 속도 피드백 신호가 없습니다. | - 부하 가이버 설정이 유효하지 않습니다.
 - 부하 가이버 설정 (90.53/90.54)을 확인하십시오. |
| | 부하 속도 피드백 상태 경고 Load speed feedback | 부하 속도 피드백 신호가 없습니다. | - 피드 상수가 유효하지 않습니다.
 - 피드 상수 설정 (90.63/90.64)을 확인하십시오. |
| | 부하 속도 피드백 상태 경고 Load speed feedback | 부하 속도 피드백 신호가 없습니다. | - 엔코더 신호가 중단되었습니다.
 - 엔코더의 상태를 확인하십시오. |
| A7C1 | FBA A 통신 상태 경고 FBA A communication | 드라이브와 필드버스 어댑터 A 또는 외부 PLC와 필드버스 어댑터 A 간의 통신 오류가 발생하였습니다. | - 필드버스 어댑터 A의 설정 상태를 확인하십시오.
 - 파라미터 그룹 50/51/52/53 설정을 확인하십시오.
 - 필드버스 통신 상태를 확인하십시오.
 - 통신선의 접속 상태를 확인하십시오.
 - 외부 PLC가 정상 동작하는지 확인하십시오. |
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>경고 메시지</th>
<th>경고 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7C2</td>
<td>FBA B 통신 상태 경고 FBA B communication</td>
<td>드라이브와 필드버스 어댑터 B 또는 외부 PLC와 필드버스 어댑터 B 간의 통신 오류가 발생하였습니다.</td>
<td>· 필드버스 어댑터 B의 설치 상태를 확인하십시오. · 파라미터 그룹 50/55/56 설정을 확인하십시오. · 필드버스 통신 상태를 확인하십시오. · 통신선의 연결 상태를 확인하십시오. · 외부 PLC의 동작 상태를 확인하십시오.</td>
</tr>
<tr>
<td>A7CA</td>
<td>DDCS 통신 상태 경고 DDCS controller comm loss</td>
<td>드라이브와 외부 제어기 간의 DDCS 통신 오류가 발생하였습니다.</td>
<td>· 외부 제어기의 동작 상태를 확인하십시오. · 파라미터 그룹 60 DDCS communication 설정을 확인하십시오. · 광통신선의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td>A7CB</td>
<td>마스터/팔로워 통신 상태 경고 MF comm loss</td>
<td>마스터와 팔로워 간의 통신 오류가 발생하였습니다.</td>
<td>· 해당 보조 코드를 확인하십시오. · 이 코드는 파라미터 60.02에 정의된 마스터/팔로워 통신 링크의 노드 주소를 나타냅니다. · 파라미터 그룹 60 DDCS communication 설정을 확인하십시오. · FDCO 모듈의 경우에 링크 스위치를 1…3으로 선택하십시오. · 통신선의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td>A7CE</td>
<td>EFB 통신 상태 경고 EFB comm loss</td>
<td>임베디드 필드버스 링크에서 통신 오류가 발생하였습니다.</td>
<td>· 마스터 통신 장치의 동작 상태를 확인하십시오. · 제어 유닛에서 X202 단자의 접속 상태 및 케이블의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td>A7E1</td>
<td>엔코더 상태 경고 Encoder</td>
<td>엔코더에서 오류가 발생하였습니다.</td>
<td>· 아래 보조 코드를 확인하십시오 (XXYY ZZZZ). · “XX”는 엔코더 모듈 번호입니다. (01: 91.11/91.12, 02: 91.13/91.14), · “YY”는 엔코더 채널 번호입니다. (01: 92 Encoder 1 configuration, 02: 93 Encoder 2 configuration), · “ZZZZ”는 아래 보조 코드를 확인하십시오.</td>
</tr>
<tr>
<td>0001</td>
<td>엔코더 신호선이 올바르게 연결되지 않았습니다.</td>
<td></td>
<td>· 파라미터 92.21 Encoder cable fault mode 설정을 확인하십시오. · 엔코더 신호선의 상관선을 확인하십시오. · 엔코더 신호선의 접지 상태를 확인하십시오. · 엔코더와 모듈 간의 접속 상태를 확인하십시오.</td>
</tr>
<tr>
<td>0002</td>
<td>엔코더 신호가 없습니다.</td>
<td></td>
<td>· 엔코더의 동작 상태를 확인하십시오.</td>
</tr>
<tr>
<td>0003</td>
<td>엔코더 과속이 발생하였습니다.</td>
<td></td>
<td>· 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>0004</td>
<td>엔코더 과주파수가 발생하였습니다.</td>
<td></td>
<td>· 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>0005</td>
<td>레벨러의 ID 선을 실패하였습니다.</td>
<td></td>
<td>· 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>0006</td>
<td>레벨러에서 과전류가 발생하였습니다.</td>
<td></td>
<td>· 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>0007</td>
<td>속도 스케일링 값에 오류가 있습니다.</td>
<td></td>
<td>· 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
<tr>
<td>0008</td>
<td>절대치형 엔코더에서 품신 오류가 발생하였습니다.</td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>0009</td>
<td>절대치형 엔코더에서 초기화 오류가 발생하였습니다.</td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>000A</td>
<td>절대치형 엔코더에서 SSI 통신 구성 오류가 발생하였습니다.</td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>000B</td>
<td>엔코더 내부 오류가 보고되었습니.</td>
<td>엔코더에서 전송된 오류입니다.</td>
<td>해당 엔코더의 기술 매뉴얼을 참고하십시오.</td>
</tr>
<tr>
<td>000C</td>
<td>엔코더 배터리 오류가 보고되었습니.</td>
<td>엔코더에서 전송된 오류입니다.</td>
<td>해당 엔코더의 기술 매뉴얼을 참고하십시오.</td>
</tr>
<tr>
<td>000D</td>
<td>엔코더에서 과속 또는 분해능 감소가 보고되었습니.</td>
<td>엔코더에서 전송된 오류입니다.</td>
<td>해당 엔코더의 기술 매뉴얼을 참고하십시오.</td>
</tr>
<tr>
<td>000E</td>
<td>엔코더 위치 정보 오류가 보고되었습니.</td>
<td>엔코더에서 전송된 오류입니다.</td>
<td>해당 엔코더의 기술 매뉴얼을 참고하십시오.</td>
</tr>
<tr>
<td>000F</td>
<td>엔코더 내부 오류가 보고되었습니.</td>
<td>엔코더에서 전송된 오류입니다.</td>
<td>해당 엔코더의 기술 매뉴얼을 참고하십시오.</td>
</tr>
<tr>
<td>A7EE</td>
<td>제어 패널 통신 상태 경고 Control panel loss</td>
<td>제어 패널 또는 PC 풀과 드라이브 간의 통신이 중단되었습니다.</td>
<td>제어 패널 또는 PC 풀의 접속 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 경고: 49.05 Communication loss action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A880</td>
<td>모터 베어링 상태 경고 Motor bearing</td>
<td>온 타이머 또는 별류 카운터 설정으로 발생한 경고입니다.</td>
<td>아래 보조 코드를 확인하고 해당 경고 발생 소스를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 경고: 33.14 On-time 1 warn message 33.24 On-time 2 warn message 33.55 Value counter 1 warn message 33.65 Value counter 2 warn message</td>
<td></td>
<td>0: 33.13 On-time 1 source 1: 33.23 On-time 2 source 4: 33.53 Value counter 1 source 5: 33.63 Value counter 2 source</td>
</tr>
<tr>
<td>A881</td>
<td>출력 팔레트 동작 횟수 경고 Output relay</td>
<td>에지 카운터 설정으로 발생한 경고입니다.</td>
<td>아래 보조 코드를 확인하고 해당 경고 발생 소스를 확인하십시오.</td>
</tr>
<tr>
<td>A882</td>
<td>모터 기동 횟수 경고 Motor starts</td>
<td>프로그래밍 가능한 경고: 33.35 Edge counter 1 warn message 33.45 Edge counter 2 warn message</td>
<td>2: 33.33 Edge counter 1 source 3: 33.43 Edge counter 2 source</td>
</tr>
<tr>
<td>A883</td>
<td>메인 전원 투입 횟수 경고 Power ups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A884</td>
<td>메인 접촉기 동작 횟수 경고 Main contactor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A885</td>
<td>DC 링크 중전 횟수 경고 DC charge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A886</td>
<td>에지 카운터 1 경고 Edge counter 1 (경고 메시지 편집 가능)</td>
<td>온 타이머 1에서 발생한 경고입니다.</td>
<td>33.13 On-time 1 source를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 경고: 33.14 On-time 1 warn message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A887</td>
<td>에지 카운터 2 경고 Edge counter 2 (경고 메시지 편집 가능)</td>
<td>온 타이머 2에서 발생한 경고입니다.</td>
<td>33.23 On-time 2 source를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 경고: 33.24 On-time 2 warn message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A888</td>
<td>에지 카운터 1 경고 Edge counter 1 (경고 메시지 편집 가능)</td>
<td>에지 카운터 1에서 발생한 경고입니다.</td>
<td>33.33 Edge counter 1 source를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 경고: 33.35 Edge counter 1 warn message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>A889</td>
<td>에지 카운터 2 경고</td>
<td>에지 카운터 2에서 발생한 경고입니다.</td>
<td>33.43 Edge counter 2 source를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Edge counter 2</td>
<td>(경고 메시지 편집 가능) 프로그래밍 가능한 경고: 33.45 Edge counter 2 warn message</td>
<td></td>
</tr>
<tr>
<td>A88A</td>
<td>블류 카운터 1 경고</td>
<td>블류 카운터 1에서 발생한 경고입니다.</td>
<td>33.53 Value counter 1 source를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Value counter 1</td>
<td>(경고 메시지 편집 가능) 프로그래밍 가능한 경고: 33.55 Value counter 1 warn message</td>
<td></td>
</tr>
<tr>
<td>A88B</td>
<td>블류 카운터 2 경고</td>
<td>블류 카운터 2에서 발생한 경고입니다.</td>
<td>33.63 Value counter 2 source를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Value counter 2</td>
<td>(경고 메시지 편집 가능) 프로그래밍 가능한 경고: 33.65 Value counter 2 warn message</td>
<td></td>
</tr>
<tr>
<td>A88C</td>
<td>장치 유지 보수 경고</td>
<td>온타이머 설정으로 발생한 경고입니다.</td>
<td>아래 보조 코드를 확인하고 해당 경고 발생 소스를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Device clean</td>
<td></td>
<td>0: 33.13 On-time 1 source 1: 33.23 On-time 2 source 10: 05.04 Fan on-time counter.</td>
</tr>
<tr>
<td>A88D</td>
<td>DC 컨버터시 전기 주기 경고</td>
<td>프로그래밍 가능한 경고: 33.14 On-time 1 warn message 33.24 On-time 2 warn message</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DC capacitor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A88E</td>
<td>판넬 방각 팬 전기 주기 경고</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cabinet fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A88F</td>
<td>메인 방각 팬 전기 주기 경고</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cooling fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A890</td>
<td>추가 방각 팬 전기 주기 경고</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Additional cooling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| A8A0 | AI 입력 경고 | 아날로그 입력 신호가 지정한 한계치를 벗어났습니다. | 아래 보조 코드를 확인하십시오 (XYY).
X는 아날로그 입력 위치를 나타냅니다.
0: 제어 유닛 At; 1: I/O 확장 모듈 1 동.
YY는 입력 채널 및 한계치를 나타냅니다.
01: AI1 하한값, 02: AI1 상한값, 03: AI2 하한값, 04: AI2 상한값.
아날로그 입력의 신호 범위를 확인하십시오.
아날로그 입력선의 연결 상태를 확인하십시오.
아날로그 입력 하한값 및 상한값을 확인하십시오. (파라미터 그룹 12/14/15/16) |
| A8B0 | 신호 감시 1 경고 | 신호 감시 1에서 발생한 경고입니다. | 32.07 Supervision 1 signal을 확인하십시오. |
| | Signal supervision | (경고 메시지 편집 가능) 프로그래밍 가능한 경고: 32.06 Supervision 1 action | |
| A8B1 | 신호 감시 2 경고 | 신호 감시 2에서 발생한 경고입니다. | 32.17 Supervision 2 signal을 확인하십시오. |
| | Signal supervision | (경고 메시지 편집 가능) 프로그래밍 가능한 경고: 32.16 Supervision 2 action | |
| A8B2 | 신호 감시 3 경고 | 신호 감시 3에서 발생한 경고입니다. | 32.27 Supervision 3 signal을 확인하십시오. |
| | Signal supervision | (경고 메시지 편집 가능) 프로그래밍 가능한 경고: 32.26 Supervision 3 action | |
| A8BE | 사용자 정의 과부하 경고 | 모니터링 신호가 사용자 과부하 값선을 벗어났습니다. | 모니터링 신호의 상승 원인을 확인하십시오.
(전류를 모니터링하는 경우 부하 상태 확인)
사용자 부하 과선 설정을 확인하십시오. (파라미터 그룹 37 User load curve). |
<p>| | ULC overload warning | | |
| | | | |
| | | | |</p>
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>경고 메시지</th>
<th>경고 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABBF</td>
<td>사용자 정의 부족부하 경고</td>
<td>모니터링 신호가 사용자 부족부하 곡선을 빚어났습니다.</td>
<td>- 모니터링 신호의 증가 원인을 확인하십시오. (전류의 모니터링 카폰에 부하 상태 확인) - 사용자 부하 곡선 설정을 확인하십시오. (파라미터 그룹 37 User load curve)</td>
</tr>
<tr>
<td>ABC0</td>
<td>냉각팬 수명 경고</td>
<td>냉각팬이 추정 수명에 도달하였습니다.</td>
<td>- 아래 보조 코드를 확인하고 경고 발생 냉각팬을 교체하십시오. - 드라이브 메인 냉각팬 1: 제어 유닛 냉각팬 2: 제어 유닛 냉각팬 3: 판넬 냉각팬 4: 드라이브 내부 PCB 냉각팬</td>
</tr>
<tr>
<td>A981</td>
<td>외부 장치 1 경고</td>
<td>외부 장치 1에서 발생한 경고입니다.</td>
<td>- 외부 장치를 확인하십시오. - 31.01 External event 1 source를 확인하십시오.</td>
</tr>
<tr>
<td>A982</td>
<td>외부 장치 2 경고</td>
<td>외부 장치 2에서 발생한 경고입니다.</td>
<td>- 외부 장치를 확인하십시오. - 31.03 External event 2 source를 확인하십시오.</td>
</tr>
<tr>
<td>A983</td>
<td>외부 장치 3 경고</td>
<td>외부 장치 3에서 발생한 경고입니다.</td>
<td>- 외부 장치를 확인하십시오. - 31.05 External event 3 source를 확인하십시오.</td>
</tr>
<tr>
<td>A984</td>
<td>외부 장치 4 경고</td>
<td>외부 장치 4에서 발생한 경고입니다.</td>
<td>- 외부 장치를 확인하십시오. - 31.07 External event 4 source를 확인하십시오.</td>
</tr>
<tr>
<td>A985</td>
<td>외부 장치 5 경고</td>
<td>외부 장치 5에서 발생한 경고입니다.</td>
<td>- 외부 장치를 확인하십시오. - 31.09 External event 5 source를 확인하십시오.</td>
</tr>
<tr>
<td>AF80</td>
<td>INU-LSU 통신 상태 경고</td>
<td>인버터와 서플라이 유닛 간의 DDCS 통신 오류가 발생하였습니다.</td>
<td>- 서플라이 유닛의 상태 정보를 확인하십시오. (파라미터 06.36 및 06.39) - 파라미터 그룹 60의 설정을 확인하십시오. - 광통신선의 연결 상태를 확인하십시오.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>경고 메시지</th>
<th>경고 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>경고 메시지</td>
<td>경고 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| AF85 | 서플라이 유닛 상태 경고 | 서플라이 유닛에서 발생한 경고입니다. | • 해당 보조 코드는 서플라이 유닛에서 발생한 경고 코드를 나타냅니다.
• 서플라이 유닛의 펌웨어 매뉴얼을 참고하십시오. |
| AF8C | 프로세스 PID 슬립 모드 경고 | 드라이브가 슬립 모드로 진입하였습니다. | • 드라이브의 상태 정보를 나타냅니다.
• 페이지 67을 참고하십시오.
• 파라미터 40.41…40.48의 설정을 확인하십시오. |
| AF90 | 속도 제어기 오토 투닝 경고 | 속도 제어기 튜닝 과정이 성공적으로 완료되지 않았습니다. | • 아래 보조 코드를 확인하십시오.
• "YYYY"는 경고 발생 정보를 나타내며, 아래 코드를 확인하십시오. |
| 0000 | 오토 투닝 과정이 완료되기 전에 드라이브가 정지되었습니다. | 오토 투닝 수행 조건을 만족하는지 확인하십시오. | • 오토 투닝 수행 조건을 만족하는지 확인하십시오.
• 페이지 44를 참고하십시오. |
| 0001 | 드라이브가 실행되지 않았지만, 오토 투닝을 수행할 준비가 되지 않았습니다. | 드라이브 상태 정보를 나타냅니다. | • 드라이브 상태 정보를 나타냅니다.
• 페이지 31의 설정을 확인하십시오. |
| 0002 | 드라이브가 최고 속도에 도달하기 전에 설정 기준 트로크에 도달하지 못했습니다. | • 오토 투닝 수행 조건을 만족하는지 확인하십시오.
• 페이지 44를 참고하십시오. |
| 0003 | 모터를 최고 속도 및 최저 속도까지 가감속 시킬 수 없습니다. | 오토 투닝 수행 조건을 만족하는지 확인하십시오.
• 페이지 44를 참고하십시오. |
| 0005 | 모터를 오토 투닝 트로크로 가감속시킬 수 없습니다. | 오토 투닝 수행 조건을 만족하는지 확인하십시오.
• 페이지 44를 참고하십시오. |
| AFAA | 자동 리셋 경고 | 자동 리셋 기능이 동작하고 있습니다. | • 드라이브의 상태 정보를 나타냅니다.
• 파라미터 그룹 31의 설정을 확인하십시오. |
| AFE1 | 비상 정지 경고 (off2) | 비상 정지 명령이 입력되었습니다. | • 드라이브 운전 중에 문제가 없는지 확인하십시오.
• 외부 비상 정지 신호를 해제하십시오.
• 드라이브를 시작하십시오.
• 외부 비상 정지 중단 신호를 입력하십시오.
• 확인하십시오. (예를 들어, 21.05 Emergency stop source 또는 외부 제어기에서 수신된 제어 워드) |
| AFE2 | 비상 정지 경고 (off1/off3) | 비상 정지 명령이 입력되었습니다. | • 드라이브 운전 중에 문제가 없는지 확인하십시오.
• 외부 비상 정지 신호를 해제하십시오.
• 드라이브를 시작하십시오.
• 외부 비상 정지 중단 신호를 입력하십시오.
• 확인하십시오. (예를 들어, 21.05 Emergency stop source 또는 외부 제어기에서 수신된 제어 워드) |
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>경고 메시지</th>
<th>경고 원인</th>
<th>점검 사항</th>
</tr>
</thead>
</table>
| AFE7 | 팔로워 드라이브 상태 경고
(Follower) | 팔로워 드라이브가 트립되었습니다.
* 보조 코드를 확인하십시오.
* 해당 코드에 2를 더하면 풀트 발생 드라이브의 노드 주소를 추적할 수 있습니다.
* 풀트가 발생한 팔로워 드라이브를 점검하십시오. | - 보조 코드를 확인하십시오.
* 해당 코드에 2를 더하면 풀트 발생 드라이브의 노드 주소를 추적할 수 있습니다.
* 풀트가 발생한 팔로워 드라이브를 점검하십시오. |
| AFEA | 시작 허용 신호 경고
(Enable start signal missing) | 시작 허용 신호가 입력되지 않았습니다.
* 파라미터 20.19의 설정을 확인하십시오.
* 시작 허용 신호의 입력 상태를 확인하십시오. | - 파라미터 20.19의 설정을 확인하십시오.
* 시작 허용 신호의 입력 상태를 확인하십시오. |
| AFEB | 운전 허용 신호 경고
(Run enable missing) | 운전 허용 신호가 입력되지 않았습니다.
* 파라미터 20.12의 설정을 확인하십시오.
* 운전 허용 신호의 입력 상태를 확인하십시오. | - 파라미터 20.12의 설정을 확인하십시오.
* 운전 허용 신호의 입력 상태를 확인하십시오. |
| AFEC | 제어 전원 입력 상태 경고
(External power signal missing) | 제어 유닛의 XPOW 단자에 +24 V 제어 전원이 공급되지 않았습니다.
* 외부 제어 전원 공급 장치를 확인하십시오.
* 제어 전원을 내부에서 공급받는 경우에는 95.04의 설정을 Internal 24V로 변경하십시오. | - 외부 제어 전원 공급 장치를 확인하십시오.
* 제어 전원을 내부에서 공급받는 경우에는 95.04의 설정을 Internal 24V로 변경하십시오. |
| AFF6 | 모터 ID run 수행 경고
(Identification run) | 모터 ID run 과정을 수행하고 있습니다.
* 드라이브의 상태 정보를 나타냅니다. | - 드라이브의 상태 정보를 나타냅니다. |
| AFF7 | 오토 페이징 수행 경고
(Autophasing) | 오토 페이징을 수행하고 있습니다.
* 드라이브의 상태 정보를 나타냅니다. | - 드라이브의 상태 정보를 나타냅니다. |
| B5A0 | 안전 토큰 차단 동작 이벤트
(STO event) | 안전 토큰 차단이 동작하였습니다.
* 제어 유닛 XSTO 단자의 접속 상태를 확인하십시오. | - 제어 유닛 XSTO 단자의 접속 상태를 확인하십시오. |
| B5A2 | 메인 전원 투입 이벤트
(Power up) | 드라이브 메인 전원을 투입되었습니다.
* 드라이브의 상태 정보를 나타냅니다. | - 드라이브의 상태 정보를 나타냅니다. |
| B5A4 | SW 내부 진단 이벤트
(SW internal diagnostics) | 제어 유닛이 이상치 못한 상태에서 재부팅되었습니다.
* 96.55 Checksum control word에서 기준 체크섬 (96.56…96.59)이 하용되었는지 확인하십시오.
* 96.55 Checksum control word에서 체크섬 기능을 허용하고 실제값을 해당 파라미터에 복사하십시오. | - 96.55 Checksum control word에서 기준 체크섬 (96.56…96.59)이 하용되었는지 확인하십시오.
* 96.55 Checksum control word에서 체크섬 기능을 허용하고 실제값을 해당 파라미터에 복사하십시오. |
| B688 | 파라미터 체크섬 불일치 이벤트
(Checksum mismatch) | 계산된 파라미터 체크섬이 기준값과 일치하지 않습니다.
* 96.54 Checksum action에서 기존 체크섬 (96.56…96.59)이 하용되었는지 확인하십시오.
* 96.55 Checksum control word에서 체크섬 기능을 허용하고 실제값을 해당 파라미터에 복사하십시오. | - 96.54 Checksum action에서 기존 체크섬 (96.56…96.59)이 하용되었는지 확인하십시오.
* 96.55 Checksum control word에서 체크섬 기능을 허용하고 실제값을 해당 파라미터에 복사하십시오. |
폴트 메시지

<table>
<thead>
<tr>
<th>코드</th>
<th>폴트 메시지</th>
<th>폴트 원인</th>
<th>점검 사항</th>
</tr>
</thead>
</table>
- 만약 폴트가 지속된다면 가까운 ABB에 연락하여 점검을 받으십시오. |
| 2310 | 과전류 폴트 | 드라이버 출력 전류가 내부 폴트값을 초과하였습니다. 여기서 내부 폴트값은 대체로 드라이버 정격 전류의 약 220 % 정도입니다. | - 모터 및 모터 케이블의 연결 상태를 확인하십시오.
- 파라미터 그룹 23 (속도 제어), 26 (토크 제어), 28 (주파수 제어)에서 가속 시간 및 파라미터 46.01 Speed scaling, 46.02 Frequency scaling, 46.03 Torque scaling이 올바르지 확인하십시오.
- 모터가 Y열선 또는 D열선인지 확인하십시오.
- 모터 출력층간 접촉기가 없는지 확인하십시오.
- 파라미터 그룹 99에 모터 명판 데이터를 정확히 입력하십시오.
- 모터 충격에 역주 보상 커버티 또는 서지 잡수기가 설치되어 있는지 확인하고 이를 제거하십시오.
- 엔코더 및 호환성의 연결 상태를 확인하십시오.
- 아래 보조 코드를 확인하십시오 (XXX YYYZ).
- “YY”는 BCU를 사용하는 병렬 연결 인버터에서 폴트 발생 드라이브의 채널 번호를 나타냅니다.
- “ZZ”는 폴트 발생 위치를 나타냅니다.
| | | 모터 또는 모터 케이블이 출력되어 부하 불평형이 검출되었습니다. | 목표 임: 0: 정보 없음, 1: U상, 2: V상, 4: W상, 3/5/6/7: 복합적인 원인 |
| 2330 | 죄적 지락 폴트 | 프로그래밍 가능한 폴트: 31.20 Earth fault | - 모터 충격에 역주 보상 커버티 또는 서지 잡수기가 설치되어 있는지 확인하고 이를 제거하십시오.
- 모터와 모터 케이블의 접면 상태를 확인하십시오.
- 병렬 연결 모듈의 경우 보조 코드를 확인하십시오.
- “YY”는 BCU를 사용하는 병렬 연결 인버터에서 폴트 발생 드라이브의 채널 번호를 나타냅니다.
- “ZZ”는 폴트 발생 위치를 나타냅니다. |
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>룸트 메시지</th>
<th>룸트 원인</th>
<th>점검 사항</th>
</tr>
</thead>
</table>
| 2340 | Short circuit | 모터 또는 모터 케이블에서 단락이 발생하였습니다. | - 모터 및 모터 케이블의 절연 상태를 확인하십시오.
- 파라미터 99.10 Motor nominal power가 올바르게 설정되었는지 확인하십시오.
- 모터측에 역류 보상 커패시터 또는 서지 흡수기가 설치되어 있는지 확인하고 이를 제거하십시오.
- 아래 보조 코드를 확인하십시오 (XXX YYYZZ).
- “YYY”는 BCU를 사용하는 병렬 연결 인버터에서 룸트 발생 드라이브의 채널 번호를 나타냅니다.
- “ZZ”는 단락 발생 위치를 나타냅니다.
- 0: 정보 없음, 1: U상 상위 스위치, 2: U상 하위 스위치, 4: V상 상위 스위치, 8: V상 하위 스위치, 10: W상 상위 스위치, 20: W상 하위 스위치,
- other: 복합적인 원인)
- 원인이 제거된 경우에 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오. |
| 2381 | IGBT 과부하 룸트 | IGBT 접합면의 온도가 높습니다. 모터 케이블이 단락된 경우에도 발생할 수 있습니다. | - 주변 온도가 높지 않은지 확인하십시오.
- 메인 냉각팬의 운전 상태를 확인하십시오.
- 인버터 내부를 청소하십시오.
- 드라이브가 과부하 상태인지 확인하십시오. |
| 2391 | BU current difference | 병렬 연결 인버터 전류 편차 | 병렬 연결 인버터 모듈 간의 모터 출력 전류 편차가 큽니다. | - 모터 케이블의 접점 상태를 확인하십시오.
- 모터측에 역류 보상 커패시터 또는 서지 흡수기가 설치되어 있는지 확인하고 이를 제거하십시오.
- 아래 보조 코드를 확인하십시오 (XXX YYYZZ).
- “XXX”는 첫번째 오류 소스를 나타내며, “YYY”를 참고하십시오.
- “YYY”는 BCU를 사용하는 병렬 연결 인버터에서 룸트 발생 드라이브의 채널 번호를 나타냅니다.
- (1: 채널 1, 2: 채널 2, 4: 채널 3, 8: 채널 4, …, 800: 채널 12, other: 복합적인 원인)
- “ZZ”는 상정보를 나타냅니다.
- (1: U상, 2: V상, 3: W상) |
| 2392 | BU earth leakage | 병렬 연결 인버터 지락 | 병렬 연결 인버터에서 지락에 의한 고장 전류가 큽니다. | - 모터 케이블의 접점 상태를 확인하십시오.
- 모터측에 역류 보상 커패시터 또는 서지 흡수기가 설치되어 있는지 확인하고 이를 제거하십시오.
- 아래 보조 코드를 확인하십시오 (XXX YYYZZ).
- “XXX”는 첫번째 오류 소스를 나타내며, “YYY”를 참고하십시오.
- “YYY”는 BCU를 사용하는 병렬 연결 인버터에서 룸트 발생 드라이브의 채널 번호를 나타냅니다.
- (1: 채널 1, 2: 채널 2, 4: 채널 3, 8: 채널 4, …, 800: 채널 12, other: 복합적인 원인)
- “ZZ”는 상정보를 나타냅니다. |
| 3130 | Input phase loss | 입력 결상 | 입력 결상이 발생하여 DC 링크의 전압 레이스가 너무 큽니다. | - 입력 파워 퍼즈를 확인하십시오.
- 입력 케이블의 연결 상태를 확인하십시오.
- 입력 전류 불평형이 발생하는지 확인하십시오. |
<p>| 3180 | Charge relay lost | 충전 회로 이상 | 충전 회로에서 상태 확인 신호가 입력되지 않았습니다. | - 가까운 ABB에 연락하여 점검을 받으십시오. |</p>
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>폴트 메시지</th>
<th>폴트 원인</th>
<th>접검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>3181</td>
<td>입출력 케이블 결선 또는 출력 저항 풀트</td>
<td>드라이브 전원을 공통 DC 버스에서 공급하고 있습니다.</td>
<td>・파라미터 31.23를 No action으로 변경하십시오.</td>
</tr>
<tr>
<td></td>
<td>Wiring or earth fault</td>
<td>입출력 케이블이 모터 출력 단자에 연결되었습니다.</td>
<td>・모터 또는 모터 케이블의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 풀트: 31.23 Wiring or earth fault</td>
<td>모터 또는 모터 케이블의 저항에 의해 부하 불평형이 발생하였습니다.</td>
<td>・모터측 액체 보상 커버시터 또는 서지 흡수기 가 설치되어 있는지 확인하고 이를 제거하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・모터와 모터 케이블의 절연 상태를 확인하십시오.</td>
</tr>
<tr>
<td>3210</td>
<td>DC 링크 과전압 풀트</td>
<td>DC 링크 전압이 폴트값보다 높습니다.</td>
<td>・파라미터 30.30이 허용되었는지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>DC link overvoltage</td>
<td>주로 모터 감속시 발생할 수 있습니다.</td>
<td>・전압 설정 (95.01 Supply voltage)이 올바른지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・입력 파워 퓨즈를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・입력 케이블의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・정전이 발생하였는지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・아래 보조 코드를 확인하십시오 (XXXX YYYY).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・"Y YY"는 BCU를 사용하는 병렬 연결 인버터에서 풀트 발생 드라이브의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・공급 전압 범위 설정에 따른 과전압 폴트 레벨은 페이지 77에서 확인할 수 있습니다.</td>
</tr>
<tr>
<td>3220</td>
<td>DC 링크 부족전압 풀트</td>
<td>DC 링크 전압이 폴트값보다 낮습니다.</td>
<td>・입력 파워 퓨즈를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>DC link undervoltage</td>
<td></td>
<td>・입력 케이블의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・정전이 발생하였는지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・아래 보조 코드를 확인하십시오 (XXXX YYYY).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・"Y YY"는 BCU를 사용하는 병렬 연결 인버터에서 풀트 발생 드라이브의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・공급 전압 범위 설정에 따른 부족전압 폴트 레벨은 페이지 77에서 확인할 수 있습니다.</td>
</tr>
<tr>
<td>3280</td>
<td>자동 재시동 폴트</td>
<td>드라이브를 자동으로 재시동하기 위한 대기 시간을 초과하였습니다.</td>
<td>・입력 전원의 공급 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Standby timeout</td>
<td></td>
<td>(전압, 케이블, 퓨즈, 입력 차단기 등)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・페이지 76을 참고하십시오.</td>
</tr>
<tr>
<td>3291</td>
<td>병렬 연결 인버터 DC 전압 편차 풀트</td>
<td>병렬 연결 인버터 간의 DC 링크의 전압 편차가 큽니다.</td>
<td>・아래 보조 코드를 확인하십시오 (XXXX YYYY).</td>
</tr>
<tr>
<td></td>
<td>BU DC link difference</td>
<td></td>
<td>・"XXX"는 첫번째 오류 소스를 나타내며, "YYY"를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・"Y YY"는 BCU를 사용하는 병렬 연결 인버터에서 풀트 발생 드라이브의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1: 채널 1, 2: 채널 2, 4: 채널 3, 8: 채널 4, ..., 800: 채널 12)</td>
</tr>
<tr>
<td>3381</td>
<td>출력 결상 폴트</td>
<td>모터 케이블이 결상되었습니다.</td>
<td>・모터 케이블의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Output phase loss</td>
<td></td>
<td>・출력측에 접촉기를 사용하는 경우에 접촉기의 동작 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 폴트: 31.19 Motor phase loss</td>
<td></td>
<td>・출력 케이블의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・출력측에 접촉기를 사용하는 경우에 접촉기의 동작 상태를 확인하십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>폴트 메시지</td>
<td>폴트 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| 3385 | 오토 페이지 폴트 Autophasing | 오토 페이지 과정이 정상 완료되지 않습니다. | - 오토 페이지 모드를 변경해서 시도하십시오. (파라미터 21.13 Autophasing mode)
- 엔코더가 옅점을 필수 (Z상)를 출력한다면 Turning with Z-pulse 모드를 선택하십시오.
- 모터 ID run이 정상 완료되었는지 확인하십시오.
- 파라미터 98.15를 클리어하십시오.
- 엔코더의 기계적인 설치 상태를 확인하십시오.
- 오토 페이지를 수행하는 동안 모터가 회전하고 있었는지 확인하십시오.
- 파라미터 99.03 Motor type 설정이 올바른지 확인하십시오. |
| 4000 | 모터 케이블 과부하 폴트 Motor cable overload | 모터 케이블의 주정 온도가 폴트값보다 높습니다. | - 파라미터 35.61 및 35.62의 설정을 확인하십시오.
- 부하 용량에 적합한 케이블인지 확인하십시오. |
| 4210 | IGBT 과열 폴트 IGBT overtemperature | 드라이브 IGBT의 주정 온도가 높습니다. | - 주변 온도가 높지 않은지 확인하십시오.
- 드라이브의 부하 상태를 확인하십시오.
- 메인 납작팬의 운전 상태를 확인하십시오.
- 인버터 내부를 청소하십시오. |
| 4290 | 드라이브 냉각 상태 폴트 Cooling | 냉각 성능이 저하되어 드라이브 모듈의 온도가 높습니다. | - 주변 온도가 높지 않은지 확인하십시오.
- 주변 온도가 40 °C를 초과하는 경우 부하 전류가 정격 용량을 초과하지 않도록 하십시오.
- 드라이브의 부하 상태를 확인하십시오.
- 메인 납작팬의 운전 상태를 확인하십시오.
- 인버터 내부를 청소하십시오. |
| 42F1 | IGBT 온도 폴트 IGBT temperature | 드라이브 IGBT의 온도가 폴트값 (100 %) 보다 높습니다. | - 주변 온도가 높지 않은지 확인하십시오.
- 드라이브의 부하 상태를 확인하십시오.
- 메인 납작팬의 운전 상태를 확인하십시오.
- 인버터 내부를 청소하십시오. |
| 4310 | 온도 초과 폴트 Excess temperature | 파워 유닛의 온도가 높습니다. | - A4B0 (페이지 493)를 참고하십시오. |
| 4380 | 각 상 온도 절차 폴트 Excess temperature difference | 각 상 IGBT의 온도 절차가 끊입니다. | - A4B1 (페이지 493)를 참고하십시오. |
| 4981 | 외부 온도 센서 1 폴트 External temperature 1 (폴트 메시지 편집 가능) | 측정 온도 1이 폴트값을 초과하였습니다. | - 파라미터 35.02 Measured temperature 1에서 온도 측정값을 확인하십시오.
- 파라미터 35.12 Temperature 1 fault limit에서 폴트값을 확인하십시오.
- 모터 (피측정 대상)의 냉각 상태를 확인하십시오. |
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>폴트 메시지</th>
<th>폴트 원인</th>
<th>점검 사항</th>
</tr>
</thead>
</table>
| 4982 | 외부 온도 센서 2 폴트 (폴트 메시지 편집 가능) | 측정 온도가 폴트값을 초과하였습니다. | - 파라미터 35.03 Measured temperature 2에서 온도 측정값을 확인하십시오.
- 파라미터 35.22 Temperature 2 fault limit에서 폴트값을 확인하십시오.
- 모터 (피측정 대상)의 냉각 상태를 확인하십시오. |
| 4990 | FPTC 모듈 이상 폴트 (폴트 메시지 편집 가능) | 파라미터 35.30에서 FPTC 열 보호 모듈이 설정되었지만 해당 모듈이 정상적으로 검출되지 않았습니다. | - FPTC 모듈의 접속 상태를 확인하십시오.
- 보조 코드의 마지막 자릿수는 슬롯 번호입니다. |
| 4991 | 모터 온도 1 폴트 (폴트 메시지 편집 가능) | 제어 유닛의 슬롯 1에 설치된 서머터 열 보호 모듈 FPTC-xx에서 과열 폴트가 발생하였습니다. | - 모터의 냉각 상태를 확인하십시오.
- 모터의 부하 상태를 확인하십시오.
- 온도 센서의 접선 상태를 확인하십시오.
- 온도 센서의 저항값이 올바른지 확인하십시오. |
| 4992 | 모터 온도 2 폴트 (폴트 메시지 편집 가능) | 제어 유닛의 슬롯 2에 설치된 서머터 열 보호 모듈 FPTC-xx에서 과열 폴트가 발생하였습니다. | - 모터의 냉각 상태를 확인하십시오.
- 모터의 부하 상태를 확인하십시오.
- 온도 센서의 접선 상태를 확인하십시오.
- 온도 센서의 저항값이 올바른지 확인하십시오. |
| 4993 | 모터 온도 3 폴트 (폴트 메시지 편집 가능) | 제어 유닛의 슬롯 3에 설치된 서머터 열 보호 모듈 FPTC-xx에서 과열 폴트가 발생하였습니다. | - 모터의 냉각 상태를 확인하십시오.
- 모터의 부하 상태를 확인하십시오.
- 온도 센서의 접선 상태를 확인하십시오.
- 온도 센서의 저항값이 올바른지 확인하십시오. |
| 5080 | 메인 냉각팬 상태 폴트 (프로그래밍 가능한 폴트: 31.35 Main fan fault function) | 메인 냉각팬의 피드백 신호가 올바르지 않습니다. | - A581 (페이지 49)를 참고하십시오. |
| 5081 | 제어 유닛 냉각팬 상태 폴트 (프로그래밍 가능한 폴트: 31.36 Aux fan fault function) | 제어 유닛에 설치된 냉각팬이 정상적으로 동작하지 않았습니다. | - A582 (페이지 49)를 참고하십시오. |
| 5090 | STO 하드웨어 이상 폴트 (STO hardware failure) | 안전 토큰 차단 하드웨어가 정상적이지 않습니다. | - 보조 코드를 확인하고 가까운 ABB에 연락하여 점검을 받으십시오.
- 이 코드에는 병렬 연결 인버터의 채널 번호를 포함하고 있습니다.
비트 31...28: 인버터 번호 (0...11).
모두 111: 드라이브와 제어 유닛의 STO 채널.
비트 27: 인버터 모듈의 STO 상태
비트 26: 제어 유닛의 STO 상태
비트 25: 제어 유닛의 STO1 상태
비트 24: 제어 유닛의 STO2 상태
비트 23...12: 인버터 모듈 12...1의 STO1 상태
(재매기 없는 모듈 번호는 1로 세트됨)
비트 11...0: 인버터 모듈 12...1의 STO2 상태
(재매기 없는 모듈 번호는 1로 세트됨) |
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>폴트 메시지</th>
<th>폴트 원인</th>
<th>점검 사항</th>
</tr>
</thead>
</table>
| 5091 | 안전 토크 차단 동작 폴트 Safe torque off 프로그래밍 가능한 폴트: 31.22 STO indication run/stop | 안전 토크 차단 기능이 동작하였음. | STO 신호선의 연결 상태를 확인하십시오.
XSTO 단자의 접속 상태를 확인하십시오. |
| 5092 | 파워 유닛 로직 이상 폴트 PU logic error | 파워 유닛 메모리가 죽어있었습니다. | 드라이브의 메인 전원을 켜다 캐십시오.
외부에서 제어 전원을 공급하는 경우에는 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.
문제가 지속되면 가까운 ABB에 연락하여 점검을 받으십시오. |
| 5093 | 용량 설정 불일치 폴트 Rating ID mismatch | 드라이브의 하드웨어 용량과 메모리 유닛에 저장된 용량 정보가 일치하지 않습니다. 이 폴트는 메모리 유닛을 교체하겠거나 업데이트한 경우에 발생할 수 있습니다. | 드라이브의 메인 전원을 켜다 캐십시오.
아래 보조 코드를 확인하십시오.
1 = PU과 CU의 용량 설정이 일치하지 않습니다.
2 = 병렬 연결 인버터 용량 ID가 변경되었습니다.
3 = 모든 파워 유닛의 타입이 같지 않습니다.
4 = 병렬 연결 인버터가 단일 유닛으로 동작합니다.
5 = 현재 PU로 선택된 용량을 구성할 수 없습니다.
6 = PU 용량 ID가 0입니다.
7 = 현재 PU에서 ID 및 타입을 읽을 수 없습니다.
8 = 현재 PU를 지원하지 않습니다.(복합 등급).
9 = 전류 용량이 낮은 PU가 포함되어 있습니다.
10 = 현재 하드웨어에 용량 ID를 찾을 수 없습니다.
단, PU = Power Unit, CU = Control Unit입니다.
BCU를 사용하는 병렬 연결 인버터의 보조 코드 형식은 0X0Y입니다.
"Y"는 보조 코드 카테고리를 나타냅니다.
"X"는 첫번째 폴트가 발생한 PU 채널 번호이며, 이것은 16진수로 표현됩니다 (1…C). |
<p>| 5094 | 온도 측정 회로 상태 폴트 Measurement circuit temperature | 드라이브의 내부 온도 측정 회로에서 문제가 발생하였습니다. | ASEA (페이지 494)를 참고하십시오. |</p>
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>폴트 메시지</th>
<th>폴트 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>5681</td>
<td>파워 유닛 통신 상태 폴트</td>
<td>제어 유닛의 전원 공급 방식이 파라미터 설정과 일치하지 않습니다.</td>
<td>· 파라미터 95.04를 External 24V로 설정하십시오.</td>
</tr>
<tr>
<td></td>
<td>PU communication</td>
<td></td>
<td>· 드라이브 제어 유닛과 파워 유닛 간의 통신 오류가 발생하였습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 드라이브 제어 유닛과 파워 유닛 간의 접속 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 아래 보조 코드를 확인하십시오 (XXXX YYYY).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"Y YY"는 BCU를 사용하는 병렬 연결 인버터에서 폴트 발생 드라이브의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"ZZ"는 폴트 발생 소스를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1: 송신측 [링크 오류], 2: 송신측 [통신 중단], 3: 수신측 [링크 오류], 4: 수신측 [통신 중단], 5: 전송 FIFO 오류 ["XXX" 참고], 6: 모듈 없음 [xNT 보드], 7: BAMU 보드 없음).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"XXX"는 전송 FIFO 오류 코드를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1: 내부 오류 [유 효하지 않은 파라미터 접근], 2: 내부 오류 [지원되지 않는 구성], 3: 버퍼 초과).</td>
</tr>
<tr>
<td>5682</td>
<td>파워 유닛 이상 폴트</td>
<td>파워 유닛에 전원이 공급되지 않았거나 제어 유닛과 파워 유닛이 정상적으로 접속되지 않았습니다.</td>
<td>· 메인 전원의 입력 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>Power unit lost</td>
<td></td>
<td>· 드라이브 제어 유닛과 파워 유닛 간의 접속 상태를 확인하십시오.</td>
</tr>
<tr>
<td>5690</td>
<td>파워 유닛 통신 상태 폴트</td>
<td>드라이브 제어 유닛과 파워 유닛 간의 통신 오류가 발생하였습니다.</td>
<td>· 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>5691</td>
<td>측정 회로 ADC 상태 폴트</td>
<td>파워 유닛의 측정 회로 (ADC)에서 문제가 발생하였습니다.</td>
<td>· 보조 코드를 확인하고 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>5692</td>
<td>파워 유닛 전원 상태 폴트</td>
<td>파워 유닛에 정상적으로 제어 전원이 공급되지 않았습니다.</td>
<td>· 아래 보조 코드를 확인하십시오 (ZZZY YYYY).</td>
</tr>
<tr>
<td></td>
<td>PU board powerfail</td>
<td></td>
<td>"YY Y"는 인버터 모듈의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(BCU = 0...C, ZCU = 0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>"XX"는 폴트 발생 장치의 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1: 전원 공급 장치 1, 2: 전원 공급 장치 2, 3: 복합적인 원인)</td>
</tr>
<tr>
<td>5693</td>
<td>측정 회로 DFF 상태 폴트</td>
<td>파워 유닛의 전압/전류 측정 회로에서 문제가 발생하였습니다.</td>
<td>· 보조 코드를 확인하고 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>5694</td>
<td>파워 유닛 통신 구성 폴트</td>
<td>병렬 연결된 파워 모듈의 개수가 이상 수량과 다릅니다.</td>
<td>· 파라미터 95.31의 설정을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>PU communication configuration</td>
<td></td>
<td>· 드라이브의 메인 전원을 겉다 켜십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 외부에서 제어 전원을 공급하는 경우에는 96.08 Control board boot[1]를 써 주거나 제어 유닛을 재부팅하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 문제가 지속되면 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>5695</td>
<td>드라이브 축소 운전 폴트</td>
<td>파라미터 95.13 Reduced run mode에 설정한 인버터 수량이 실제 설치되어 있는 수량과 일치하지 않습니다.</td>
<td>· 인버터 모듈 수량과 95.13 Reduced run mode의 설정 수량을 일치시키십시오.</td>
</tr>
<tr>
<td></td>
<td>Reduced run</td>
<td></td>
<td>· 드라이브의 DC 전원 공급 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· BCU 제어 유닛과 인버터 모듈 사이의 광통신선 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 유지 보수가 완료되어 모든 드라이브 모듈이 정상 동작하는 경우 95.13을 0으로 설정하십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>플롯 메시지</td>
<td>플롯 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>5696</td>
<td>파일 유닛 상태 피드백 롤트 PU state feedback</td>
<td>드라이브의 출력 상태 피드백 신호가 제어 신호와 일치하지 않습니다.</td>
<td>발생한 코드를 확인하고 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>5697</td>
<td>중전 상태 피드백 롤트 Charging feedback</td>
<td>파라미터 설정이 올바르지 않습니다.</td>
<td>파라미터 95.09의 설정을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중전 스위치와 DC 스위치가 정해진 순서대로 동작하지 않았습니다.</td>
<td>만약 중전 컨트롤러 (xSFC)가 설치되었다면 해당 파라미터를 Enable로 설정하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중전 화로에서 문제가 발생하였습니다.</td>
<td>중전 화로의 동작 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중전 화로의 동작 상태를 확인하십시오.</td>
<td>아래 보조 코드를 확인하십시오 (XX00).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중전 화로의 동작 상태를 확인하십시오.</td>
<td>“XX”는 병렬 연결 R8i 모듈인 경우 인버터 모듈의 채널 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중전 화로의 동작 상태를 확인하십시오.</td>
<td>“FA”는 R6i/R7i 프레임 모듈인 경우 제어 신호와 중전 접촉기 동작 신호와의 불일치 정보입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>중전 화로의 동작 상태를 확인하십시오.</td>
<td>문제가 지속되면 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>5698</td>
<td>파일 유닛 Unknown 플롯 Unknown power unit fault</td>
<td>파일 유닛의 로직 정보를 확인할 수 없습니다.</td>
<td>파일 유닛 로직이 호환 가능한지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파일 유닛의 로직이 호환 가능하지 확인하십시오.</td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>6000</td>
<td>내부 소프트웨어 오류 롤트 Internal SW error</td>
<td>내부 소프트웨어에서 널 포인트 (Null pointer)를 접근하고 있습니다.</td>
<td>보조 코드를 확인하고 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>6181</td>
<td>FPGA 버전 호환성 롤트 FPGA version incompatible</td>
<td>파라미터의 버전과 및 FPGA 버전이 호환되지 않거나 파일 유닛 빈도에서 통신 오류가 발생하였습니다.</td>
<td>파라미터의 버전을 적재 커뮤니티.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터의 버전을 적재 커뮤니티.</td>
<td>외부에서 제어 스위치를 공급하는 경우에는 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터의 버전을 적재 커뮤니티.</td>
<td>문제가 지속되면 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>파라미터의 버전을 적재 커뮤니티.</td>
<td>다시 업데이트를 시도하십시오.</td>
</tr>
<tr>
<td>6200</td>
<td>파일 유닛 제크섬 불일치 롤트 Checksum mismatch</td>
<td>계산된 파일 유닛 체크섬이 기준값과 일치하지 않습니다.</td>
<td>A886 (페이지 495)를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>프로그래밍 가능한 롤트 96.54 Checksum action</td>
<td>프로그래밍 가능한 롤트 96.54 Checksum action.</td>
<td></td>
</tr>
<tr>
<td>6306</td>
<td>FBA A 매핑 파일 롤트 FBA A mapping file</td>
<td>필드버스 어댑터 A의 매핑 파일을 읽는 도중에 오류가 발생하였습니다.</td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>6307</td>
<td>FBA B 매핑 파일 롤트 FBA B mapping file</td>
<td>필드버스 어댑터 B의 매핑 파일을 읽는 도중에 오류가 발생하였습니다.</td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>6481</td>
<td>태스크 과부하 롤트 Task overload</td>
<td>드라이브의 업데이트 관련 롤트입니다.</td>
<td>드라이브의 메인 전원을 꺼라 커뮤니티.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>태스크 수행 시간이 프로그램의 처리 시간보다 길다.</td>
<td>외부에서 제어 스위치를 공급하는 경우에는 96.08 Control board boot의 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>태스크 수행 시간이 프로그램의 처리 시간보다 길다.</td>
<td>문제가 지속되면 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>6487</td>
<td>스택 오버플로우 롤트 Stack overflow</td>
<td>드라이브의 업데이트 관련 롤트입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>스택이 할당된 것보다 많은 스택을 사용하려고 합니다.</td>
<td></td>
</tr>
<tr>
<td>64A1</td>
<td>내부 파일 로딩 롤트 Internal file load</td>
<td>드라이브의 업데이트 관련 롤트입니다.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>내부 파일을 로딩하는 도중에 오류가 발생하였습니다.</td>
<td></td>
</tr>
<tr>
<td>64A2</td>
<td>내부 기록 데이터 로딩 롤트 Internal record load</td>
<td>내부 기록 데이터를 로딩하는 도중에 오류가 발생하였습니다.</td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>풀트 메시지</td>
<td>풀트 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>64A3</td>
<td>응용 프로그램 로딩 풀트 (Application loading)</td>
<td>응용 프로그램 파일이 호환되지 않거나 순상되었습니다.</td>
<td>• 아래 보조 코드를 확인하십시오.</td>
</tr>
<tr>
<td>8006</td>
<td>응용 프로그램을 위한 메모리 공간이 부족합니다.</td>
<td>응용 프로그램의 용량을 줄이십시오.</td>
<td>• 파라미터 매핑 수량을 감소시킵시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Automation Builder에서 생성된 로그 파일을 확인하십시오.</td>
<td>• 최신 버전의 Automation Builder를 재설치하거나 시스템 라이브러리를 업데이트하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Automation Builder에서 생성된 로그 파일을 확인하십시오.</td>
</tr>
<tr>
<td>8007</td>
<td>응용 프로그램에 호환되지 않는 라이브러리 버전이 있습니다.</td>
<td>최신 버전의 Automation Builder를 재설치하거나 시스템 라이브러리를 업데이트하십시오.</td>
<td>• 최신 버전의 Automation Builder를 재설치하거나 시스템 라이브러리를 업데이트하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Automation Builder에서 생성된 로그 파일을 확인하십시오.</td>
</tr>
<tr>
<td>8008</td>
<td>응용 프로그램이 비어 있습니다.</td>
<td>Automation Builder에서 "Clean"을 선택하고 다시 컴파일하여 다운로드하십시오.</td>
<td>• 라이선스 옵션이 설치되었는지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 다음과 다시 컴파일하여 다운로드하십시오.</td>
</tr>
<tr>
<td>8009</td>
<td>응용 프로그램에 잘못된 태스크가 존재합니다.</td>
<td>Automation Builder에서 태스크 구성을 확인하고 "Clean all"을 선택하십시오.</td>
<td>• 라이선스 옵션이 설치되었는지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Automation Builder에서 생성된 로그 파일을 확인하십시오.</td>
</tr>
<tr>
<td>800A</td>
<td>응용 프로그램에 알 수 없는 시스템 라이브러리 함수가 있습니다.</td>
<td>최신 버전의 Automation Builder를 재설치하거나 시스템 라이브러리를 업데이트하십시오.</td>
<td>• 최신 버전의 Automation Builder를 재설치하거나 시스템 라이브러리를 업데이트하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Automation Builder에서 생성된 로그 파일을 확인하십시오.</td>
</tr>
<tr>
<td>64A5</td>
<td>풀웨어 라이선스 풀트 (Licensing fault)</td>
<td>라이선스 음성이 있어 제어 프로그램의 실행이 금지되었습니다.</td>
<td>• 라이선스 음성이 설치되었는지 확인하십시오.</td>
</tr>
<tr>
<td>64A6</td>
<td>아답티브 프로그램 풀트 (Adaptive program)</td>
<td>아답티브 프로그램에서 실행 오류가 발생하였습니다.</td>
<td>• 아답보 코드를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• "XXXX YYYY"는 기능 블록 번호를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• (0000 = 일반적인 오류)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• "YYYY"는 풀트 발생 원인을 나타내며, 아래 보조 코드를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• (0000 = 일반적인 오류)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• "YYYY"는 풀트 발생 원인을 나타내며, 아래 보조 코드를 확인하십시오.</td>
</tr>
<tr>
<td>000A</td>
<td>프로그램이 손상되었거나 존재하지 않습니다.</td>
<td>타입별 프로그램으로 복원하십시오.</td>
<td>• 타입별 프로그램으로 복원하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 작성 프로그램을 드라이브에 다운로드하십시오.</td>
</tr>
<tr>
<td>000C</td>
<td>기능 블록의 입력이 누락되었습니다.</td>
<td>기능 블록의 입력을 확인하십시오.</td>
<td>• 기능 블록의 입력이 누락되었습니다.</td>
</tr>
<tr>
<td>000E</td>
<td>프로그램이 손상되었거나 존재하지 않습니다.</td>
<td>타입별 프로그램으로 복원하십시오.</td>
<td>• 기능 블록의 입력이 누락되었습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 작성 프로그램을 드라이브에 다운로드하십시오.</td>
</tr>
<tr>
<td>0011</td>
<td>프로그램 용량이 졌습니다.</td>
<td>오류가 발생할 때까지 기능 블록을 제거하십시오.</td>
<td>• 오류가 발생할 때까지 기능 블록을 제거하십시오.</td>
</tr>
<tr>
<td>0012</td>
<td>프로그램이 비어 있습니다.</td>
<td>타입별 프로그램으로 복원하십시오.</td>
<td>• 오류가 발생할 때까지 기능 블록을 제거하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 작성 프로그램을 드라이브에 다운로드하십시오.</td>
</tr>
<tr>
<td>001C</td>
<td>프로그램에 존재하지 않는 파라미터가 사용되었습니다.</td>
<td>프로그램에서 파라미터 번호를 수정하십시오.</td>
<td>• 프로그램에 존재하지 않는 파라미터가 사용되었습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 작성 프로그램을 드라이브에 다운로드하십시오.</td>
</tr>
<tr>
<td>001D</td>
<td>현재 선택한 파라미터 타입이 유효하지 않습니다.</td>
<td>프로그램에서 유효한 파라미터로 수정하십시오.</td>
<td>• 현재 선택한 파라미터가 유효하지 않습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 작성 프로그램을 드라이브에 다운로드하십시오.</td>
</tr>
<tr>
<td>001E</td>
<td>기능 블록 출력에 쓰기 동작이 불가능한 파라미터가 연결되었습니다.</td>
<td>읽기 전용 파라미터가 있는지 확인하십시오.</td>
<td>• 읽기 전용 파라미터가 있는지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 사용자 잡금 기능으로 쓰기 금지된 파라미터가 있는지 확인하십시오.</td>
</tr>
<tr>
<td>0023</td>
<td>프로그램 파일을 현재 풀웨어 버전에서 사용할 수 없습니다.</td>
<td>현재 드라이브 풀웨어 버전에 맞도록 프로그램을 다시 작성하십시오.</td>
<td>• 현재 드라이브 풀웨어 버전에 맞도록 프로그램을 다시 작성하십시오.</td>
</tr>
<tr>
<td>0024</td>
<td></td>
<td></td>
<td>• 최대 20개 이상의 기능 블록을 사용하십시오.</td>
</tr>
<tr>
<td>002A</td>
<td>너무 많은 기능 블록이 사용되었습니다.</td>
<td></td>
<td>• 최대 20개 이상의 기능 블록을 사용하십시오.</td>
</tr>
</tbody>
</table>

516 Fault tracing
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>풀트 메시지</th>
<th>풀트 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td>· 보조 코드를 확인하고 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>64B0</td>
<td>메모리 유닛 분실 풀트</td>
<td>메모리 유닛이 분리되었습니다</td>
<td>· 제어 유닛의 전원을 차단하고 메모리 유닛을 다시 설치하십시오.</td>
</tr>
<tr>
<td></td>
<td>Memory unit detached</td>
<td></td>
<td>· 실제 분리되지 않은 경우 메모리 유닛과 제어 유닛 간의 접속 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 드라이브의 메인 전원을 껐다 켜십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 외부에서 제어 전원을 공급하는 경우에는 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 문제가 지속되면 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>64B1</td>
<td>내부 소프트웨어 초기화 풀트</td>
<td>소프트웨어 초기화 또는 로딩 과정에서 오류가 발생하였습니다.</td>
<td>· 드라이브의 메인 전원을 껐다 켜십시오.</td>
</tr>
<tr>
<td></td>
<td>Internal SSW fault</td>
<td>드라이브 펌웨어 관련 몰드입니다.</td>
<td>· 외부에서 제어 전원을 공급하는 경우에는 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 문제가 지속되면 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>64B2</td>
<td>사용자 파라미터 세트 로딩 풀트</td>
<td>요청한 파라미터 세트가 존재하지 않거나 파라미터 세트를 로딩하는 도중 전원이 차단되었습니다.</td>
<td>· 사용자 파라미터 세트가 유효한지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>User set fault</td>
<td></td>
<td>· 불확실할 경우 파라미터 세트를 다시 저장하십시오.</td>
</tr>
<tr>
<td>64E1</td>
<td>커널 과부하 풀트</td>
<td>운영체제에서 오류가 발생하였습니다.</td>
<td>· 드라이브의 메인 전원을 껐다 켜십시오.</td>
</tr>
<tr>
<td></td>
<td>Kernel overload</td>
<td></td>
<td>· 외부에서 제어 전원을 공급하는 경우에는 96.08 Control board boot에 1을 써주거나 제어 유닛을 재부팅하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>· 문제가 지속되면 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>6581</td>
<td>파라미터 시스템 풀트</td>
<td>파라미터 로딩 또는 저장 과정에서 오류가 발생하였습니다.</td>
<td>· 96.07에서 파라미터를 수동으로 저장하십시오.</td>
</tr>
<tr>
<td></td>
<td>Parameter system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65A1</td>
<td>FBA A 파라미터 충돌 풀트</td>
<td>외부 컨트롤러에서 필드버스 어댑터 A로 요청한 기능이 없거나 허용되지 않습니다.</td>
<td>· PLC 프로그램을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>FBA A parameter conflict</td>
<td></td>
<td>· 파라미터 그룹 50 Fieldbus adapter (FBA) 및 51 FBA A settings의 설정을 확인하십시오.</td>
</tr>
<tr>
<td>65A2</td>
<td>FBA B 파라미터 충돌 풀트</td>
<td>외부 컨트롤러에서 필드버스 어댑터 B로 요청한 기능이 없거나 허용되지 않습니다.</td>
<td>· PLC 프로그램을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>FBA B parameter conflict</td>
<td></td>
<td>· 파라미터 그룹 50 Fieldbus adapter (FBA) 및 54 FBA B settings의 설정을 확인하십시오.</td>
</tr>
<tr>
<td>65B1</td>
<td>기준 소스 충돌 풀트</td>
<td>기준 소스가 서로 다른 단위의 파라미터에 중복 설정되었습니다.</td>
<td>· A6DA (페이지 497)를 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td>Reference source parameterization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6681</td>
<td>EFB 통신 상태 풀트</td>
<td>임베디드 필드버스 링크에서 통신 오류가 발생하였습니다.</td>
<td>· 마스터 통신 장치의 동작 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>EFB comm loss</td>
<td></td>
<td>· 제어 유닛에서 XD2D 단자의 접속 상태 및 케이블의 연결 상태를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로그래밍 가능한 풀트: 58.14 Communication loss action</td>
<td></td>
</tr>
<tr>
<td>6682</td>
<td>EFB 구성 파일 풀트</td>
<td>임베디드 필드버스 구성 파일을 읽을 수 없습니다.</td>
<td>· 가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td></td>
<td>EFB config file</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6683</td>
<td>EFB 파라미터 호환성 풀트</td>
<td>임베디드 필드버스 파라미터가 선택된 통신 프로토콜에 호환되지 않습니다.</td>
<td>· 파라미터 그룹 58의 설정을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td>EFB invalid parameterization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>폴트 메시지</td>
<td>폴트 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
</tr>
<tr>
<td>6684</td>
<td>EFB 프로토콜 로딩 폴트</td>
<td>EFB 프로토콜 로딩 할 수 없습니다.</td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>6681</td>
<td>텍스트 데이터 오버플로우 폴트</td>
<td>드라이브 폴터에 관련 데이터를 출력합니다.</td>
<td>드라이브의 메인 전원을 꺼나 커십시오.</td>
</tr>
<tr>
<td>6683</td>
<td>64비트 텍스트 데이터 오버플로우 폴트</td>
<td>Text 64-bit table overflow</td>
<td>Text 64-bit table overflow</td>
</tr>
<tr>
<td>6685</td>
<td>텍스트 파일 오버플로우 폴트</td>
<td>Text file overflow</td>
<td>Text file overflow</td>
</tr>
<tr>
<td>7080</td>
<td>음선 모듈 통신 상태 폴트</td>
<td>음선 모듈과 제어 유닛 간의 통신 오류가 발생하였습니다.</td>
<td>A798 (페이지 499)을 참고하십시오.</td>
</tr>
<tr>
<td>7081</td>
<td>제어 패널 통신 상태 폴트</td>
<td>제어 패널 또는 PC 통과 드라이브 간의 통신이 중단되었습니다.</td>
<td>제어 패널 또는 PC 통과 드라이브 간의 통신이 중단되었습니다.</td>
</tr>
<tr>
<td>7082</td>
<td>외부 I/O 모듈 통신 상태 폴트</td>
<td>검출된 I/O 모듈과 파라미터 설정이 일치하지 않습니다.</td>
<td>아래 보조 코드를 확인하십시오 (XXXX YYYY).</td>
</tr>
<tr>
<td>00 0001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 0002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 0003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00 0004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7083</td>
<td>제어 패널 기준 소스 출동 폴트</td>
<td>제어 패널에 저장된 기준 소스가 서로 다른 단위 (예: 속도, 토크, 주파수)의 파라미터에 중복 설정되어 있습니다.</td>
<td>제어 패널은 동시에 하나의 기준 소스 타입만을 저장할 수 있습니다.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>폴트 메시지</td>
<td>폴트 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 7084 | 제어 패널/PC 톨 버전 충돌 폴트 Panel/PC tool version conflict | 현재의 제어 패널 또는 PC 톨 버전에서 해당 기능을 지원하지 않습니다. | - 제어 패널 또는 PC 톨을 최신 버전으로 업데이트 하십시오.
- 가까운 ABB에 업데이트 방법을 문의하십시오. |
| 7085 | 통신 모듈 호환성 폴트 Incompatible option module | 현재 드라이브 웹페이지에서 해당 옵션 모듈을 지원하지 않습니다. | - 아래 보조 코드는 지원되지 않는 모듈이 연결된 인터페이스 번호를 나타냅니다.
(1: 필드버스 A, 2: 필드버스 B)
- 지원 가능한 통신 모듈로 교체하십시오. |
| 7121 | 모터 스톱 폴트 Motor stall | 모터가 과부하 상태이거나 용량이 부족하여 스톱 영역에 있습니다. | - 모터의 부하 상태를 확인하십시오.
- 파라미터 31.25…31.28의 설정을 확인하십시오. |
| 7181 | 제동저항 상태 폴트 Brake resistor | 제동저항이 고장났거나 용바르게 접속되지 않았습니다. | - 제동저항의 접속 상태를 확인하십시오.
- 제동저항의 저항값을 확인하십시오.
- 제동저항이 용바르게 선정되었는지 확인하십시오. |
| 7183 | 제동저항 과열 폴트 BR excess temperature | 저항 온도가 온도값을 초과하였습니다. | - 운전을 정지시키고 제동저항을 냉각시키십시오.
- 파라미터 그룹 43 Brake chopper에서 제동저항 과부하 보호 기능 설정을 확인하십시오.
- 파라미터 43.11 Brake resistor fault limit에서 폴트 값 확인하십시오.
- 제동저항이 용바르게 선정되었는지 확인하십시오.
- 현재의 제동 주기를 만족하는지 확인하십시오. |
| 7184 | 제동저항 결선 상태 폴트 Brake resistor wiring | 제동저항이 단락되었거나 제동초퍼가 손상되었습니다. | - 제동초퍼와 저항의 연결 상태를 확인하십시오.
- 제동저항의 저항값을 확인하십시오. |
| 7191 | 제동초퍼 단락 폴트 BC short circuit | 제동초퍼에서 단락이 발생하였습니다. | - 제동저항의 접속 상태를 확인하십시오.
- 제동저항의 저항값을 확인하십시오.
- 모두 정상이 경우제 제동초퍼를 교체하십시오. |
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>폴트 메시지</th>
<th>폴트 원인</th>
<th>점검 사항</th>
</tr>
</thead>
</table>
| 7192 | 제동초퍼 과열 폴트 | 제동초퍼 IGBT 온도가 내부 온도값을 초과하였습니다. | - 운전을 정지하고 제동초퍼를 냉각시키십시오.
- 주변 온도가 높지 않은지 확인하시십시오.
- 납땜관의 온도를 확인하십시오 (외장형).
- 제동초퍼를 정소하십시오 (외장형).
- 제동초퍼의 용량이 올바른지 확인하십시오.
- 제동저항의 저항값이 올바른지 확인하십시오.
- 파라미터 그룹 43 Brake chopper에서 제동저항 과부하 보호 기능 설정을 확인하십시오.
- 현재의 제동 주기를 만족하지 않는지 확인하십시오.
- AC 입력 전압이 높지 않은지 확인하십시오. |
| 71A2 | 기계 브레이크 닫힘 상태 폴트 | 브레이크 닫힘 동작 중 설정 시간 안에 상태 확인 신호가 입력되지 않았습니다. | - 기계 브레이크의 동작 상태를 확인하십시오.
- 기계 브레이크 설정 (44 Mechanical brake control)을 확인하십시오.
- 브레이크 동작 상태가 상태 확인 신호와 일치하는지 확인하십시오. |
| 71A3 | 기계 브레이크 열림 상태 폴트 | 브레이크 열림 동작 중 설정 시간 안에 상태 확인 신호가 입력되지 않았습니다. | - 기계 브레이크의 동작 상태를 확인하십시오.
- 기계 브레이크 설정 (44 Mechanical brake control)을 확인하십시오.
- 브레이크 동작 상태가 상태 확인 신호와 일치하는지 확인하십시오. |
| 71A5 | 기계 브레이크 열림 하용 폴트 | 기계 브레이크의 열림 동작이 하용되지 않았습니다. | - 기계 브레이크 설정 (44 Mechanical brake control)을 확인하십시오.
- 44.11 Keep brake closed에서 열림 동작이 금지 되었는지 확인하십시오.
- 브레이크 동작 상태가 상태 확인 신호와 일치하는지 확인하십시오. |
| 71B1 | 모터 냉각팬 상태 폴트 | 모터 냉각팬의 피드백 신호가 올바르지 않습니다. | - 모터 냉각팬의 제어 로직을 확인하십시오.
- 모터 냉각팬의 35.100...35.106의 설정을 확인하십시오. |
<p>| 7301 | 모터 속도 피드백 상태 폴트 | 모터 속도 피드백 신호가 없습니다. | - A7B0 (페이지 501)를 참고하십시오. |</p>
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>풀트 메시지</th>
<th>풀트 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>7310</td>
<td>모터 과속 풀트 Overspeed</td>
<td>파리미터에 속도 상한값 및 하한값이 잘못 설정되었습니다. 모터 제어 토큰이 충분하지 않습니다. 토큰 제어 모드에서 감작스러 부하가 변동되어 예상 속도를 초과하였습니다.</td>
<td>속도 상한값 및 하한값 설정을 확인하십시오. (30.11 Minimum speed, 30.12 Maximum speed) 과속 트립 레벨을 확인하십시오. (31.30 Overspeed trip margin) 드라이브 제어 토큰이 적절하지 확인하십시오. 토큰 제어가 가능한 부하인지 확인하십시오. 제동초과 및 저항이 필요한 부하인지 확인하십시오.</td>
</tr>
<tr>
<td>7380</td>
<td>엔코더 내부 펌웨어 풀트 Encoder internal</td>
<td>드라이브 펌웨어 관련 풀트입니다.</td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>7381</td>
<td>엔코더 상태 풀트 Encoder Encoder 프로그래밍 가능한 풀트: 90.45 Motor feedback fault</td>
<td>엔코더에서 오류가 발생하였습니다.</td>
<td>A7E1 (페이지 502)를 참고하십시오.</td>
</tr>
<tr>
<td>73A0</td>
<td>속도 피드백 구성 상태 풀트 Speed feedback configuration</td>
<td>속도 피드백 구성이 잘못되었습니다.</td>
<td>A797 (페이지 498)를 참고하십시오.</td>
</tr>
<tr>
<td>0001</td>
<td>부하 기어비 설정이 유효하지 않습니다.</td>
<td>부하 기어비 설정 (90.53/90.54)을 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>0002</td>
<td>피드 상수 설정이 유효하지 않습니다.</td>
<td>피드 상수 설정 (90.63/90.64)을 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>0003</td>
<td>모터 및 부하 기어비 설정이 유효하지 않습니다.</td>
<td>모터와 부하 간의 기어비 설정 (90.61/90.62)을 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>0004</td>
<td>엔코더가 구성되지 않았습니다.</td>
<td>엔코더 설정 (그룹 9293)을 확인하십시오.</td>
<td>파라미터 91.10 Encoder parameter refresh에서 Refresh를 선택하여 새로운정기하십시오.</td>
</tr>
<tr>
<td>0005</td>
<td>엔코더 신호가 중단되었습니다.</td>
<td>엔코더의 상태를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>73B0</td>
<td>비상 램프 정지 풀트 Emergency ramp failed</td>
<td>모터가 예상 시간 안에 비상 정지되지 않았습니다.</td>
<td>파라미터 31.32 및 31.33의 설정을 확인하십시오. 파라미터에 설정한 감속 시간을 확인하십시오. (Off1 = 23.11…23.19, Off3 = 23.23)</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>폴트 메시지</td>
<td>폴트 원인</td>
<td>접검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| 73B1 | 램프 정지 풀트 | Stop failed | · 파라미터 31.37 및 31.38의 설정을 확인하십시오.
· 파라미터에 설정한 감속 시간을 확인하십시오.
(파라미터 그룹 23 Speed reference ramp) |
| 73F9 | 출력 과주파수 풀트 | Overfrequency | · 고속 영용 프로그램 라이선스 (+N8200)가 없는 경우에 풀트값은 598 Hz입니다.
· 고속 영용 프로그램에 대한 정보는 가까운 ABB에 문의하십시오. |
| 7510 | FBA A 통신 상태 풀트 | FBA A communication | · 드라이브와 필드버스 어댑터 A 또는 외부 PLC와 필드버스 어댑터 A 간의 통신 오류가 발생하였습니다.
· 필드버스 어댑터 A의 설치 상태를 확인하십시오.
· 파라미터 그룹 50/51/52/53 설정을 확인하십시오.
· 필드버스 통신 상태를 확인하십시오.
· 통신선의 접속 상태를 확인하십시오.
· 외부 PLC가 정상 동작하는지 확인하십시오. |
| 7520 | FBA B 통신 상태 풀트 | FBA B communication | · 드라이브와 필드버스 어댑터 B 또는 외부 PLC와 필드버스 어댑터 B 간의 통신 오류가 발생하였습니다.
· 필드버스 어댑터 B의 설치 상태를 확인하십시오.
· 파라미터 그룹 50/54/55/56 설정을 확인하십시오.
· 필드버스 통신 상태를 확인하십시오.
· 통신선의 접속 상태를 확인하십시오.
· 외부 PLC의 동작 상태를 확인하십시오. |
| 7580 | INU-LSU 통신 상태 풀트 | INU-LSU comm loss | · 인버터와 서플라이 유닛 간의 DDCS 통신 오류가 발생하였습니다.
· 서플라이 유닛의 상태 정보를 확인하십시오.
(파라미터 06.36 및 06.39)
· 파라미터 그룹 60의 설정을 확인하십시오.
· 광통신선의 연결 상태를 확인하십시오. |
| 7581 | DDCS 통신 상태 풀트 | DDCS controller comm loss | · 드라이브와 외부 제어기 간의 DDCS 통신 오류가 발생하였습니다.
· 외부 제어기의 동작 상태를 확인하십시오.
· 파라미터 그룹 60 DDCS communication 설정을 확인하십시오.
· 광통신선의 연결 상태를 확인하십시오. |
| 7582 | 마스터/팔로워 통신 상태 풀트 | MF comm loss | · 마스터와 팔로워간의 통신 오류가 발생하였습니다.
· A7CB (페이지 502)를 참고하십시오. |
| 7583 | 서플라이 유닛 풀트 | Line side unit faulted | · 서플라이 유닛에서 발생한 풀트입니다.
· 해당 보조 코드는 서플라이 유닛에서 발생한 풀트 코드를 나타내습니다.
· 서플라이 유닛의 명령어 메뉴얼을 참고하십시오. |
<table>
<thead>
<tr>
<th>코드 (hex)</th>
<th>폴트 메시지</th>
<th>폴트 원인</th>
<th>점검 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>7584</td>
<td>LSU 중전 상태 폴트</td>
<td>LSU charge failed</td>
<td>서울라이 유닛이 예상 시간 안에 충전되지 않았습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 파라미터 95.20 HW options word에서 서울라이 유닛 통신이 허용되었는지 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 파라미터 94.10의 설정을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 인버터에서 서울라이 유닛을 제어할 수 있는지 확인하십시오.</td>
</tr>
<tr>
<td>8001</td>
<td>사용자 정의 부족부하 폴트</td>
<td>UL C overload warning</td>
<td>모니터링 신호가 사용자 부족부하 곡선을 벗어났습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로그래밍 가능한 폴트:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>모니터링 신호가 사용자 과부하 곡선을 벗어났습니다.</td>
<td>- 8BBF (페이지 505)를 참고하십시오.</td>
</tr>
<tr>
<td>8002</td>
<td>사용자 정의 과부하 폴트</td>
<td>UL C overload warning</td>
<td>모니터링 신호가 사용자 과부하 곡선을 벗어났습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로그래밍 가능한 폴트:</td>
<td></td>
</tr>
<tr>
<td>80A0</td>
<td>AI 입력 감시 상태 폴트</td>
<td>AI supervision</td>
<td>아날로그 입력 신호가 지정한 한계치를 벗어났습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로그래밍 가능한 폴트:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 입력의 신호 레벨을 확인하십시오.</td>
<td>- 아래 보조 코드를 확인하십시오 (XYY).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 입력 신호의 한계치를 확인하십시오.</td>
<td>"X"는 아날로그 입력 위치를 나타냅니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 입력 신호의 한계치를 확인하십시오.</td>
<td>0: 제어 유닛 AI1 1보(1회), 1: 2보(2회)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 입력 신호의 한계치를 확인하십시오.</td>
<td>01: AI1 하한값, 02: AI1 상한값</td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 입력 신호의 한계치를 확인하십시오.</td>
<td>03: AI2 하한값, 04: AI2 상한값</td>
</tr>
<tr>
<td></td>
<td></td>
<td>아날로그 입력 신호의 한계치를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>80B0</td>
<td>신호 감시 1 폴트</td>
<td>Signal supervision</td>
<td>신호 감시 1에서 발생한 폴트입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(폴트 메시지 판정 가능)</td>
<td>- 32.07 Supervision 1 signal을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로그래밍 가능한 폴트:</td>
<td></td>
</tr>
<tr>
<td>80B1</td>
<td>신호 감시 2 폴트</td>
<td>Signal supervision</td>
<td>신호 감시 2에서 발생한 폴트입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(폴트 메시지 판정 가능)</td>
<td>- 32.17 Supervision 2 signal을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로그래밍 가능한 폴트:</td>
<td></td>
</tr>
<tr>
<td>80B2</td>
<td>신호 감시 3 폴트</td>
<td>Signal supervision</td>
<td>신호 감시 3에서 발생한 폴트입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(폴트 메시지 판정 가능)</td>
<td>- 32.27 Supervision 3 signal을 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로그래밍 가능한 폴트:</td>
<td></td>
</tr>
<tr>
<td>9081</td>
<td>외부 장치 1 폴트</td>
<td>External fault 1</td>
<td>외부 장치 1에서 발생한 폴트입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(폴트 메시지 판정 가능)</td>
<td>- 외부 장치를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로그래밍 가능한 폴트:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>외부 장치 1에서 발생한 폴트입니다.</td>
<td>- 외부 장치를 확인하십시오.</td>
</tr>
<tr>
<td>9082</td>
<td>외부 장치 2 폴트</td>
<td>External fault 2</td>
<td>외부 장치 2에서 발생한 폴트입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(폴트 메시지 판정 가능)</td>
<td>- 외부 장치를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>프로그래밍 가능한 폴트:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>외부 장치 2에서 발생한 폴트입니다.</td>
<td>- 외부 장치를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>외부 장치 2에서 발생한 폴트입니다.</td>
<td>- 31.03 External event 2 source를 확인하십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>플트 메시지</td>
<td>플트 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>9083</td>
<td>외부 장치 3 홀드
External fault 3 (홀드 메시지 편집 가능)
프레그래밍 가능한 풀트: 31.05 External event 3 source 31.06 External event 3 type</td>
<td>외부 장치 3에서 발생한 홀드입니다. - 외부 장치를 확인하십시오. - 31.05 External event 3 source를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>9084</td>
<td>외부 장치 4 홀드
External fault 4 (홀드 메시지 편집 가능)
프레그래밍 가능한 풀트: 31.07 External event 4 source 31.08 External event 4 type</td>
<td>외부 장치 4에서 발생한 홀드입니다. - 외부 장치를 확인하십시오. - 31.07 External event 4 source를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>9085</td>
<td>외부 장치 5 홀드
External fault 5 (홀드 메시지 편집 가능)
프레그래밍 가능한 풀트: 31.09 External event 5 source 31.10 External event 5 type</td>
<td>외부 장치 5에서 발생한 홀드입니다. - 외부 장치를 확인하십시오. - 31.09 External event 5 source를 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>FA81</td>
<td>안전 토크 차단 1 홀드
Safe torque off 1 loss</td>
<td>STO 1 홀드가 제거되어 안전 토크 차단 기능이 동작하였습니다. - 안전 회로의 연결 상태를 확인하십시오. - 보조 코드를 확인하고 가까운 ABB에 연락하여 점검을 받으십시오. - 이 코드에는 병렬 연결 인버터의 채널 번호를 포함하고 있습니다. - 비트 31...28: 풀트 발생 인버터 번호 (0...11). - 모두 1111: 드라이브와 제어 유닛의 STO 중단. - 비트 27: 인버터 모듈의 STO 상태 - 비트 26: 제어 유닛의 STO 상태 - 비트 25: 제어 유닛의 STO1 상태. - 비트 24: 제어 유닛의 STO2 상태. - 비트 23...12: 인버터 모듈 12...1의 STO1 상태. (존재하지 않는 모듈 번호는 1로 세트됨) - 비트 11...0: 인버터 모듈 12...1의 STO2 상태. (존재하지 않는 모듈 번호는 1로 세트됨)</td>
<td></td>
</tr>
<tr>
<td>FA82</td>
<td>안전 토크 차단 2 홀드
Safe torque off 2 loss</td>
<td>STO 2 홀드가 제거되어 안전 토크 차단 기능이 동작하였습니다. - 안전 회로의 연결 상태를 확인하십시오. - 보조 코드를 확인하고 가까운 ABB에 연락하여 점검을 받으십시오. - 이 코드에는 병렬 연결 인버터의 채널 번호를 포함하고 있습니다. - 비트 31...28: 풀트 발생 인버터 번호 (0...11). - 모두 1111: 드라이브와 제어 유닛의 STO 중단. - 비트 27: 인버터 모듈의 STO 상태 - 비트 26: 제어 유닛의 STO 상태 - 비트 25: 제어 유닛의 STO1 상태. - 비트 24: 제어 유닛의 STO2 상태. - 비트 23...12: 인버터 모듈 12...1의 STO1 상태. (존재하지 않는 모듈 번호는 1로 세트됨) - 비트 11...0: 인버터 모듈 12...1의 STO2 상태. (존재하지 않는 모듈 번호는 1로 세트됨)</td>
<td></td>
</tr>
<tr>
<td>FB11</td>
<td>메모리 유닛 설치 상태 홀드
Memory unit missing</td>
<td>제어 유닛에 메모리 유닛이 설치되어 있지 않습니다. - 메모리 유닛이 삽입되었는지 확인하십시오.</td>
<td></td>
</tr>
<tr>
<td>FB12</td>
<td>메모리 유닛 호환성 홀드
Memory unit incompatible</td>
<td>메모리 유닛이 호환되지 않습니다. - 호환 가능한 메모리 유닛을 설치하십시오.</td>
<td></td>
</tr>
<tr>
<td>FB13</td>
<td>메모리 유닛 펌웨어 호환성 홀드
Memory unit FW incompatible</td>
<td>메모리 유닛의 펌웨어가 드라이브에 호환되지 않습니다. - 호환 가능한 메모리 유닛을 설치하십시오.</td>
<td></td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>폴트 메시지</td>
<td>폴트 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>FB14</td>
<td>메모리 유닛 펌웨어 로딩 실패</td>
<td>드라이브에서 메모리 유닛의 펌웨어를 로딩할 수 없습니다.</td>
<td>메모리 유닛이 제대로 삽입되었는지 확인하십시오.</td>
</tr>
<tr>
<td>FF61</td>
<td>모터 ID run 수행 불가</td>
<td>모터 ID run이 성공적으로 완료되지 않았습니다.</td>
<td>파라미터 그룹 99에 모터 명판 데이터가 정확하게 입력되었는지 확인하십시오.</td>
</tr>
<tr>
<td>0001</td>
<td>최대 허용 전류 설정이 너무 낮습니다.</td>
<td></td>
<td>파라미터 99.06 및 30.17의 설정을 확인하십시오.</td>
</tr>
<tr>
<td>0002</td>
<td>속도 상한값 설정 또는 계산된 액수속 운전속도가 너무 낮습니다.</td>
<td></td>
<td>파라미터 99.08보다 30.17을 크게 설정하십시오.</td>
</tr>
<tr>
<td>0003</td>
<td>토크 상한값 설정이 너무 낮습니다.</td>
<td></td>
<td>파라미터 99.12의 설정을 확인하고 파라미터 그룹 30에서 토크 제한값을 확인하십시오.</td>
</tr>
<tr>
<td>0004</td>
<td>측정 전류 보정이 적절한 시간 내에 완료되지 않았습니다.</td>
<td></td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>0005...0008</td>
<td>내부 펌웨어 관련 폴트</td>
<td></td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>0009</td>
<td>(유도 모터 전용) 적절한 시간 내에 가속되지 않았습니다.</td>
<td></td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>000A</td>
<td>(유도 모터 전용) 적절한 시간 내에 감속되지 않았습니다.</td>
<td></td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>000B</td>
<td>(유도 모터 전용) 모터 ID run을 수행하는 도중에 감속기 속도가 0으로 감소하였습니다.</td>
<td></td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>000C</td>
<td>(PMSM 전용) 적절한 시간 내에 첫 번째 가속 과정이 완료되지 않았습니다.</td>
<td></td>
<td>가까운 ABB에 연락하여 점검을 받으십시오.</td>
</tr>
<tr>
<td>코드 (hex)</td>
<td>폴트 메시지</td>
<td>폴트 원인</td>
<td>점검 사항</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>000D</td>
<td>(PMSM 전용) 적절한 시간 내에 두 번째 가속 과정이 완료되지 않았습니다.</td>
<td>・가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>000E...0010</td>
<td>내부 펌웨어 관련 폴트입니다.</td>
<td>・가까운 ABB에 연락하여 점검을 받으십시오.</td>
<td></td>
</tr>
<tr>
<td>FF7E</td>
<td>팔로워 드라이브 상태 폴트 (Follower)</td>
<td>팔로워 드라이브가 트립되었습니다.</td>
<td>・보조 코드를 확인하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・해당 코드에 2를 더하면 폴트 발생 드라이브의 노드 주소를 추적할 수 있습니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>・폴트가 발생한 팔로워 드라이브를 점검하십시오.</td>
</tr>
<tr>
<td>FF81</td>
<td>FB A 강제 트립 명령 폴트 (FB A force trip)</td>
<td>필드버스 어댑터 A에서 트립 명령이 수신되었습니다.</td>
<td>・PLC에서 제공되는 폴트 정보를 확인하십시오.</td>
</tr>
<tr>
<td>FF82</td>
<td>FB B 강제 트립 명령 폴트 (FB B force trip)</td>
<td>필드버스 어댑터 B에서 트립 명령이 수신되었습니다.</td>
<td>・PLC에서 제공되는 폴트 정보를 확인하십시오.</td>
</tr>
<tr>
<td>FF8E</td>
<td>EFB 강제 트립 명령 폴트 (EFB force trip)</td>
<td>임베디드 필드버스 인터페이스에서 트립 명령이 수신되었습니다.</td>
<td>・PLC에서 제공되는 폴트 정보를 확인하십시오.</td>
</tr>
</tbody>
</table>
임베디스 필드버스 통신
Fieldbus control through the embedded fieldbus interface (EFB)

이 장의 내용

이 장에서는 표준으로 제공되는 임베디드 필드버스 인터페이스를 사용하여 필드버스 통신 네트워크를 구축하고 드라이브를 외부 컨트롤러에서 제어하는 방법을 설명합니다.

시스템 개요

드라이브는 필드버스 옵션 어댑터 또는 표준 임베디드 필드버스 인터페이스를 통하여 외부 컨트롤러와 접속될 수 있습니다.

임베디드 필드버스 인터페이스는 Modbus RTU 통신 프로토콜을 지원합니다. 여기서 드라이브 제어 프로그램은 10 ms 주기로 10개의 모드버스 레지스터 (Modbus registers)를 처리할 수 있습니다. 예를 들어, 드라이브가 외부 컨트롤러로부터 20개의 레지스터 전송 명령을 수신하면 22 ms (전송 시간 = 20 ms, 명령 처리 시간 = 2 ms) 이내에 컨트롤러로 응답을 완료합니다. 단, 실제 응답 시간은 전송 시간 (Baud rate) 설정에 의존합니다.

드라이브는 필드버스 인터페이스를 통해 모든 제어 명령을 수신할 수 있으며, 필요에 따라서는 일부 제어 명령을 기타 파라미터 소스 (디지털 및 아날로그 입력)에서 수신할 수도 있습니다.
드라이브에 필드버스 접속

드라이브의 제어 유닛의 XD2D 단자에 필드버스 케이블을 연결합니다. 여기서 케이블 연결 및 중단저항 처리 방법은 해당 하드웨어 매뉴얼을 참고하십시오.

Note: 만약 XD2D 단자가 임베디드 필드버스로 설정 \((58.01 \text{ Protocol enable } = \text{ Modbus RTU})\)된다면 마스터/팔로워 운전을 위한 통신 링크 (D2D)는 자동으로 해제됩니다.
임베디드 필드버스 인터페이스 설정

임베디드 필드버스 통신을 위한 파라미터 설정은 아래 표와 같습니다. 여기에는 설정 가능한 값과 기본값이 포함되어 있습니다.

<table>
<thead>
<tr>
<th>파라미터</th>
<th>필드버스 설정</th>
<th>기능 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>통신 프로토콜 설정</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.01 Protocol enable</td>
<td>Modbus RTU</td>
<td>임베디드 필드버스 통신을 초기화합니다. 이때 마스터/팔로워 운전을 위한 D2D 링크 설정은 자동으로 해제됩니다.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>모드버스 통신 구성을</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>58.03 Node address</td>
<td>1 (기본값)</td>
<td>노드 주소. 동일한 노드 주소를 사용할 수 없습니다.</td>
</tr>
<tr>
<td>58.04 Baud rate</td>
<td>19.2 kbps (기본값)</td>
<td>통신 속도를 정의합니다. 외부 컨트롤러와 동일하게 설정하십시오.</td>
</tr>
<tr>
<td>58.05 Parity</td>
<td>8 EVEN 1 (기본값)</td>
<td>패리티 비트 및 정지 비트를 선택합니다. 외부 컨트롤러와 동일하게 설정하십시오.</td>
</tr>
<tr>
<td>58.14 Communication loss action</td>
<td>Fault (기본값)</td>
<td>통신이 중단된 경우에 어떻게 반응할지 선택합니다.</td>
</tr>
<tr>
<td>58.15 Communication loss mode</td>
<td>CW / Ref1 / Ref2 (기본값)</td>
<td>통신 중단 상태를 감시하고 통신 중단 타임아웃 시간을 리셋시킵니다.</td>
</tr>
<tr>
<td>58.16 Communication loss time</td>
<td>3.0 s (기본값)</td>
<td>통신 상태 감시를 위한 타임아웃 시간을 정의합니다.</td>
</tr>
<tr>
<td>58.17 Transmit delay</td>
<td>0 ms (기본값)</td>
<td>응답 지연 시간을 정의합니다.</td>
</tr>
<tr>
<td>58.25 Control profile</td>
<td>ABB Drives (기본값), Transparent</td>
<td>드라이브 제어 프로파일을 선택합니다. 자세한 사항은 임베디드 필드버스 인터페이스의 기본 통신(페이지 533)을 참고하십시오.</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.29 EFB act2 type</td>
<td>Auto, Transparent, General, Torque, Speed, Frequency</td>
<td>기준값과 실제값의 타입을 선택합니다. 이것을 Auto로 설정한 경우에는 드라이브의 제어 모드에 따라 자동으로 타입이 지정됩니다.</td>
</tr>
<tr>
<td>58.30 EFB status word transparent source</td>
<td>Other</td>
<td>58.25 Control profile = Transparent인 경우에 상태 워드 소스를 정의합니다.</td>
</tr>
<tr>
<td>58.31 EFB act1 transparent source</td>
<td>Other</td>
<td>58.28 EFB act1 type = Transparent 또는 General인 경우에 실제값 1의 소스를 정의합니다.</td>
</tr>
<tr>
<td>58.32 EFB act2 transparent source</td>
<td>Other</td>
<td>58.28 EFB act1 type = Transparent 또는 General인 경우에 실제값 2의 소스를 정의합니다.</td>
</tr>
</tbody>
</table>
파라미터 설정

<table>
<thead>
<tr>
<th>파라미터</th>
<th>필드버스 설정</th>
<th>기능 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>58.33 Addressing mode</td>
<td>Mode 0 (기본값)</td>
<td>Holding Registers 400001...465536 (100...65535) 번지에 파라미터를 맵핑시키는 모드를 정의합니다.</td>
</tr>
<tr>
<td>58.34 Word order</td>
<td>LO-HI (기본값)</td>
<td>32비트 파라미터의 16비트 단위 전송 순서를 정의합니다.</td>
</tr>
<tr>
<td>58.101 Data I/O 1</td>
<td></td>
<td>예를 들어, I/O 1...6은 기본값으로 제어 워드, 상태 워드, 2개의 기준 소스, 2개의 실제 값을 포함합니다.</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>마스터가 해당 레지스터 주소를 읽거나 쓸 때 접근하는 드라이브의 파라미터 번호를 정의합니다.</td>
</tr>
<tr>
<td>58.124 Data I/O 24</td>
<td></td>
<td>이 설정은 마스터에서 수신된 데이터를 해당 파라미터 ((10.99 \text{ RO/DIO control word}, 13.91 \text{ AO1 data storage}, 13.92 \text{ AO2 data storage}, 40.91 \text{ Feedback data storage}, 40.92 \text{ Setpoint data storage}))에 저장합니다.</td>
</tr>
<tr>
<td>58.06 Communication control</td>
<td>Refresh settings</td>
<td>실제로 구성 파라미터의 설정을 적용합니다.</td>
</tr>
</tbody>
</table>

새로운 파라미터 설정을 적용하기 위해서는 드라이브 전원을 꺼거나 파라미터 58.06 Communication control에서 새로고침 (Refresh settings)을 선택하십시오.

드라이브 제어 파라미터 설정

임베디드 필드버스 인터페이스 설정을 완료한 후에 아래 표와 같은 항목의 드라이브 제어 파라미터를 설정하십시오.

<table>
<thead>
<tr>
<th>파라미터</th>
<th>필드버스 설정</th>
<th>기능 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>제어 명령 선택</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.01 Ext1 commands</td>
<td>Embedded fieldbus</td>
<td>제어 위치가 EXT1인 경우에 임베디드 필드버스 통신 데이터를 시작 및 정지 명령으로 선택합니다.</td>
</tr>
<tr>
<td>20.02 Ext2 commands</td>
<td>Embedded fieldbus</td>
<td>제어 위치가 EXT2인 경우에 임베디드 필드버스 통신 데이터를 시작 및 정지 명령으로 선택합니다.</td>
</tr>
<tr>
<td>기준 속도 선택</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.11 Speed ref1 source</td>
<td>EFB ref1 또는 EFB ref2</td>
<td>임베디드 필드버스에서 수신된 기준값을 기준 속도 1로 선택합니다.</td>
</tr>
<tr>
<td>파라미터</td>
<td>필드버스 설정</td>
<td>기능 설명</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>22.12 Speed ref2 source</td>
<td>EFB ref1 또는 EFB ref2</td>
<td>엠베디드 필드버스에서 수신된 기준값을 기준 속도 2로 선택합니다.</td>
</tr>
<tr>
<td>26.11 Torque ref1 source</td>
<td>EFB ref1 또는 EFB ref2</td>
<td>엠베디드 필드버스에서 수신된 기준값을 기준 토크 1로 선택합니다.</td>
</tr>
<tr>
<td>26.12 Torque ref2 source</td>
<td>EFB ref1 또는 EFB ref2</td>
<td>엠베디드 필드버스에서 수신된 기준값을 기준 토크 2로 선택합니다.</td>
</tr>
<tr>
<td>28.11 Frequency ref1 source</td>
<td>EFB ref1 또는 EFB ref2</td>
<td>엠베디드 필드버스에서 수신된 기준값을 기준 주파수 1로 선택합니다.</td>
</tr>
<tr>
<td>28.12 Frequency ref2 source</td>
<td>EFB ref1 또는 EFB ref2</td>
<td>엠베디드 필드버스에서 수신된 기준값을 기준 주파수 1로 선택합니다.</td>
</tr>
<tr>
<td>10.24 RO1 source</td>
<td>RO/DIO control word bit0</td>
<td>데이터 저장 파라미터 10.99 RO/DIO control word의 비트 0을 릴레이 출력 RO1로 선택합니다.</td>
</tr>
<tr>
<td>10.27 RO2 source</td>
<td>RO/DIO control word bit1</td>
<td>데이터 저장 파라미터 10.99 RO/DIO control word의 비트 1을 릴레이 출력 RO2로 선택합니다.</td>
</tr>
<tr>
<td>10.30 RO3 source</td>
<td>RO/DIO control word bit2</td>
<td>데이터 저장 파라미터 10.99 RO/DIO control word의 비트 2를 릴레이 출력 RO3으로 선택합니다.</td>
</tr>
<tr>
<td>11.05 DIO1 function</td>
<td>Output (기본값)</td>
<td>디지털 입/출력을 출력 모드로 선택합니다.</td>
</tr>
<tr>
<td>11.09 DIO2 function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.06 DIO1 output source</td>
<td>RO/DIO control word bit8</td>
<td>데이터 저장 파라미터 10.99 RO/DIO control word의 비트 8을 디지털 입/출력 DIO1로 선택합니다.</td>
</tr>
<tr>
<td>11.10 DIO2 output source</td>
<td>RO/DIO control word bit9</td>
<td>데이터 저장 파라미터 10.99 RO/DIO control word의 비트 9을 디지털 입/출력 DIO2로 선택합니다.</td>
</tr>
<tr>
<td>13.12 AO1 source</td>
<td>AO1 data storage</td>
<td>데이터 저장 파라미터 13.91 AO1 data storage를 아날로그 출력 AO1로 선택합니다.</td>
</tr>
<tr>
<td>13.22 AO2 source</td>
<td>AO2 data storage</td>
<td>데이터 저장 파라미터 13.92 AO2 data storage를 아날로그 출력 AO2로 선택합니다.</td>
</tr>
<tr>
<td>파라미터</td>
<td>필드버스 설정</td>
<td>기능 설명</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>프로세스 PID 셋포인트 및 피드백 설정</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.08 Set 1 feedback 1 source</td>
<td>Feedback data storage</td>
<td>데이터 저장 파라미터 40.91 및 40.92를 각각 피드백 및 셋포인트 소스로 선택합니다.</td>
</tr>
<tr>
<td>40.16 Set 1 setpoint 1 source</td>
<td>Setpoint data storage</td>
<td></td>
</tr>
<tr>
<td>시스템 제어 입력</td>
<td>Save (Done으로 복귀)</td>
<td>필드버스 통신으로 변경된 파라미터를 메모리 유닛에 수동 저장합니다.</td>
</tr>
<tr>
<td>96.07 Parameter save manually</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
임베디드 필드버스 통신의 기본 동작

드라이브와 외부 컨트롤러 (예: PLC) 간의 통신 데이터는 16비트 또는 32비트 단위로 구성됩니다. 여기서 임베디드 필드버스 인터페이스의 기본 통신 블록도는 아래 그림과 같습니다.

1. 필드버스 통신으로 제어되는 기타 파라미터를 확인하십시오.
2. 만약 파라미터 58.25 Control profile을 ABB Drives로 선택한 경우에는 통신 데이터가 변환됩니다.
 이에 대한 자세한 사항은 제어 프로파일 (페이지 536)절을 참고하십시오.
3. 만약 파라미터 58.25 Control profile을 Transparent로 선택한 경우에는 다음과 같습니다.
 • 상태 워드 및 실제값의 소스는 파라미터 58.30...58.32에 직접 설정할 수 있습니다.
 (그렇지 않으면 실제값 1과 2가 기준 소스의 타입에 따라 자동 선택됩니다.)
 • 제어 워드는 파라미터 06.05 EFB transparent control word에서 확인할 수 있습니다.
제어 워드 및 상태 워드 (Control word and Status word)

제어 워드 (Control Word; CW)는 외부 컨트롤러에서 드라이브를 제어하기 위한 통신 데이터입니다. 이것은 16비트 또는 32비트 단위로 패킹되어 있고 시각/정지, 비상 정지, 외부 제어 위치 1/2 선택, 폴트 리셋 명령 등으로 사용됩니다. 다시 말해, 드라이브는 CW의 명령 비트를 0 또는 1로 설정할 경우에 해당 동작을 수행합니다.

여기서 EFB CW는 제어 프로파일의 설정 (파라미터 58.25 Control profile)에 따라 통신 데이터가 그대로 사용되거나 변환될 수 있습니다. 이에 대한 자세한 사항은 제어 프로파일 (페이지 536) 절을 참고하십시오.

상태 워드 (Status Word; SW)는 외부 컨트롤러에서 드라이브의 상태를 확인하기 위한 통신 데이터입니다. 이것은 16비트 또는 32비트 단위로 패킹되어 있고 제어 프로파일의 설정 (파라미터 58.25 Control profile)에 따라 통신 데이터가 그대로 사용되거나 변환될 수 있습니다. 이에 대한 자세한 사항은 제어 프로파일 (페이지 536) 절을 참고하십시오.

기준값 (References)

기준값 1과 2는 16비트 또는 32비트 단위의 부호있는 정수형 데이터입니다. 이것은 드라이브의 제어 모드에 따라 기준 속도, 기준 토크, 기준 주파수 또는 프로세스 PID 제어기의 셋포인트 등으로 사용될 수 있으며, 외부 컨트롤러에서 전송된 데이터는 각각 파라미터 03.09 EFB reference 1 및 03.10 EFB reference 2에서 확인할 수 있습니다.

여기서 통신 데이터는 58.26 EFB ref1 type 및 58.27 EFB ref2 type의 설정에 따라 그대로 사용되거나 변환될 수 있습니다. 이에 대한 자세한 사항은 제어 프로파일 (페이지 536) 절을 참고하십시오.

실험값 (Actual values)

실험값 1과 2는 16비트 또는 32비트 단위의 부호있는 정수형 데이터입니다. 이것은 선택된 드라이브의 파라미터 값일 외부 컨트롤러에 전송합니다. 여기서 통신 데이터는 58.28 EFB act1 type 및 58.29 EFB act2 type의 설정에 따라 그대로 사용되거나 변환될 수 있습니다. 이에 대한 자세한 사항은 제어 프로파일 (페이지 536) 절을 참고하십시오.

데이터 입력/ 출력 (Data input/outputs)

데이터 입력/ 출력은 선택된 파라미터 타입에 따라 16비트 또는 32비트 단위로 구성되며, 드라이브의 상태 정보를 수신하거나 드라이브에 제어 명령을 전송하기 위한 파라미터 번호를 58.101 Data I/O 1…58.124 Data I/O 24에 설정합니다.

EFB를 이용한 출력 신호 제어

제어 프로그램은 통신 데이터로 릴레이 출력 (RO), 디지털 입력/출력 (DIO), 아날로그 출력 (AO)을 직접 제어하기 위한 데이터 저장 파마터를 가지고 있습니다. 이러한 데이터 저장 파마터는 드라이브 출력 신호의 소스로 사용될 수 있습니다.

EFB를 이용한 프로세스 PID 제어기의 셋포인트 및 피드백 보내기

제어 프로그램은 프로세스 PID 제어기를 위한 셋포인트 (40.92 Setpoint data storage) 및 피드백 저장 파라미터 (40.91 Feedback data storage)를 가지고 있습니다. 여기서 피드백 데이터 저장 파라미터는 40.08 Set 1 feedback 1 source 및 40.09 Set 1 feedback 2 source에서 선택하여 피드백 소스로 사용할 수 있습니다.

프로세스 PID 제어기를 위한 파라미터 세트 2 (파라미터 그룹 41 Process PID set 2)는 위와 동일한 파라미터를 갖습니다.

■ 레지스터 주소 (Register addressing)

EFB 통신에서 Holding Registers를 접근하기 위한 모드버스 주소는 16 비트의 길이로 65536개의 주소를 지정할 수 있습니다.

전통적으로 모드버스 마스터 장치는 Holding Registers의 주소를 40001에서 49999까지 사용하고 있어서 레지스터 주소가 9999개로 제한되었습니다.

최근에는 모드버스 마스터 장치가 65536개의 Holding Registers를 접근할 수 있도록 개선되어 400001에서 465536까지의 6 자리 주소를 사용합니다. 본 매뉴얼에서는 6 자리 10진수를 사용하여 Holding Registers로 접근하는 방법을 설명합니다.

여기서 주소 지정이 9999개로 제한되어 있는 마스터 장치는 40001 ~ 49999의 주소를 사용하여 모드버스 Holding Registers 주소 (400001 ~ 409999)에 접근할 수 있습니다. 단, 이 마스터 장치는 410000에서 465536까지의 주소에 접근할 수 없습니다.

Note: 32비트 파라미터의 레지스터 주소는 5자리 번지로 접근할 수 없습니다.
제어 프로파일 (Control profile)

제어 프로파일은 드라이브와 외부 컨트롤러 간의 데이터 전송 규칙을 정의합니다.

- 제어 워드 및 상태 워드의 데이터 패킹.
- 기준값 및 실제값의 데이터 스케일링.
- Holding Registers 주소에 파라미터 매핑.

사용자는 ABB 드라이브 또는 투과형 프로파일의 선택에 따라 통신 메시지를 구성할 수 있습니다. 여기서 ABB 드라이브 프로파일을 선택하면 필드버스 인터페이스는 제어 워드 및 상태 워드를 드라이브 표준 데이터로 변환합니다. 투과형 프로파일을 선택하면 데이터 변환 없이 통신을 수행합니다. 아래 그림은 프로파일 선택에 따른 통신 데이터의 송수신 과정을 간략하게 보여줍니다.

제어 프로파일 (58.25 Control profile) 선택:
- (0) ABB Drives
- (2) Transparent

여기서 기준값 및 실제값의 스케일링은 파라미터 58.26...58.29에서 프로파일 선택과 관계없이 설정할 수 있습니다.
ABB 드라이브 프로파일 (ABB Drives profile)

제어 워드 (Control Word)

아래 표는 ABB 드라이브 제어 프로파일에 대한 제어 워드의 해당 비트별 동작 내용을 설명합니다. 이 제어 워드는 임베디드 필드버스 인터페이스에서 드라이브 표준 형식으로 변환되며, 대문자로 표시된 텍스트는 페이지 540의 통신 상태 블록도를 참고하십시오.

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
<th>비트 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Off1 control</td>
<td>1</td>
<td>드라이브 운전을 허용합니다. 이때 드라이브는 READY TO OPERATE (SW b1=1) 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 OFF1 ACTIVE (SW b1=0) 상태가 되고 감속 시간에 따라 정지합니다. 이때 드라이브는 비상 정지 모드 OFF2 및 OFF3이 동작하지 않는 한 READY TO SWITCH ON (SW b0=1) 상태를 유지합니다.</td>
</tr>
<tr>
<td>1</td>
<td>Off2 control</td>
<td>1</td>
<td>연속 운전을 허용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 OFF2 ACTIVE (SW b4=0) 상태가 되고 감속 정지합니다. 이때 드라이브는 SWITCH-ON INHIBITED (SW b6=1) 상태입니다.</td>
</tr>
<tr>
<td>2</td>
<td>Off3 control</td>
<td>1</td>
<td>연속 운전을 허용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 OFF3 ACTIVE (SW b5=0) 상태가 되고 비상 정지 시간에 따라 감속 정지합니다. 이때 드라이브는 SWITCH-ON INHIBITED (SW b6=1) 상태입니다.</td>
</tr>
<tr>
<td>3</td>
<td>Run</td>
<td>1</td>
<td>드라이브 운전을 허용합니다. 이때 드라이브는 OPERATION ENABLED (SW b2=1) 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 RFG: OUTPUT ENABLED 상태입니다. Note: 필드버스 통신으로 운전 허용 신호 (Run enable signal)를 동작시키는 경우에는 이 비트를 1로 세트해야 합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06.18 Start inhibit status word 및 06.25 Drive inhibit status word에서 시작이 금지된 원인을 확인할 수 있습니다.</td>
</tr>
<tr>
<td>4</td>
<td>Ramp out zero</td>
<td>1</td>
<td>드라이브를 정상 운전합니다. 이때 드라이브는 RFG: OUTPUT INHIBITED 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>램프 함수의 출력을 0으로 강제 설정합니다. 이때 드라이브는 램프 활성화 전류 및 DC 전압 제한에 따라 감속 정지합니다.</td>
</tr>
<tr>
<td>5</td>
<td>Ramp hold</td>
<td>1</td>
<td>기준 소스 램프 기능을 허용합니다. 이때 드라이브는 RFG: ACCELERATOR ENABLED 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>램프 기능을 임시 정지합니다.</td>
</tr>
<tr>
<td>6</td>
<td>Ramp in zero</td>
<td>1</td>
<td>드라이브를 정상 운전합니다. 이때 드라이브는 OPERATING (SW b8=1) 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>램프 함수의 입력을 0으로 강제 설정합니다.</td>
</tr>
<tr>
<td>7</td>
<td>Reset</td>
<td>0=>1</td>
<td>드라이브에서 발생한 폴트를 리셋합니다. 이때 드라이브는 SWITCH-ON INHIBITED (SW b6=1) 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: 파라미터 31.11 Fault reset selection을 EFB MCW bit 7로 선택한 경우에만 허용됩니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브를 정상 운전합니다.</td>
</tr>
</tbody>
</table>
Fieldbus control through the embedded fieldbus interface (EFB)

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
<th>비트 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Inching 1</td>
<td>1</td>
<td>조명 1에 정의한 기준 속도로 가속합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Notes:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 비트 4...6은 0으로 클리어하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• 자세한 사항은 조명 (페이지 56) 절을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>조명 1을 금지합니다.</td>
</tr>
<tr>
<td>9</td>
<td>Inching 2</td>
<td>1</td>
<td>조명 2에 정의한 기준 속도로 가속합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>비트 8의 내용을 참고하십시오.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>조명 2를 금지합니다.</td>
</tr>
<tr>
<td>10</td>
<td>Remote cmd</td>
<td>1</td>
<td>필드버스 제어를 허용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>필드버스 제어를 금지합니다.</td>
</tr>
<tr>
<td>11</td>
<td>Ext ctrl loc</td>
<td>1</td>
<td>외부 제어 위치를 EXT2로 선택합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: 파라미터 19.11 Ext1/Ext2 selection을 EFB MCW bit 11으로 선택한 경우에만 허용됩니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>외부 제어 위치를 EXT1로 선택합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Note: 파라미터 19.11 Ext1/Ext2 selection을 EFB MCW bit 11으로 선택한 경우에만 허용됩니다.</td>
</tr>
<tr>
<td>12</td>
<td>User bit 0</td>
<td>-</td>
<td>사용자 제어 비트로 사용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>예를 들어, 기타 파라미터 (Other)로 선택될 수 있습니다.</td>
</tr>
<tr>
<td>13</td>
<td>User bit 1</td>
<td>-</td>
<td>사용자 제어 비트로 사용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>예를 들어, 기타 파라미터 (Other)로 선택될 수 있습니다.</td>
</tr>
<tr>
<td>14</td>
<td>User bit 2</td>
<td>-</td>
<td>사용자 제어 비트로 사용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>예를 들어, 기타 파라미터 (Other)로 선택될 수 있습니다.</td>
</tr>
<tr>
<td>15</td>
<td>User bit 3</td>
<td>-</td>
<td>사용자 제어 비트로 사용합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>예를 들어, 기타 파라미터 (Other)로 선택될 수 있습니다.</td>
</tr>
</tbody>
</table>
상태 워드 (Status Word)

아래 표는 ABB 드라이브 제어 프로파일에 대한 상태 워드의 해당 비트별 동작 내용을 설명합니다. 이 상태 워드는 임베디드 필드버스 인터페이스에서 드라이브 표준 형식으로 변환되며, 대문자로 표시된 텍스트는 페이지 540의 통신 상태 블록도를 참고하십시오.

<table>
<thead>
<tr>
<th>비트</th>
<th>이름</th>
<th>값</th>
<th>비트 설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ready to switch ON</td>
<td>1</td>
<td>드라이브는 READY TO SWITCH ON 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 NOT READY TO SWITCH ON 상태입니다.</td>
</tr>
<tr>
<td>1</td>
<td>Ready run</td>
<td>1</td>
<td>드라이브는 READY TO OPERATE 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 OFF1 ACTIVE 상태입니다.</td>
</tr>
<tr>
<td>2</td>
<td>Ready ref</td>
<td>1</td>
<td>드라이브는 OPERATION ENABLED 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 OPERATION INHIBITED 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>06.18 Start inhibit status word 및 06.25 Drive inhibit status word 2에서 시작이 금지된 원인을 확인할 수 있습니다.</td>
</tr>
<tr>
<td>3</td>
<td>Tripped</td>
<td>1</td>
<td>드라이브는 폴트 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 폴트 상태가 아닙니다.</td>
</tr>
<tr>
<td>4</td>
<td>Off 2 inactive</td>
<td>1</td>
<td>드라이브는 OFF2 ACTIVE 상태가 아닙니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 OFF2 ACTIVE 상태입니다. (비상 관성 정지)</td>
</tr>
<tr>
<td>5</td>
<td>Off 3 inactive</td>
<td>1</td>
<td>드라이브는 OFF3 ACTIVE 상태가 아닙니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 OFF3 ACTIVE 상태입니다. (비상 패널 경지)</td>
</tr>
<tr>
<td>6</td>
<td>Switch-on inhibited</td>
<td>1</td>
<td>드라이브는 SWITCH-ON INHIBITED 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 SWITCH-ON INHIBITED 상태가 아닙니다.</td>
</tr>
<tr>
<td>7</td>
<td>Warning</td>
<td>1</td>
<td>드라이브는 경고 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>드라이브는 경고 상태가 아닙니다.</td>
</tr>
<tr>
<td>8</td>
<td>At setpoint</td>
<td>1</td>
<td>드라이브는 OPERATING 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>제어 모드에 따른 기준값과 실제값이 오차 범위 안에 있는 상태입니다. 자세한 사항은 파라미터 46.21...46.23을 참고하십시오.</td>
</tr>
<tr>
<td>9</td>
<td>Remote</td>
<td>1</td>
<td>외부 제어 위치 (EXT1 또는 EXT2)에서 운전 가능한 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>로컬 제어 위치 (제어 패널 또는 PC 툴)에서 운전 가능한 상태입니다.</td>
</tr>
<tr>
<td>10</td>
<td>Above limit</td>
<td>1</td>
<td>제어 모드에 따른 실제값이 감시 레벨을 벗어난 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>제어 모드에 따른 실제값과 실제값이 오차 범위를 벗어난 상태입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>제어 모드에 따른 실제값이 감시 레벨 안에 있는 상태입니다.</td>
</tr>
<tr>
<td>11</td>
<td>User bit 0</td>
<td>-</td>
<td>파라미터 06.30 MSW bit 11 sel을 참고하십시오.</td>
</tr>
<tr>
<td>12</td>
<td>User bit 1</td>
<td>-</td>
<td>파라미터 06.31 MSW bit 12 sel을 참고하십시오.</td>
</tr>
<tr>
<td>13</td>
<td>User bit 2</td>
<td>-</td>
<td>파라미터 06.32 MSW bit 13 sel을 참고하십시오.</td>
</tr>
<tr>
<td>14</td>
<td>User bit 3</td>
<td>-</td>
<td>파라미터 06.33 MSW bit 14 sel을 참고하십시오.</td>
</tr>
<tr>
<td>15</td>
<td>예약된 영역</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
통신 상태 블록도

아래 블록도는 ABB 드라이브 프로파일을 사용하는 경우에 제어 워드 입력에 따른 상태 워드의 전이 과정을 나타냅니다. 이에 대한 자세한 사항은 페이지 537의 제어 워드 및 페이지 539의 상태 워드를 참고하십시오.
기준값 (References)

ABB 드라이브 프로파일은 2개의 기준값 (기준값 1, 기준값 2)을 지원합니다. 이것은 16비트 워드로 구성되며, 상위 1비트는 부호이고 나머지 15비트들은 정수를 나타냅니다. 단, 음수값은 양수값에 2의 보수 (Two’s complement)를 취하여 전송하십시오.

여기서 기준값은 파라미터 46.01…46.07의 설정에 따라 스케일링되는데, 이 스케일링 값의 사용 여부는 58.26 EFB ref1 type 및 58.27 EFB ref2 type에서 결정할 수 있습니다. 이에 대한 자세한 사항은 페이지 349를 참고하십시오.

스케일링된 기준값은 파라미터 03.09 EFB reference 1 및 03.10 EFB reference 2에서 확인할 수 있습니다.
실제값 (Actual values)

ABB 드라이브 프로파일은 2개의 실제값 (실제값 1, 실제값 2)을 지원합니다. 이것은 16비트 워드로 구성되며, 상위 1비트는 부호이고 나머지 15비트들은 정수를 나타냅니다. 단, 음수값은 양수값에 2의 보수를 취하여 확인하십시오.

여기서 실제값은 파라미터 46.01…46.04의 설정에 따라 스케일링되는데, 이 스케일링 값의 사용 여부는 58.28 EFB act1 type 및 58.29 EFB act2 type에서 결정할 수 있습니다. 이에 대한 자세한 사항은 페이지 350을 참고하십시오.
모드버스 Holding Registers 주소

모드버스 통신을 위한 Holding Registers의 기본 데이터 매핑 주소는 아래 표와 같으며, 해당 프로파일에서는 데이터를 16비트 단위로 변환하여 통신을 수행합니다.

<table>
<thead>
<tr>
<th>레지스터 주소</th>
<th>레지스터 데이터 (16비트 워드 단위)</th>
</tr>
</thead>
</table>
| 400001 | 제어 워드 (CW).
이에 대한 자세한 정보는 페이지 537을 참고하십시오.
현재의 매핑 데이터는 파라미터 58.101 Data I/O 1에서 변경할 수 있습니다. |
| 400002 | 기준값 1 (REF1).
현재의 매핑 데이터는 파라미터 58.102 Data I/O 2에서 변경할 수 있습니다. |
| 400003 | 기준값 2 (REF2).
현재의 매핑 데이터는 파라미터 58.103 Data I/O 3에서 변경할 수 있습니다. |
| 400004 | 상태 워드 (SW).
이에 대한 자세한 정보는 페이지 539을 참고하십시오.
현재의 매핑 데이터는 파라미터 58.104 Data I/O 4에서 변경할 수 있습니다. |
| 400005 | 실제값 1 (ACT1).
현재의 매핑 데이터는 파라미터 58.105 Data I/O 5에서 변경할 수 있습니다. |
| 400006 | 실제값 2 (ACT2).
현재의 매핑 데이터는 파라미터 58.106 Data I/O 6에서 변경할 수 있습니다. |
| 400007…400024| 데이터 입력/출력.
파라미터 58.107 Data I/O 7…58.124 Data I/O 24에서 데이터를 매핑할 수 있습니다. |
| 400025…400089| 예약된 영역. |
| 400090…400100| 오류 코드 접근.
이에 대한 자세한 정보는 페이지 550을 참고하십시오. |
| 400101…465536| 파라미터 읽기/쓰기.
파라미터 58.33 Addressing mode의 설정에 따라 레지스터 주소에 매핑됩니다. |
투과형 프로파일 (Transparent profile)

투과형 프로파일은 사용자가 원하는 방법으로 드라이브에 접근할 수 있습니다.

외부 컨트롤러에서 수신된 제어 워드는 파라미터 06.05 EFB transparent control word 에서 확인할 수 있으며, 기타 파라미터 선택 (Other) 또는 응용 프로그램으로 드라이브를 제어하는데 이용할 수 있습니다.

그리고 상태 워드는 파라미터 58.30 EFB status word transparent source에서 선택할 수 있습니다. 예를 들어, 외부 컨트롤러로 전송할 상태 워드를 06.50 User status word 1로 선택하는 것이 가능합니다.

투과형 프로파일은 제어 워드 또는 상태 워드의 데이터를 변환하지 않습니다. 기준값 또는 실제값은 파라미터 58.26…58.29의 설정에 따라 스케일링됩니다. 여기서 외부 컨트롤러로부터 수신된 기준값은 03.09 EFB reference 1 및 03.10 EFB reference 2에서 확인할 수 있습니다.

투과형 프로파일의 모드버스 Holding Registers 주소는 ABB 드라이브 프로파일 (페이지 543)과 동일합니다.
모드버스 기능 코드 (Modbus function codes)

아래 표는 임베디드 필드버스 통신에서 지원하는 기능 코드를 나타냅니다. 여기서는 지면 관계상 간략하게 설명하였으므로 자세한 기술 정보는 모드버스 공식 웹사이트에서 확인하시기 바랍니다.
http://www.modbus.org/

<table>
<thead>
<tr>
<th>기능 코드</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>Read Coils (1비트 단위 접근)</td>
<td>드라이브의 Coils 상태를 연속으로 읽습니다. (0X 번지)</td>
</tr>
<tr>
<td>02h</td>
<td>Read Discrete Inputs (1비트 단위 접근)</td>
<td>드라이브의 Discrete Inputs 상태를 연속으로 읽습니다. (1X 번지)</td>
</tr>
<tr>
<td>03h</td>
<td>Read Holding Registers (16비트 단위 접근)</td>
<td>드라이브의 Holding Registers에서 연속으로 데이터를 읽습니다. (4X 번지)</td>
</tr>
<tr>
<td>05h</td>
<td>Write Single Coil (1비트 단위 접근)</td>
<td>드라이브의 단일 Coils에 강제로 0 또는 1을 써냅니다. (0X 번지)</td>
</tr>
<tr>
<td>06h</td>
<td>Write Single Register (16비트 단위 접근)</td>
<td>드라이브의 단일 Holding Registers에 데이터를 써냅니다. (4X 번지)</td>
</tr>
<tr>
<td>08h</td>
<td>Diagnostics</td>
<td>통신 상태 및 내부 오류를 검사하기 위한 진단 기능을 제공합니다.</td>
</tr>
<tr>
<td>(Subcodes):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>00h</td>
<td>Return Query Data</td>
<td>지원되는 서브 코드 (Subcodes):</td>
</tr>
<tr>
<td>01h</td>
<td>Restart Comm Option</td>
<td>• 00h Return Query Data</td>
</tr>
<tr>
<td>04h</td>
<td>Force Listen Only Mode</td>
<td>• 01h Restart Comm Option</td>
</tr>
<tr>
<td>0Ah</td>
<td>Clear Counters and Diagnostic Register</td>
<td>• 04h Force Listen Only Mode</td>
</tr>
<tr>
<td>0Bh</td>
<td>Return Bus Message Count</td>
<td>• 0Ah Clear Counters and Diagnostic Register</td>
</tr>
<tr>
<td>0Ch</td>
<td>Return Bus Comm. Error Count</td>
<td>• 0Bh Return Bus Message Count</td>
</tr>
<tr>
<td>0Dh</td>
<td>Return Bus Exception Error Count</td>
<td>• 0Ch Return Bus Comm. Error Count</td>
</tr>
<tr>
<td>0Eh</td>
<td>Return Slave Message Count</td>
<td>• 0Dh Return Bus Exception Error Count</td>
</tr>
<tr>
<td>0Fh</td>
<td>Return Slave No Response Count</td>
<td>• 0Eh Return Slave Message Count</td>
</tr>
<tr>
<td>10h</td>
<td>Return Slave NAK (negative acknowledge) Count</td>
<td>• 0Fh Return Slave No Response Count</td>
</tr>
<tr>
<td>11h</td>
<td>Return Slave Busy Count</td>
<td>• 10h Return Slave NAK (negative acknowledge) Count</td>
</tr>
<tr>
<td>12h</td>
<td>Return Bus Character Overrun Count</td>
<td>• 11h Return Slave Busy Count</td>
</tr>
<tr>
<td>14h</td>
<td>Clear Overrun Counter and Flag</td>
<td>• 12h Return Bus Character Overrun Count</td>
</tr>
<tr>
<td>08h</td>
<td>Get Comm Event Counter</td>
<td>• 14h Clear Overrun Counter and Flag</td>
</tr>
<tr>
<td>0Fh</td>
<td>Write Multiple Coils (1비트 단위 접근)</td>
<td>상태 워드와 이벤트 카운트 값을 반환합니다.</td>
</tr>
<tr>
<td>10h</td>
<td>Write Multiple Registers (16비트 단위 접근)</td>
<td>드라이브의 각 Coils에 연속으로 0 또는 1을 써냅니다. (0X 번지)</td>
</tr>
<tr>
<td>16h</td>
<td>Mask Write Register (16비트 단위 접근)</td>
<td>드라이브의 각 Holding Registers에서 연속으로 데이터를 써냅니다. (4X 번지)</td>
</tr>
<tr>
<td>17h</td>
<td>Read/Write Multiple Registers (16비트 단위 접근)</td>
<td>선택한 Holding Registers를 AND 및 OR 마스크하여 각 비트를 1로 세트하거나 0으로 클리어합니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>선택한 Holding Registers에 데이터를 쓰고 동일 레지스터 또는 다른 레지스터 그룹에서 데이터를 읽습니다.</td>
</tr>
<tr>
<td>기능 코드</td>
<td>이름</td>
<td>설명</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
</tbody>
</table>
| 2Bh / 0Eh | Encapsulated Interface Transport | 지원되는 서브 코드:
- 0Eh Read Device Identification:
 Allows reading the identification and other information. |
| | | 지원되는 ID 코드:
- 00h: Request to get the basic device identification
 (stream access)
- 04h: Request to get one specific identification object
 (individual access) |
| | | 지원되는 오브젝트 ID:
- 00h: 공급업체 (“ABB”)
- 01h: 제품 코드 (예: “AINFX”)
- 02h: 버전 번호
 (07.05 Firmware version, 58.02 Protocol ID)
- 03h: 공급 업체 URL (“www.abb.com”)
- 04h: 제품 모델명 (예: “ACS880”) |

Note: 통상 외부 컨트롤러의 레지스터 번지는 0부터 시작합니다. 그러므로 여기서 표현된 레지스터 번자가 1 ~ 16인 경우에 외부 컨트롤러에서는 0 ~ 15로 접근해야 합니다.

예외 코드 (Exception codes)

아래 표는 임베디드 필드버스 통신에서 지원하는 모드버스 예외 코드를 나타냅니다.

<table>
<thead>
<tr>
<th>기능 코드</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h</td>
<td>ILLEGAL FUNCTION</td>
<td>큐리에서 수신된 기능 코드는 서버에 허용되는 작업이 아닙니다.</td>
</tr>
<tr>
<td>02h</td>
<td>ILLEGAL DATA ADDRESS</td>
<td>큐리에서 수신된 데이터 주소가 서버에 허용되는 주소가 아닙니다.</td>
</tr>
</tbody>
</table>
| 03h | ILLEGAL DATA VALUE | 요청 레지스터가 드라이브에서 처리 가능한 개수보다 많습니다.
Note: 이 오류는 파라미터에 쓰여진 값이 유효한 범위를 벗어난 것을 의미하지 않습니다. |
| 04h | SLAVE DEVICE FAILURE | 파라미터에 쓰여진 값이 유효한 범위를 벗어났습니다.
자세한 사항은 *오류 코드 레지스터* (페이지 550)를 참고하십시오. |
| 06h | SLAVE DEVICE BUSY | 서버가 긴 시간동안 프로그램 명령을 처리하고 있습니다. |
Coils (0xxxx 번지)

Coils는 1비트 읽기/쓰기 레지스터입니다. 이 레지스터에서 제어 워드는 비트 단위로 표현되며, 각 비트별 정보는 아래 표와 같습니다.

<table>
<thead>
<tr>
<th>번지</th>
<th>ABB 드라이브 프로파일</th>
<th>투과형 프로파일</th>
</tr>
</thead>
<tbody>
<tr>
<td>00001</td>
<td>Off1 control</td>
<td>제어 워드 비트 0</td>
</tr>
<tr>
<td>00002</td>
<td>Off2 control</td>
<td>제어 워드 비트 1</td>
</tr>
<tr>
<td>00003</td>
<td>Off3 control</td>
<td>제어 워드 비트 2</td>
</tr>
<tr>
<td>00004</td>
<td>Run</td>
<td>제어 워드 비트 3</td>
</tr>
<tr>
<td>00005</td>
<td>Ramp out zero</td>
<td>제어 워드 비트 4</td>
</tr>
<tr>
<td>00006</td>
<td>Ramp hold</td>
<td>제어 워드 비트 5</td>
</tr>
<tr>
<td>00007</td>
<td>Ramp in zero</td>
<td>제어 워드 비트 6</td>
</tr>
<tr>
<td>00008</td>
<td>Reset</td>
<td>제어 워드 비트 7</td>
</tr>
<tr>
<td>00009</td>
<td>Inching 1</td>
<td>제어 워드 비트 8</td>
</tr>
<tr>
<td>00010</td>
<td>Inching 2</td>
<td>제어 워드 비트 9</td>
</tr>
<tr>
<td>00011</td>
<td>Remote cmd</td>
<td>제어 워드 비트 10</td>
</tr>
<tr>
<td>00012</td>
<td>Ext ctrl loc</td>
<td>제어 워드 비트 11</td>
</tr>
<tr>
<td>00013</td>
<td>User bit 0</td>
<td>제어 워드 비트 12</td>
</tr>
<tr>
<td>00014</td>
<td>User bit 1</td>
<td>제어 워드 비트 13</td>
</tr>
<tr>
<td>00015</td>
<td>User bit 2</td>
<td>제어 워드 비트 14</td>
</tr>
<tr>
<td>00016</td>
<td>User bit 3</td>
<td>제어 워드 비트 15</td>
</tr>
<tr>
<td>00017</td>
<td>예약된 영역</td>
<td>제어 워드 비트 16</td>
</tr>
<tr>
<td>00018</td>
<td>예약된 영역</td>
<td>제어 워드 비트 17</td>
</tr>
<tr>
<td>00019</td>
<td>예약된 영역</td>
<td>제어 워드 비트 18</td>
</tr>
<tr>
<td>00020</td>
<td>예약된 영역</td>
<td>제어 워드 비트 19</td>
</tr>
<tr>
<td>00021</td>
<td>예약된 영역</td>
<td>제어 워드 비트 20</td>
</tr>
<tr>
<td>00022</td>
<td>예약된 영역</td>
<td>제어 워드 비트 21</td>
</tr>
<tr>
<td>00023</td>
<td>예약된 영역</td>
<td>제어 워드 비트 22</td>
</tr>
<tr>
<td>00024</td>
<td>예약된 영역</td>
<td>제어 워드 비트 23</td>
</tr>
<tr>
<td>00025</td>
<td>예약된 영역</td>
<td>제어 워드 비트 24</td>
</tr>
<tr>
<td>00026</td>
<td>예약된 영역</td>
<td>제어 워드 비트 25</td>
</tr>
<tr>
<td>00027</td>
<td>예약된 영역</td>
<td>제어 워드 비트 26</td>
</tr>
<tr>
<td>00028</td>
<td>예약된 영역</td>
<td>제어 워드 비트 27</td>
</tr>
<tr>
<td>00029</td>
<td>예약된 영역</td>
<td>제어 워드 비트 28</td>
</tr>
<tr>
<td>00030</td>
<td>예약된 영역</td>
<td>제어 워드 비트 29</td>
</tr>
<tr>
<td>00031</td>
<td>예약된 영역</td>
<td>제어 워드 비트 30</td>
</tr>
<tr>
<td>00032</td>
<td>예약된 영역</td>
<td>제어 워드 비트 31</td>
</tr>
<tr>
<td>00033</td>
<td>예약된 영역</td>
<td>10.99 RO/DIO control word, 비트 0</td>
</tr>
<tr>
<td>00034</td>
<td>예약된 영역</td>
<td>10.99 RO/DIO control word, 비트 1</td>
</tr>
</tbody>
</table>
Discrete Inputs (1xxxx 번지)

Discrete Inputs는 1비트 단위의 읽기 전용 레지스터입니다. 이 레지스터에서 상태 워드는 비트 단위로 표현되며, 각 비트별 정보는 아래 표와 같습니다.

<table>
<thead>
<tr>
<th>번지</th>
<th>ABB 드라이브 프로파일</th>
<th>투과형 프로파일</th>
</tr>
</thead>
<tbody>
<tr>
<td>10001</td>
<td>Ready to switch ON</td>
<td>상태 워드 비트 0</td>
</tr>
<tr>
<td>10002</td>
<td>Ready run</td>
<td>상태 워드 비트 1</td>
</tr>
<tr>
<td>10003</td>
<td>Ready ref</td>
<td>상태 워드 비트 2</td>
</tr>
<tr>
<td>10004</td>
<td>Tripped</td>
<td>상태 워드 비트 3</td>
</tr>
<tr>
<td>10005</td>
<td>Off 2 inactive</td>
<td>상태 워드 비트 4</td>
</tr>
<tr>
<td>10006</td>
<td>Off 3 inactive</td>
<td>상태 워드 비트 5</td>
</tr>
<tr>
<td>10007</td>
<td>Switch-on inhibited</td>
<td>상태 워드 비트 6</td>
</tr>
<tr>
<td>10008</td>
<td>Warning</td>
<td>상태 워드 비트 7</td>
</tr>
<tr>
<td>10009</td>
<td>At setpoint</td>
<td>상태 워드 비트 8</td>
</tr>
<tr>
<td>10010</td>
<td>Remote</td>
<td>상태 워드 비트 9</td>
</tr>
<tr>
<td>10011</td>
<td>Above limit</td>
<td>상태 워드 비트 10</td>
</tr>
<tr>
<td>10012</td>
<td>User bit 0</td>
<td>상태 워드 비트 11</td>
</tr>
<tr>
<td>10013</td>
<td>User bit 1</td>
<td>상태 워드 비트 12</td>
</tr>
<tr>
<td>10014</td>
<td>User bit 2</td>
<td>상태 워드 비트 13</td>
</tr>
<tr>
<td>10015</td>
<td>User bit 3</td>
<td>상태 워드 비트 14</td>
</tr>
<tr>
<td>10016</td>
<td>예약된 영역</td>
<td>상태 워드 비트 15</td>
</tr>
<tr>
<td>10017</td>
<td>예약된 영역</td>
<td>상태 워드 비트 16</td>
</tr>
<tr>
<td>10018</td>
<td>예약된 영역</td>
<td>상태 워드 비트 17</td>
</tr>
<tr>
<td>10019</td>
<td>예약된 영역</td>
<td>상태 워드 비트 18</td>
</tr>
<tr>
<td>10020</td>
<td>예약된 영역</td>
<td>상태 워드 비트 19</td>
</tr>
<tr>
<td>10021</td>
<td>예약된 영역</td>
<td>상태 워드 비트 20</td>
</tr>
<tr>
<td>10022</td>
<td>예약된 영역</td>
<td>상태 워드 비트 21</td>
</tr>
<tr>
<td>10023</td>
<td>예약된 영역</td>
<td>상태 워드 비트 22</td>
</tr>
<tr>
<td>10024</td>
<td>예약된 영역</td>
<td>상태 워드 비트 23</td>
</tr>
<tr>
<td>번지</td>
<td>ABB 드라이브 프로파일</td>
<td>투과형 프로파일</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>10025</td>
<td>예약된 영역</td>
<td>상태 워드 비트 24</td>
</tr>
<tr>
<td>10026</td>
<td>예약된 영역</td>
<td>상태 워드 비트 25</td>
</tr>
<tr>
<td>10027</td>
<td>예약된 영역</td>
<td>상태 워드 비트 26</td>
</tr>
<tr>
<td>10028</td>
<td>예약된 영역</td>
<td>상태 워드 비트 27</td>
</tr>
<tr>
<td>10029</td>
<td>예약된 영역</td>
<td>상태 워드 비트 28</td>
</tr>
<tr>
<td>10030</td>
<td>예약된 영역</td>
<td>상태 워드 비트 29</td>
</tr>
<tr>
<td>10031</td>
<td>예약된 영역</td>
<td>상태 워드 비트 30</td>
</tr>
<tr>
<td>10032</td>
<td>예약된 영역</td>
<td>상태 워드 비트 31</td>
</tr>
<tr>
<td>10033</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 0</td>
</tr>
<tr>
<td>10034</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 1</td>
</tr>
<tr>
<td>10035</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 2</td>
</tr>
<tr>
<td>10036</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 3</td>
</tr>
<tr>
<td>10037</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 4</td>
</tr>
<tr>
<td>10038</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 5</td>
</tr>
<tr>
<td>10039</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 6</td>
</tr>
<tr>
<td>10040</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 7</td>
</tr>
<tr>
<td>10041</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 8</td>
</tr>
<tr>
<td>10042</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 9</td>
</tr>
<tr>
<td>10043</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 10</td>
</tr>
<tr>
<td>10044</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 11</td>
</tr>
<tr>
<td>10045</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 12</td>
</tr>
<tr>
<td>10046</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 13</td>
</tr>
<tr>
<td>10047</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 14</td>
</tr>
<tr>
<td>10048</td>
<td>예약된 영역</td>
<td>10.02 DI delayed status, 비트 15</td>
</tr>
</tbody>
</table>
오류 코드 레지스터 (Error code registers)

(Holding Registers, 400090…400100 번지)

이 레지스터는 최근 쿼리 (Query) 정보를 포함하고 있습니다. 실제 쿼리가 성공적으로 완료되면 오류 레지스터는 클리어됩니다.

<table>
<thead>
<tr>
<th>번지</th>
<th>이름</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>89</td>
<td>Reset Error Registers</td>
<td>1 = 내부 오류 레지스터 (91…95)를 리셋합니다.</td>
</tr>
<tr>
<td>90</td>
<td>Error Function Code</td>
<td>실패한 쿼리의 기능 코드입니다.</td>
</tr>
<tr>
<td>91</td>
<td>Error Code</td>
<td>에외 코드 04h가 발생된 경우에 설정하십시오 (예외 코드 참고).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 00h No error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 02h Low/High limit exceeded</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 03h Faulty Index: Unavailable index of an array parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 05h Incorrect Data Type: Value does not match the data type of the parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• 65h General Error: Undefined error when handling query</td>
</tr>
<tr>
<td>92</td>
<td>Failed Register</td>
<td>읽기 또는 쓰기를 실패한 최근 레지스터입니다.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Discrete Inputs, Coils, Holding Registers)</td>
</tr>
<tr>
<td>93</td>
<td>Last Register Written Successfully</td>
<td>성공적으로 쓰여진 마지막 레지스터입니다.</td>
</tr>
<tr>
<td>94</td>
<td>Last Register Read Successfully</td>
<td>성공적으로 읽은 마지막 레지스터입니다.</td>
</tr>
</tbody>
</table>
필드버스 어댑터 통신

Fieldbus control through a fieldbus adapter

이 장의 내용

이 장에서는 제어 유닛의 옵션 슬롯에 필드버스 통신 어댑터를 설치하여 필드버스 통신 네트워크를 구축하고 드라이브를 외부 컨트롤러에서 제어하는 방법을 설명합니다.

시스템 개요

드라이브는 필드버스 옵션 어댑터를 통하여 외부 컨트롤러와 접속될 수 있습니다. 이 드라이브에는 실제로 필드버스 통신 연결을 위한 2개의 인터페이스가 있으며, 이것을 필드버스 어댑터 A (FBA A) 및 필드버스 어댑터 B (FBA B)라고 부릅니다.

드라이브는 필드버스 인터페이스를 통해 모든 제어 명령을 수신할 수 있으며, 필요에 따라서는 일부 제어 명령을 기타 파라미터 소스 (디지털 및 아날로그 입력)에서 수신할 수도 있습니다.

Note: 이 장에서는 FBA A (파라미터 50.01...50.21과 그룹 51...53)에 대해서만 통신 구성 예를 설명하였지만, FBA B (파라미터 50.01...50.21과 그룹 51...53)도 마찬가지로 동일한 파라미터로 구성되어 있습니다. 단, FBA B는 모니터링 용도로만 사용할 것을 권장합니다.
필드버스 옵션 어댑터는 다양한 통신 시스템 및 프로토콜에 사용될 수 있습니다.

- CANopen (FCAN-01 어댑터)
- ControlNet (FCNA-01 어댑터)
- DeviceNet (FDNA-01 어댑터)
- EtherCAT® (FECA-01 어댑터)
- EtherNet/IP™ (FENA-11 또는 FENA-21 어댑터)
- Modbus/RTU (FSCA-01 어댑터)
- Modbus/TCP (FENA-11 또는 FENA-21 어댑터)
- POWERLINK (FEPL-02 어댑터)
- PROFIBUS DP (FPBA-01 어댑터)
- PROFINET IO (FENA-11 or FENA-21 어댑터)
필드버스 통신의 기본 동작

드라이브와 외부 컨트롤러 (예: PLC) 간의 통신 데이터는 16비트 또는 32비트 단위로 구성되며, 송수신 데이터에 대해서 각각 12개의 16비트 데이터 워드를 지원합니다.

드라이브에서 외부 컨트롤러로 전송되는 데이터는 파라미터 52.01 FBA A data in1…52.12 FBA A data in12에 정의합니다. 그리고 반대의 경우에는 파라미터 53.01 FBA A data out1…53.12 FBA A data out12에 정의합니다.

1) 외부 컨트롤러에서 제어할 수 있는 기타 파라미터를 참고하십시오.
2) 데이터 워드의 최대 개수는 프로토콜에 따라 다릅니다.
3) 필드버스 옵션 모듈에서 지원하는 프로파일 및 인스턴스 (Instance) 선택 파라미터입니다. 이에 대한 자세한 정보는 필드버스 옵션 모듈의 사용자 매뉴얼을 참고하십시오.
4) DeviceNet에서는 제어 워드 및 기준값을 직접 전송합니다.
5) DeviceNet에서는 상태 워드 및 설정값을 직접 전송합니다.
제어 워드 및 상태 워드 (Control word and Status word)

제어 워드는 외부 컨트롤러에서 드라이브를 제어하기 위한 통신 데이터입니다. 외부 컨트롤러에서 어댑터 모듈을 통해 드라이브로 전송됩니다. 드라이브는 제어 워드에 따라 동작하고 외부 컨트롤러로 상태 워드를 반환합니다.

ABB 드라이브 통신 프로파일의 경우에 제어 워드 및 상태 워드에 대한 자세한 정보는 임베디드 필드버스 인터페이스 (페이지 537 및 539) 설명에서 확인할 수 있습니다.

투과형 프로파일의 경우에 파라미터 그룹 51 FBA A settings에 따라 외부 컨트롤러에서 수신된 제어 워드는 파라미터 06.03 FBA A transparent control word에서 확인할 수 있으며, 기타 파라미터 선택 (Other) 또는 응용 프로그램으로 드라이브를 제어하는데 이용할 수 있습니다. 그리고 상태 워드는 파라미터 50.09 FBA A SW transparent source에서 선택할 수 있습니다. 예를 들어, 외부 컨트롤러로 전송할 상태 워드를 06.50 User status word 1로 선택하는 것이 가능합니다.

디버깅 모드

파라미터 50.12 FBA A debug mode를 Fast로 설정하면 외부 컨트롤러에서 수신된 제어 워드는 파라미터 50.13 FBA A control word에 표시되며, 반환된 상태 워드는 50.16 FBA A status word에 표시됩니다. 결과적으로 이 모드는 통신 데이터가 올바르게 송수신되고 있는지 판단하는데 유용하게 사용될 수 있습니다.

기준값 (References)

기준값은 16비트 워드로 구성되며, 상위 1비트는 부호이고 나머지 15비트들은 정수를 나타냅니다. 단, 음수값은 양수값에 2의 보수를 취하여 전송하십시오.

드라이브는 아날로그 및 디지털 입력, 제어 패널 및 필드버스 옵션 모듈을 포함한 여러 가지 소스로부터 제어 정보를 얻을 수 있습니다. 단, 필드버스 명령으로부터 드라이브를 제어하려면 통신 모듈을 기준값의 소스로 선택해야 하는데, 이것은 파라미터 그룹 22 Speed reference selection, 26 Torque reference chain, 28 Frequency reference chain의 소스 선택 파라미터에서 설정할 수 있습니다.

디버깅 모드

파라미터 50.12 FBA A debug mode를 Fast로 설정하면 기준값은 파라미터 50.14 FBA A reference 1 및 50.15 FBA A reference 2에 표시됩니다.

기준값 스케일링

Note: 아래 스케일링 값은 ABB 드라이브 프로파일을 사용한 경우에만 적용됩니다. 실제 필드버스 관련 통신 프로파일은 다른 스케일링이 적용될 수 있습니다. 이에 대한 자세한 정보는 각각의 필드버스 어댑터 매뉴얼을 참고하십시오.
여기서 기준값은 파라미터 46.01...46.07의 설정에 따라 스케일링되는데, 이 스케일링 값의 사용 여부는 50.04 FBA A ref1 type 및 50.05 FBA A ref2 type에서 결정할 수 있습니다.

스케일링된 기준값은 파라미터 03.05 FB A reference 1 및 03.06 FB A reference 2에서 확인할 수 있습니다.

■ 실제값 (Actual values)

실제값은 16비트 워드로 구성되며, 상위 1비트는 부호이고 나머지 15비트들은 정수를 나타냅니다. 단, 음수값은 양수값에 2의 보수를 취하여 확인하십시오.

디버깅 모드

파라미터 50.12 FBA A debug mode를 Fast로 설정하면 실제값은 파라미터 50.17 FBA A actual value 1 및 50.18 FBA A actual value 2에 표시됩니다.

실제값 스케일링

Note: 아래 스케일링 값은 ABB 드라이브 프로파일을 사용한 경우에만 적용됩니다. 실제 필드버스 관련 통신 프로파일은 다른 스케일링이 적용될 수 있습니다. 이에 대한 자세한 정보는 각각의 필드버스 어댑터 매뉴얼을 참고하십시오.

실제값은 파라미터 46.01...46.04의 설정에 따라 스케일링되는데, 이것의 사용 여부는 50.07 FBA A actual 1 type 및 50.08 FBA A actual 2 type에서 결정할 수 있습니다.
Fieldbus control through a fieldbus adapter
 필드버스 제어 워드 (ABB 드라이브 프로파일인 경우)

임베디드 필드버스 인터페이스의 제어 워드 (페이지 537)를 참고하십시오.
Fieldbus control through a fieldbus adapter

- Fieldbus status word (ABB drive profile in case)

Refer to the embedded fieldbus interface status word (page 539) for reference.
필드버스 상태 블록도 (ABB 드라이브 프로파일인 경우)

임베디드 필드버스 인터페이스의 통신 상태 블록도 (페이지 540)를 참고하십시오.
필드버스 통신 파라미터 설정

1. 필드버스 옵션 모듈을 제어 유닛의 슬롯 (슬롯 1, 2, 3)에 설치하십시오.

2. 드라이브의 전원을 켜십시오.

3. 파라미터 50.01 FBA A enable에서 통신을 허용하십시오.

4. 필드버스 통신이 중단된 경우에 드라이브가 어떻게 반응할지 파라미터 50.02 FBA A comm loss func에서 선택하십시오.
 Note: 이 기능은 외부 컨트롤러와 옵션 모듈 간의 통신 상태와 옵션 모듈과 드라이브 간의 통신 상태를 모두 감시합니다.

5. 통신 중단 상태에서 선택한 동작을 수행하기 전에 지연 시간을 50.03 FBA A comm loss t out에 정의하십시오.

6. 파라미터 50.04부터 사용자 요구 사항에 맞게 설정하십시오.

7. 파라미터 그룹 51 FBA A settings에서 모듈 구성 파라미터를 설정하십시오. 여기에는 적어도 노드 주소 및 제어 프로파일이 설정되어야 합니다.

8. 파라미터 그룹 52 FBA A data in 및 53 FBA A data out에 송수신 데이터를 정의하십시오.

9. 파라미터 96.07 Parameter save manually에서 Save를 선택하십시오 (메모리 저장).

10. 파라미터 51.27 FBA A refresh에서 Refresh를 선택하십시오 (파라미터 새로고침).

11. 외부 컨트롤러로부터 전송된 데이터를 외부 제어 위치 (EXT1 및 EXT2)에서의 제어 명령으로 사용될 수 있도록 설정하십시오.
■ 파라미터 설정 예: FPBA (PROFIBUS DP)

이 예에서는 PPO2에서 PROFIdrive 프로파일을 사용하여 속도 제어 응용 프로그램을 구성하는 방법을 나타냅니다. 시작/정지 명령 및 기준값은 프로파일에 의해 결정됩니다.

외부 컨트롤러에서 전송된 기준값은 드라이브 내에서 적절히 스케일링되어야 합니다. 이 프로파일에서 데이터 ±16384 (4000h)는 파라미터 46.01 Speed scaling에 설정한 속도 범위를 나타냅니다. 예를 들어, 46.01을 480 rpm으로 설정하면 4000h는 480 rpm을 요청할 것입니다.

<table>
<thead>
<tr>
<th>방향</th>
<th>PZD1</th>
<th>PZD2</th>
<th>PZD3</th>
<th>PZD4</th>
<th>PZD5</th>
<th>PZD6</th>
</tr>
</thead>
<tbody>
<tr>
<td>수신</td>
<td>제어 워드</td>
<td>기준 속도</td>
<td>가속 시간 1</td>
<td>감속 시간 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>송신</td>
<td>상태 워드</td>
<td>실제 속도</td>
<td>모터 전류</td>
<td>DC 전압</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

아래 표는 드라이브 파라미터의 권장 설정입니다.

<table>
<thead>
<tr>
<th>드라이브 파라미터</th>
<th>ACS880 설정</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>50.01 FBA A enable</td>
<td>1...3 = [슬롯 번호]</td>
<td>해당 송신의 필드버스 통신을 허용합니다.</td>
</tr>
<tr>
<td>50.04 FBA A ref1 type</td>
<td>4 = Speed</td>
<td>기준값 1의 타입을 선택합니다.</td>
</tr>
<tr>
<td>50.07 FBA A actual 1 type</td>
<td>0 = Auto</td>
<td>현재의 제어 모드에 따라 실제값 및 스케일링 값을 적용합니다. 파라미터 19.01을 확인하십시오.</td>
</tr>
<tr>
<td>51.01 FBA A type</td>
<td>1 = FPBA1)</td>
<td>필드버스 옵션 모듈의 타입을 표시합니다.</td>
</tr>
<tr>
<td>51.02 Node address</td>
<td>32)</td>
<td>PROFIBUS 통신의 노드 주소를 정의합니다.</td>
</tr>
<tr>
<td>51.03 Baud rate</td>
<td>120001)</td>
<td>외부 컨트롤러의 통신 속도를 표시합니다.</td>
</tr>
<tr>
<td>51.04 MSG type</td>
<td>1 = PPO11)</td>
<td>외부 컨트롤러의 PPO 타입을 표시합니다.</td>
</tr>
<tr>
<td>51.05 Profile</td>
<td>0 = PROFIdrive</td>
<td>(속도 제어 모드) 설정 프로파일에 따라 제어 워드가 선택됩니다.</td>
</tr>
<tr>
<td>51.07 RPBA mode</td>
<td>0 = Disabled</td>
<td>RPBA 에뮬레이션 모드를 금지시킵니다.</td>
</tr>
<tr>
<td>52.01 FBA data in1</td>
<td>4 = SW 16bit1)</td>
<td>상태 워드 (16비트)</td>
</tr>
<tr>
<td>52.02 FBA data in2</td>
<td>5 = Act1 16bit</td>
<td>실제 속도 (16비트)</td>
</tr>
<tr>
<td>52.03 FBA data in3</td>
<td>01.072)</td>
<td>모터 전류 (32비트)</td>
</tr>
<tr>
<td>52.05 FBA data in5</td>
<td>01.112)</td>
<td>DC 전압 (32비트)</td>
</tr>
<tr>
<td>53.01 FBA data out1</td>
<td>1 = CW 16bit1)</td>
<td>제어 워드 (16비트)</td>
</tr>
<tr>
<td>53.02 FBA data out2</td>
<td>2 = Ref1 16bit</td>
<td>기준 속도 (16비트)</td>
</tr>
</tbody>
</table>
ACS880 Setting

<table>
<thead>
<tr>
<th>드라이브 파라미터</th>
<th>ACS880 설정</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>53.03 FBA data out3</td>
<td>23.12<sup>2)</sup></td>
<td>가속 시간 1 (32비트)</td>
</tr>
<tr>
<td>53.05 FBA data out5</td>
<td>23.13<sup>2)</sup></td>
<td>감속 시간 1 (32비트)</td>
</tr>
</tbody>
</table>

51.27 FBA A par refresh 1 = Refresh
파라미터 설정을 새로고침합니다.

| 19.12 Ext1 control mode | 2 = Speed | (외부 제어 위치 EXT1)
속도 제어 모드로 선택합니다. |
|-------------------------|-----------|------------------------|
| 20.01 Ext1 commands | 12 = Fieldbus A | (외부 제어 위치 EXT1)
시작/정지 명령의 소스로 FBA A를 선택합니다. |
| 20.02 Ext1 start trigger type | 1 = Level | (외부 제어 위치 EXT1)
레벨 트리거에서 시작하도록 선택합니다. |
| 22.11 Speed ref1 source | 4 = FB A ref1 | 기준 속도 1의 소스로 FBA A를 선택합니다. |

1) 읽기 전용 또는 자동 검출/설정
2) 예제

위의 파라미터 예제에 대한 드라이브의 시작 순서는 다음과 같습니다.

제어 워드 (Control word) 입력

- 전원 투입 후에 풀트 또는 비상 정지 상태인 경우:
 - 16진수 476h (10진수 1142) → NOT READY TO SWITCH ON

- 정상 운전이 가능한 경우:
 - 16진수 477h (10진수 1143) → READY TO SWITCH ON (드라이브 정지)
 - 16진수 47Fh (10진수 1151) → OPERATING (드라이브 운전)
제어 체인 블록도

이 장의 내용

이 장에서는 드라이브의 제어 체인 블록도를 제공합니다. 사용자는 그림으로 된 제어 블록도를 이용하여 파라미터 간의 상호 작용과 파라미터가 제어 알고리즘 내에서 어떻게 동작하는지 쉽게 추적할 수 있습니다. 이 제어 체인 블록도는 특히 시운전 및 문제 해결 과정에서 유용하게 사용될 수 있습니다.

보다 간략화된 제어 블록도는 드라이브 운전 모드 (페이지 22) 절을 참고하십시오.
Control chain diagrams
90.11 Encoder 1 position
90.12 Encoder 1 multiturn revolutions
90.13 Encoder 1 revolution extension
90.21 Encoder 2 position
90.22 Encoder 2 multiturn revolutions
90.23 Encoder 2 revolution extension
90.54 Load gear denominator
90.62 Gear denominator
90.02 Motor position
90.26 Motor revolution extension
90.61 Gear numerator
90.53 Load gear numerator
90.63 Feed constant numerator
90.64 Feed constant denumerator
90.58 Pos counter initial value int
90.59 Pos counter init value int source
90.67 Pos counter init cmd source
90.68 Disable pos counter initialization
90.69 Reset pos counter init ready
6.11 Main status word bit 3 Tripped

INITIALIZATION REQUEST

INITIALIZING COMMAND

S

INITIALIZED

S

R

R

INIT COMMAND

INIT VAL

INIT SRC

AND

OR

OR

90.35 bit 4 Position counter initialized

90.35 bit 5 Pos counter re-init disabled
토크 제어를 위한 기준 소스 선택
30.02 Torque limit status

Bit Name
0 = Undervoltage
1 = Overvoltage
2 = Minimum torque
3 = Maximum torque
4 = Internal current
5 = Load angle
6 = Motor pullout
7 =
8 = Thermal
9 = Max current
10 = User current
11 = Thermal IGBT
12 = IGBT overtemperature
13 = IGBT overload
14 =
15 =

Power to torque limits

DC voltage limiter

Torque limiter

Load angle limitation

Motor pull-out limitation

Current limiter

30.01 Torque reference to TC

26.01 Torque reference used

26.02 Torque limit status

To DTC core

30.30 Overvoltage control

30.31 Undervoltage control

30.26 Power motoring limit

30.27 Power generating limit

30.17 Maximum current

30.18 Minimum torque sel

30.19 Minimum torque 1

30.20 Maximum torque 1

30.21 Minimum torque 2 source

30.22 Maximum torque 2 source

30.23 Minimum torque 2

30.24 Maximum torque 2

30.25 Maximum torque sel
기준 주파수 선택
Control chain diagrams

Process PID parameter set 1
Par 40.07...40.56 (shown)

Process PID parameter set 2
Par 41.07...41.56 (not shown)

Note! Process PID parameter set 2 is also available. See parameter group 41.
Note! Process PID parameter set 2 is also available. See parameter group 41.
마스터/팔로워 통신 I (마스터 드라이브 전용)
마스터/팔로워 통신 II (팔로워 드라이브 전용)

Signal selection for Master’s read request

60.08 M/F comm loss timeout
60.09 M/F comm function
60.10 M/F comm timeout
60.11 M/F comm function

Follower receive
62.25 M/F data 1 value
62.26 M/F data 2 value
62.27 M/F data 3 value

MF link
3.13 M/F or D2D ref1
3.14 M/F or D2D ref2

MF link

Drive Control logic
46.01 Speed scaling
46.02 Frequency scaling
46.03 Torque scaling
46.04 Power scaling

Selection
Ref1 scaling
Ref2 scaling

Group 60

Dataset receive
60.01 MF data 1 selection
60.02 MF data 2 selection
60.03 MF data 3 selection
추가 정보

제품 및 서비스 문의

제품 교육

ABB 제품에 대한 교육 정보는 아래 웹사이트에서 확인할 수 있습니다.
new.abb.com/service/training

제품 매뉴얼

ABB 드라이브 관련 매뉴얼은 아래 웹사이트에서 PDF 파일로 다운로드할 수 있습니다.
www.abb.com/drives/documents
고객 문의

www.abb.com/drives
www.abb.com/drivespartners

3AUA0000085967 Rev R (KR) 개정일: 2017-07-11