USE OF SYMBOLS

This publication includes the following symbols with information regarding safety or other important information:

- **CAUTION**
 - Caution icon indicates important information. Risk of damage to equipment, property or software.

- **DANGER**
 - Danger icon indicates a hazard which could result in personal injury or even death.

- **ELECTRICAL**
 - Electrical warning icon indicates the presence of a hazard which could result in electrical shock.

- **ESD**
 - ESD icon indicates that electrostatic discharge precautions are needed.

- **Information**
 - Information icon alerts the reader to relevant facts and conditions.

- **Tip**
 - Tip icon advise how to design your product or how to use a certain function.

NOTICE

The information in this document is subject to change without notice and should not be construed as a commitment by ABB AB. ABB AB assumes no responsibility for any errors that may appear in this document.

In no event shall ABB AB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind arising from the use of this document, nor shall ABB AB be liable for incidental or consequential damages arising from use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without ABB AB's written permission, and the contents thereof must not be imparted to a third party nor be used for any unauthorized purpose.

The software described in this document is furnished under a license and may be used, copied, or disclosed only in accordance with the terms of such license.

CE-marking

This product meets the requirements specified in the RoHS directive 2011/65/EU, EMC directive 2014/30/EU and the Low Voltage Directive 2014/35/EU, provided the installation is carried out in accordance with the instructions given in this manual.

© Copyright 2004 - 2020 ABB. All rights reserved.
Table of Contents

1 Introduction
 1.1 About this Manual... 5
 1.2 Cyber Security Disclaimer... 5
 1.3 Disposal and Recycling... 5
 1.3.1 Environmental Policy... 5
 1.3.2 Recycling Electrical and Electronic Equipment, WEEE............................. 6
 1.3.3 Recycling the Transport Material... 6
 1.3.4 Disposal of the Product... 6
 1.4 Function and Design... 7
 1.4.1 General... 7
 1.4.2 Loads cells PFTL 101... 7
 1.4.3 Principle of Measurement.. 8

2 Description
 2.1 General... 9
 2.2 Technical Data.. 10
 2.3 Definitions... 11
 2.4 Measuring principle of the sensor.. 14
 2.5 Mounting Arrangement... 14
 2.5.1 Coordinate System... 15
 2.5.2 Horizontal Mounting.. 15
 2.5.3 Inclined Mounting.. 16
 2.6 The Electrical Circuit... 17

3 Installation
 3.1 General.. 18
 3.2 Unpacking... 18
 3.3 Preparations.. 19
 3.4 Adapter Plates... 19
 3.5 Mounting... 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>Cabling</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>Commissioning</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>General</td>
<td>23</td>
</tr>
<tr>
<td>4.2</td>
<td>Preparatory Calculations</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>General</td>
<td>24</td>
</tr>
<tr>
<td>5.2</td>
<td>Preventive Maintenance</td>
<td>24</td>
</tr>
<tr>
<td>5.3</td>
<td>Spare Parts</td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>Fault Tracing</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>General</td>
<td>26</td>
</tr>
<tr>
<td>6.2</td>
<td>Interchangeability</td>
<td>26</td>
</tr>
<tr>
<td>6.3</td>
<td>Fault Tracing Procedure</td>
<td>26</td>
</tr>
<tr>
<td>6.4</td>
<td>Fault Tracing in the Mechanical Installation</td>
<td>27</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Defective Mounting Surface, Support or Adapter Plates</td>
<td>27</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Force Shunting</td>
<td>27</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Fastening of Load cell and Adapter Plates</td>
<td>27</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Rolls and Bearings</td>
<td>27</td>
</tr>
<tr>
<td>6.4.5</td>
<td>Driven Roll</td>
<td>27</td>
</tr>
<tr>
<td>6.5</td>
<td>Fault Tracing of Load Cells, Junction Boxes and wiring</td>
<td>28</td>
</tr>
<tr>
<td>A</td>
<td>Drawings</td>
<td></td>
</tr>
<tr>
<td>A.1</td>
<td>Load Cell PFTL 101A (0.5- 2.0 kN), Dimension Drawing</td>
<td>30</td>
</tr>
<tr>
<td>A.2</td>
<td>Load Cell PFTL 101AE (0.5- 2.0 kN), Dimension Drawing</td>
<td>31</td>
</tr>
<tr>
<td>A.3</td>
<td>Load Cell PFTL 101AER (0.5- 2.0 kN), Dimension Drawing</td>
<td>32</td>
</tr>
<tr>
<td>A.4</td>
<td>Load Cell PFTL 101B (2.0- 20 kN), Dimension Drawing</td>
<td>33</td>
</tr>
<tr>
<td>A.5</td>
<td>Load Cell PFTL 101BE (2.0- 20 kN), Dimension Drawing</td>
<td>34</td>
</tr>
<tr>
<td>A.6</td>
<td>Load Cell PFTL 101BER (2.0- 20 kN), Dimension Drawing</td>
<td>35</td>
</tr>
<tr>
<td>A.7</td>
<td>Adapter Plate Lower PFTL 101A/ AE/ AER, Dimension drawing</td>
<td>36</td>
</tr>
<tr>
<td>A.8</td>
<td>Adapter Plate Upper PFTL 101A/ AE/ AER, Dimension drawing</td>
<td>37</td>
</tr>
<tr>
<td>A.9</td>
<td>Adapter Plate Lower PFTL 101B/ BE/ BER, Dimension drawing</td>
<td>38</td>
</tr>
<tr>
<td>A.10</td>
<td>Adapter Plate Upper PFTL 101B/ BE/ BER, Dimension drawing</td>
<td>39</td>
</tr>
</tbody>
</table>

Alphabetical index
1 Introduction

1.1 About this Manual

The purpose of this manual is to describe the general function and design of the load cells and also to be a guidance at installation, commissioning, preventive maintenance and fault tracing.

1.2 Cyber Security Disclaimer

This product has been designed to be connected and communicate data and information via a network interface which should be connected to a secure network. It is the sole responsibility of the person or entity responsible for network administration to ensure a secure connection to the network and to take the necessary measures (such as, but not limited to, installation of firewalls, application of authentication measures, encryption of data, installation of antivirus programs, etc.) to protect the product and the network, its system and interface included, against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information. ABB is not liable for any such damages and/or losses.

1.3 Disposal and Recycling

1.3.1 Environmental Policy

ABB is committed to its environmental policy. We strive continuously to make our products environmentally more sound by applying results obtained in recyclability and life cycle analyses. Products, manufacturing process as well as logistics have been designed taking into account the environmental aspects.

Our environmental management system, certified to ISO 14001, is the tool for carrying out our environmental policy. However it is on the customer’s responsibility to ensure that local legislation is followed.
1.3.2 Recycling Electrical and Electronic Equipment, WEEE

The crossed-out wheeled bin symbol on the product(s) and/or accompanying documents means that used electrical and electronic equipment (WEEE) should not be mixed with general household waste.

If you wish to discard electrical and electronic equipment (EEE), in the European Union, please contact your dealer or supplier for further information.

Outside of the European Union, contact your local authorities or dealer and ask for the correct method of disposal.

Disposing of this product correctly will help save valuable resources and prevent any potential negative effects on human health and the environment, which could otherwise arise from inappropriate waste handling.

1.3.3 Recycling the Transport Material

ABB designs all transport material to be recyclable where practical. The recycling of the transport material depends on the material type and availability of local recycling programs.

After receiving the system into the site, the package and the transportation locking have to be removed. Recycle the transport material according to local regulations.

1.3.4 Disposal of the Product

When the product is to be disposed, it should be dismantled and the components recycled according to local regulations.

1.3.4.1 Dismantling and Recycling of the Product

Dismantle and recycle the components of the product according to local regulations.

CAUTION

Some of the components are heavy! The person who performs the dismantling of the system must have the necessary knowledge and skills to handle heavy components to avoid the risk of accidents and injury from occurring.

- Load cell: These parts are made of structural steel, which can be recycled according to local instructions. All the auxiliary equipment, such as cabling or hoses must be removed before recycling the material.
1.4 Function and Design

1.4.1 General

A complete measuring system normally consists of two load cells, a junction box, one control unit with two measurement channels and cabling.

![Diagram of a complete measuring system]

Figure 1. Complete Measuring System

1.4.2 Loads cells PFTL 101

The load cells are installed under the roll bearings, where they measure forces parallel to the mounting surface.

The reactive force from the web/strip, which is proportional to the web/strip tension, is transferred to the load cells via the roll and the bearings.

The load cells are connected to the control unit via a junction box. The control unit converts the load cell signals to DC voltages that are proportional to the reaction force. Depending on which control unit is chosen, it is possible to have the analog signals for the two individual load cells (A and B), the sum of the load cell signals (A+B), and/or the difference between the load cell signals (A-B).
1.4.3 Principle of Measurement

The load cell only measures force in the direction F_R. The measurement force may be positive or negative. The load cell is normally installed under the roll bearings. When there is a web/strip in tension over the roll, the tension (T) gives rise to two force components, one in the direction of measurement of the load cell (F_R) and one at right angles (F_V).

The measuring force depends on the relationship between the tension (T) and the wrap angle formed by the web/strip around the measuring roll.

![Figure 2. Measuring roll with Force Vectors](image-url)
2 Description

2.1 General

The load cells in the PFTL 101 family are available in six different measuring ranges from 0.5 to 20 kN and two different sizes (see 2.2 Technical Data). Each load cell is individually calibrated and temperature compensated.

The load cells are usually mounted and fixed to a base and a bearing housing with six screws, four on one side of the load cells and two on the opposite side.

For all load cells of type PFTL 101 the load cell house is machined from a single block of steel. A sensor is then welded into the load cell house and oriented so that it is sensitive to force in the direction of measurement and insensitive in other directions.

The load cell types PFTL 101A, PFTL 101AE, PFTL 101B and PFTL 101BE are made of stainless steel. PFTL 101A and PFTL 101B are equipped with a connector for the pluggable connection cable. PFTL 101AE and PFTL 101BE are equipped with a fixed connection cable.

Load cell types PFTL 101AER and PFTL 101BER are specially designed for installation in corrosive environment. They are made of acid resistant stainless steel and they also have a fixed connection cable.

Dimensions for all load cell types are given in A Drawings.

Figure 3. Load cells PFTL 101 A/AE/AER
2.2 Technical Data

Table 1 Technical Data Load Cell PFTL 101

<table>
<thead>
<tr>
<th>PFTL 101 Type</th>
<th>Data</th>
<th>Unit</th>
</tr>
</thead>
</table>
| **Nominal Loads**
| Nominal load in measuring direction, F_{nom} A/AE/AER | 0,5, 1,0, 2,0 | kN |
| | B/BE/BER | 2,0, 5,0, 10, 20 |
| Permitted transverse force within the accuracy, F_{Vnom} A/AE/AER | 5, 10, 10 |
| | B/BE/BER | 30, 30, 30, 40 |
| Permitted axial load within the accuracy, F_{Anom} A/AE/AER | 2, 5, 5 |
| | B/BE/BER | 5, 10, 10, 10 |
| **Overload capacity**
| Max. load in measurement direction without permanent change of data, F_{max} A/AE/AER | 2,5, 5, 10 | kN |
| | B/BE/BER | 10, 25, 50, 80 |
| **Spring constant**
| A/AE/AER | 32, 65, 130 | kN/mm |
| | B/BE/BER | 130, 325, 650, 1300 |
| **Mechanical data**
| Length A/AE/AER | 230, 230, 230 | mm |
| | B/BE/BER | 360, 360, 360, 360 |
| Width A/AE/AER | 84, 84, 84 |
| | B/BE/BER | 104, 104, 104, 104 |
| Height A/AE/AER | 125, 125, 125 |
2 Description

2.3 Definitions

Nominal load

Nominal load, F_{nom}, is the maximum load in the measurement direction for which the load cell is dimensioned to measure within the specified accuracy class. The load cell is calibrated up to F_{nom}.

Sensitivity

Sensitivity is defined as the difference in output values between nominal load and zero load.
Accuracy and Accuracy Class

Accuracy class is defined as the maximum deviation, and is expressed as a percentage of the sensitivity at nominal load. This includes linearity deviation, hysteresis and repeatability error.

Linearity Deviation

Linearity deviation is the maximum deviation from a straight line drawn between the output values at zero load and nominal load. Linearity deviation is related to the sensitivity.

Hysteresis

Hysteresis is the maximum difference in the output signal at the same load during a cycle from zero load to nominal load and back to zero load, related to the sensitivity at nominal load. The hysteresis of a Pressductor transducer is proportional to the load cycle.
Repeatability error

Repeatability error is defined as the maximum deviation between repeated readings under identical conditions. It is expressed as a percentage of the sensitivity at nominal load.

Compensated temperature range

The temperature drifts of the load cell have been compensated for in certain temperature ranges. That is the temperature range within which the specified permitted temperature drifts (i.e. zero point and sensitivity drifts) of the load cell are maintained.

Working temperature range

Working temperature range is the temperature range within which the load cell can operate within a specified accuracy. The maximum permitted temperature drifts (i.e. zero point and sensitivity drifts) of the load cell are not necessarily maintained in the whole working temperature range.

Storage temperature range

Storage temperature range is the temperature range within which the load cell can be stored.

Zero point drift with temperature

Zero point drift is defined as the signal change with temperature, related to the sensitivity, when there is zero load on the load cell.

Sensitivity drift with temperature

Sensitivity drift is defined as the signal change with temperature at nominal load, related to the sensitivity, excluding the zero point drift.

Deflection

Deflection is the total deformation in the measuring direction of the load cell when the load is increased from zero to the nominal value.
2.4 Measuring principle of the sensor

The measuring principle of the sensor is based on the Pressductor® technology and the fact that the permeability of a magnetic material changes under mechanical stress.

The transducer is made up of a stack of specially treated laminates, forming the measuring body. Primary and secondary windings are wound through four holes in the sensor so that they cross at right angles.

The primary winding is supplied with an alternating current which creates a magnetic field around the primary winding. Since the two windings are at right angles to each other, there will be no magnetic field around the secondary winding, as long as there is no load on the sensor.

When the sensor is subjected to a mechanical force in the direction of measurement, the propagation of the magnetic field changes so that it surrounds the secondary winding, inducing an alternating voltage in that winding.

The control unit converts this alternating voltage into a DC voltage proportional to the applied force. If the measurement force changes direction, the sensor signal changes also polarity.

![Image of propagation of magnetic field around secondary winding due to mechanical force on sensor]

2.5 Mounting Arrangement

When choosing a mounting arrangement it is important to remember to position the load cell in a direction that gives sufficient measuring force \(F_R \) to achieve the highest possible accuracy.

The load cell has no particular correct orientation; it is positioned in the orientation best suited for the application, bearing in mind the positions of the screw holes. The load cell can also be installed with the roll suspended under the load cell.
The load cell has the same sensitivity in both directions, so that the load cell can be installed in the easiest manner.

Typical mounting arrangements are horizontal and inclined mounting.

2.5.1 Coordinate System

A coordinate system is defined for the load cell. This is used in force calculations to derive force components in the load cell principal directions. Where direction designations R, V and A are recognized as suffixes for force components, F, this represents the force component in the respective direction. The suffix R may be omitted, when measuring direction is implied by the context.

![Coordinate System Diagram](image)

Figure 10. Coordinate system defining directions used in force calculation

2.5.2 Horizontal Mounting

In the majority of cases horizontal mounting is the most obvious and easiest mounting method.

When calculating the force, the equations below must be used:

\[
F_R = T \times (\cos \beta - \cos \alpha)
\]

\[
F_{RT} = 0
\]

\[
F_{Rtot} = F_R + F_{RT} = T \times (\cos \beta - \cos \alpha)
\]

\[
F_V = T \times (\sin \alpha + \sin \beta)
\]

\[
F_{VT} = \text{Tare}
\]

\[
F_{Vtot} = F_V + F_{VT} = T \times (\sin \alpha + \sin \beta) + \text{Tare}
\]

where:

- **T** = Web/strip tension
- **F_R** = Force component from web/strip tension in measurement direction, R
- **F_{RT}** = Force component from Tare in measurement direction, R
- **F_{Rtot}** = Total force in measurement direction, R
- **F_V** = Force component from web/strip tension in transverse direction, V
- **F_{VT}** = Force component from Tare in transverse direction, V
- **F_{Vtot}** = Total force in transverse direction, V
- **Tare** = Force due to tare weight
\(\alpha \) = Deflection angle on one side of the roll relative the horizontal plane

\(\beta \) = Deflection angle on the other side of the roll relative the horizontal plane

2.5.3 Inclined Mounting

Inclined mounting means arrangements in which the load cell is inclined relative to the horizontal plane. In some cases this is the only option.

When calculating the force, the equations below must be used:

\[
F_R = T \times [\cos (\beta + \gamma) - \cos (\alpha - \gamma)]
\]

\[
F_{RT} = \text{Tare} \times \sin \gamma
\]

\[
F_{Rtot} = F_R + F_{RT} = T \times [\cos (\beta + \gamma) - \cos (\alpha - \gamma)] + \text{Tare} \times \sin \gamma
\]

\[
F_V = T \times [\sin (\alpha - \gamma) + \sin (\beta + \gamma)]
\]

\[
F_{VT} = -\text{Tare} \times \cos \gamma
\]

\[
F_{Vtot} = F_V + F_{VT} = T \times [\sin (\alpha - \gamma) + \sin (\beta + \gamma)] + \text{Tare} \times \cos \gamma
\]

where:

\(T \) = Web/strip tension

\(F_R \) = Force component from web/strip tension in measurement direction, R

\(F_{RT} \) = Force component from Tare in measurement direction, R

\(F_{Rtot} \) = Total force in measurement direction, R

\(F_V \) = Force component from web/strip tension in transverse direction, V

\(F_{VT} \) = Force component from Tare in transverse direction, V

\(F_{Vtot} \) = Total force in transverse direction, V

\(\text{Tare} \) = Force due to tare weight

\(\alpha \) = Deflection angle on one side of the roll relative the horizontal plane

\(\beta \) = Deflection angle on the other side of the roll relative the horizontal plane

\(\gamma \) = Angle for load cell mounting surface relative the horizontal plane
When calculating it is important that the angles are set into the equations with the correct signs in relation to the horizontal plane, see Figure 12. Inclined Mounting page 17.

![Inclined Mounting](image)

Figure 12. Inclined Mounting

2.6 The Electrical Circuit

The electrical circuit of the load cell is shown in the diagram below.

![Load cell circuit diagram](image)

Figure 13. Load cell circuit diagram

The load cell is supplied with a 0.5 A, 330 Hz alternating current. The secondary signal is calibrated for the correct sensitivity with a voltage divider $R_1 - R_2$, and temperature compensation is provided by thermistors T.

All resistances on the secondary side are relatively low. The output impedance is typically 1-3 Ω, which helps to suppress interference.
3 Installation

3.1 General

The equipment is a precision instrument which, although intended for severe operating conditions, must be handled with care. The load cells should not be unpacked until it is time for installation.

To achieve the specified accuracy, the best possible reliability and long-term stability, the load cells must be installed in accordance with the instructions below. See also 6.4 Fault Tracing in the Mechanical Installation.

- When a load cell type PFTL 101AER or PFTL 101BER is used for an acid resistant application it is recommended to use adapter plates and screws of austenitic, acid resistant steel.

Information

For all types of installations of these load cell types, austenitic steel must be used, preferably acid resistant or stainless steel.

- The foundation for the load cell must be made as stable as possible. A sturdy construction reduces the vibration energy of the measuring roll and bearing arrangement.
- The surfaces closest to the load cell, and other surfaces that affect the fit, must be machined flat to within 0.05 mm.
- There must not be any shims immediately above or below the load cell, as this may adversely affect the flatness. Instead, shims may be placed between the adapter plate and the foundation or between the adapter plate and the bearing housing.
- The screws that secure the load cell must be tightened with a torque wrench.
- The bearing arrangement for the measuring roll must be designed to allow axial expansion of the roll with changes in temperature.
- Any drive to the roll must be applied in such a way that interfering forces from the drive are kept to a minimum.
- The measuring roll must be dynamically balanced.
- The mounting surfaces of the load cells must be on the same height and parallel with the measuring roll.
- In a corrosive environment, galvanic corrosion may occur between the load cell, galvanized screws and adapter plates. This makes it necessary to use stainless steel screws and adapter plates of stainless steel or equivalent. See adapter plates in A Drawings.

3.2 Unpacking

When the equipment arrives, check against the delivery document. Inform ABB of any complaint, so that errors can be corrected immediately and delays avoided.
3.3 Preparations

Prepare the installation in good time by checking that the necessary documents and material are available, as follows:

- Installation drawings and this manual.
- Standard tools, torque wrench and instruments.
- Rust protection, if additional protection is to be given to machined surfaces. Choose TEC-TYL 511 (Valvoline) or FERRYL (104), for example.
- Load cells, adapter plates, bearing housings, etc.
- Screws as listed in Table 2, page 20 to secure the load cell, and other screws for bearing housing, etc.

3.4 Adapter Plates

The adapter plates for all load cell types in the PFTL 101 family must be machined and have a flatness deviation of maximum 0.05 mm, required surface finish should be Ra 3.2.

For PFTL 101A the thickness of the adapter plates should be minimum 30 mm, and for PFTL 101B 35 mm, see Figure 15. Installation of Adapter Plates and Alignment of Load Cells page 21

Information

When installing PFTL 101AER and PFTL 101BER adapter plates of austenitic steel must be used, preferably acid resistant or stainless steel.

3.5 Mounting

The instructions below apply to a typical mounting arrangement. Variations are allowed, provided that the requirements of 3.1 General are complied with.

If it is necessary to use tubular dowel pins to secure the position of the load cell, see instructions in Figure 14. Typical Installation page 21.

1. Clean the foundation and other mounting surfaces.

2. Fit the lower adapter plate to the load cell. Tighten the screws to the torque stated in Table 2, page 20.

3. Fit the load cell and the lower adapter plate to the foundation, but do not fully tighten the screws.

4. Fit the upper adapter plate to the load cell. Tighten the screws to the torque stated in Table 2, page 20.

5. Fit the bearing housing and the roll to the upper adapter plate, but do not fully tighten the screws.
CAUTION
During this operation it is possible to overload the load cells if the operation is done not carefully enough, especially if the roll is heavy.
The most critical load cells are naturally the PFTL 101A-0.5 kN and PFTL 101B-2 kN.
Applications with inclined mounting are most critical.

6. Adjust the load cells so that they are in parallel with each other and in line with the axial direction of the roll. Tighten the foundation screws, see Figure 15. Installation of Adapter Plates and Alignment of Load Cells page 21.

7. Adjust the roll so that it is at right angles to the longitudinal direction of the load cells. Tighten the screws in the upper adapter plate, see Figure 15. Installation of Adapter Plates and Alignment of Load Cells page 21.

<table>
<thead>
<tr>
<th>Option</th>
<th>Type of screws</th>
<th>Strength class</th>
<th>Type of lubrication</th>
<th>Dimension</th>
<th>Tightening torque [Nm] ± 5%</th>
</tr>
</thead>
</table>
| 1 | Alloyed steel screws
Strength class according to ISO 898/1 | 12.9 | Oil | M12 | 136 |
| | | | | M16 | 333 |
| | | | | M20 | 649 |
| 2 | Alloyed steel screws
Strength class according to ISO 898/1 | 12.9 | MoS₂ | M12 | 117 |
| | | | | M16 | 286 |
| | | | | M20 | 558 |
| 3 | Stainless steel (A2-80)
or acid resistant steel (A4-80),
Strength class according to ISO 3506 | A2-80 or A4-80 | Wax | M12 | 76 |
| | | | | M16 | 187 |
| | | | | M20 | 364 |
| 4 | Stainless steel (A2-80)
or acid resistant steel (A4-80),
Strength class according to ISO 3506 | A2-80 or A4-80 | Oil or emulsion | M12 | 65 |
| | | | | M16 | 161 |
| | | | | M20 | 313 |
3.6 Cabling

The cable must not create shunting forces in the measuring direction of the load cell e.g. forces caused by thermal expansion, gravity or similar.
Therefore make sure that the shunting forces become as small as possible for instance by securing the cable against the supporting structure.
4 Commissioning

4.1 General

The actual procedure for commissioning a load cell is simple, provided that the load cells and cables have been properly installed. Commissioning of the control unit is described in the relevant chapter of the control unit manual.

Check the following:

- that the load cells have been correctly installed and aligned
- that all screws have been tightened to the correct torque
- that all cables are correctly installed and connected
- that all connectors are plugged in

4.2 Preparatory Calculations

To be able to set the correct measuring range, the measurement force per load cell $F_{R}/2$ at maximum tension T must be calculated. Each load cell is subjected to half the total measurement force F_{R}. This calculation must be done before commissioning can begin. Calculation of F_{R} is described in 2.5 Mounting Arrangement.
5 Maintenance

5.1 General

Web/strip Tensiometer Systems with Pressductor® load cells are extremely reliable and do not require daily servicing. As a preventive measure, checks should be done periodically on all parts subject to mechanical wear.

5.2 Preventive Maintenance

Check mounting screws and tighten if necessary.

The gaps between load cell and plates should be checked to ensure that they do not get clogged with dirt, causing shunt force past the load cell. Clean the gaps with compressed air if necessary.

The cable between the load cell and the junction box is subjected to possible damage and should be checked and replaced if necessary.

5.3 Spare Parts

Users are recommended to keep the following spare parts in stock:

- One load cell of correct type and size.
- One connector complete with cable (for PTFL 101A and PFTL 101B).

Table 3 Ordering numbers for Load Cell PFTL 101

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Nominal load (kN)</th>
<th>Ordering numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load cell</td>
<td>PFTL 101A</td>
<td>0,5</td>
<td>3BSE004160R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101A</td>
<td>1,0</td>
<td>3BSE004166R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101A</td>
<td>2,0</td>
<td>3BSE004172R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101AE</td>
<td>0,5</td>
<td>3BSE004211R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101AE</td>
<td>1,0</td>
<td>3BSE004212R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101AE</td>
<td>2,0</td>
<td>3BSE004213R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101AER</td>
<td>0,5</td>
<td>3BSE023010R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101AER</td>
<td>1,0</td>
<td>3BSE023011R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101AER</td>
<td>2,0</td>
<td>3BSE023012R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101B</td>
<td>2,0</td>
<td>3BSE004185R1</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-------</td>
<td>--------------</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101B</td>
<td>5,0</td>
<td>3BSE004191R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101B</td>
<td>10,0</td>
<td>3BSE004197R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101B</td>
<td>20,0</td>
<td>3BSE004203R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101BE</td>
<td>2,0</td>
<td>3BSE004214R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101BE</td>
<td>5,0</td>
<td>3BSE004215R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101BE</td>
<td>10,0</td>
<td>3BSE004216R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 101BE</td>
<td>20,0</td>
<td>3BSE004217R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 201BER</td>
<td>2,0</td>
<td>3BSE023158R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 201BER</td>
<td>5,0</td>
<td>3BSE023159R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 201BER</td>
<td>10,0</td>
<td>3BSE023160R1</td>
</tr>
<tr>
<td>Load cell</td>
<td>PFTL 201BER</td>
<td>20,0</td>
<td>3BSE023161R1</td>
</tr>
</tbody>
</table>
6 Fault Tracing

6.1 General

It is important to be thoroughly familiar with the description of operation in 2 Description before starting fault tracing.

6.2 Interchangeability

The load cells are factory calibrated and can be replaced directly with another load cell of the same type. The only adjustment required after load cell replacement is zero adjustment in the control unit.

6.3 Fault Tracing Procedure

The measuring equipment can be divided into four parts:

- The mechanical installation.
- The load cell.
- The junction boxes and the cabling.
- The control unit (see the control unit manual).

The fault symptoms indicate in which part the fault lies.

- Faults in the mechanical installation often result in an unstable zero point or incorrect sensitivity.
 If a fault follows something else in the process, such as temperature, or can be linked to a particular operation, it probably originates from something in the mechanical installation.

- Load cells are extremely robust and can withstand five times their nominal load in the measuring direction. If a load cell has nevertheless been so overloaded that its data have been altered, this is probably due to an event in the mill, such as web/strip breakage. On excessive overload the first thing that happens is that the zero point shifts.

- Problems such as interference or unstable zero point may be caused by wiring faults. Some malfunctions may be due to the proximity of cables that cause interference. Incorrect installation, such as imbalance in a cable or screens earthed at more than one end may cause the zero point to become unstable. Cables are subject to mechanical wear, and should be checked regularly. The junction box should also be checked, especially if it is subject to vibration.

- A fault in the control unit usually causes intermittent loss of a function. It is unusual for the control unit to cause stability problems. Faults in connected units may affect the operation of the control unit. For further details see the control unit manual.
6.4 Fault Tracing in the Mechanical Installation

There are a number of parts in the mechanical arrangement that can cause faults. The extent to which these faults are repeatable differs. Possible causes fall into the following groups.

- Defective mounting surface or adapter plates.
- Force shunting.
- Insufficient mounting of load cell and adapter plates.
- Rolls and bearings.
- Driven roll.

6.4.1 Defective Mounting Surface, Support or Adapter Plates

An unmachined or poorly machined mounting surface, which is uneven, may cause bending or twisting of the load cell. This may result in instability of the zero point.

6.4.2 Force Shunting

Force shunting means that some of the force is diverted past the load cell. This may be caused by some kind of obstruction to the force through the load cell. The connecting cables, for example, have been incorrectly installed and are preventing movement. Another possible cause is that the roll is not free to move in the direction of measurement, possibly because something is mounted too close to a bearing housing, or because an object has worked loose and become trapped between the bearing housing and adjacent parts.

Force shunting causes the web/strip tension indication to be lower than the actual web/strip tension.

6.4.3 Fastening of Load cell and Adapter Plates

Screw joints that have not been properly tightened or have lost their pre-tightening force, cause sliding at the mating surfaces. Fastening of the load cell is especially critical. If a load cell is not properly secured, the zero point will be unstable. Sliding between other surfaces may cause the same symptoms.

6.4.4 Rolls and Bearings

An incorrectly designed bearing arrangement may give rise to high axial forces. The roll should be fixed at one end and free at the other.

If both ends are fixed, there will be a high axial (thrust) force due to expansion of the shaft with rising temperature.

Even a correctly designed bearing arrangement may deteriorate with time; bearings become worn, and so on. This may give similar symptoms, such as slow zero point drift between cold and hot machine, or sudden jumps in the signal.

6.4.5 Driven Roll

A source of error that is seldom suspected is the roll itself. The effect is especially critical when measuring forces on the load cell are relatively low. Long drive shafts with their associated universal joints may cause unstable signals if they are not properly maintained. It is important to lubricate
universal joints. Longitudinal expansion of the drive shaft should also be taken into account. Since such expansion is often taken up by splines, these must also be lubricated. The symptoms are instability of the signal, for instance jumps in the signal during slow running.

6.5 Fault Tracing of Load Cells, Junction Boxes and wiring

The load cell is very robust and can withstand high overloads. The data of a Pressductor load cell does not change slowly, but in steps, usually in connection with an event in the mill. Excessive overloading usually results in permanent shifting of the zero point.

Poor contact in the junction box causes intermittent faults. Both sensitivity and zero point may vary. Check all screw terminals. Do not use pins crimped to the connecting wires, as these often work loose after a time.

The cabling, especially the cable to the load cell, is the part that is most exposed to damage.

Since the resistance of the load cell windings is low, it is easy to check the load cells and cabling from the control unit.

Typical readings are 1 Ω for the resistance of the primary winding and 1-3 Ω for the output impedance of the secondary winding.

Insulation faults in the cabling or the load cell may cause incorrect sensitivity or unstable zero point. When the load cell circuits have been isolated from earth and from the control unit at the disconnectable terminals, it is easy to measure the insulation from the control unit.

If the cables are not routed correctly, they may pick up interference from other cables.

Figure 16. Typical load cell cabling

For circuit diagram applications, see the manual for the applicable control unit:
Millmate Strip Tension Systems with Millmate Controller 400, 3BSE023139Rxxxx
Web Tension Systems with Tension Electronics PFEA 111/112, 3BSE029380Rxxxx
Web Tension Systems with Tension Electronics PFEA 113, 3BSE029382Rxxxx
A.1 Load Cell PFTL 101A (0,5- 2,0 kN), Dimension Drawing

$F_R = \text{Measured component}$

$F_V = \text{Force component (not measured)}$

Drawing shows PFTL 101A-1.0kN
Dimensions are valid for the following load cells:
- PFTL 101A-0.5kN Art No: 3BSE004160R0001
- PFTL 101A-1.0kN Art No: 3BSE004166R0001
- PFTL 101A-2.0kN Art No: 3BSE004172R0001
A.2 Load Cell PFTL 101AE (0,5-2,0 kN), Dimension Drawing
A.3 Load Cell PFTL 101AER (0.5-2.0 kN), Dimension Drawing

Load Cell PFTL 101AER (0.5-2.0 kN)

- Measured component
- Force component (not measured)

Dimensions: 230 x 10

Colour code:
- Red
- Blue
- White

Insulation: E/F/E

4x1 mm steel wire braided cable

Degree of protection: IP 66/67

Pressductor Pillow Block Load Cells, Horizontal Measuring PFTL 101, User Manual

Appendix A Drawings
A.4 Load Cell PFTL 101B (2.0-20 kN), Dimension Drawing

\[F_R = \text{Measured component} \]
\[F_V = \text{Force component (not measured)} \]

Drawing shows PFTL 101B-5.0kN
Dimensions are valid for the following load cells:
- PFTL 101B-2.0kN Art No: 3BSE004185R0001
- PFTL 101B-5.0kN Art No: 3BSE004191R0001
- PFTL 101B-10.0kN Art No: 3BSE004197R0001
- PFTL 101B-20.0kN Art No: 3BSE004203R0001

ABB Automation Technology Products

ABB
A.5 Load Cell PFTL 101BE (2,0-20 kN), Dimension Drawing

\[F_r = \text{measured component} \]
\[F_v = \text{force component (not measured)} \]

Colour code:
- Red: Primary
- White: Secondary
- Blue: Positive signal
- Black: Negative signal

Drawing shows PFTL 101BE-5.0kN
Dimensions are valid for the following load cells:
- PFTL 101BE-2.0kN
- PFTL 101BE-0.5kN
- PFTL 101BE-0.0kN

Valve actuating cable braided cable.
Installation covering EITC
Load Cell PFTL 101BER (2.0-20 kN), Dimension

Drawing shows PFTL 101BER-5.0 kN
Dimensions are valid for the following load cells:
- PFTL 101BER-2.0 kN Art No. 3BSE023159R0001
- PFTL 101BER-5.0 kN Art No. 3BSE023159R0001
- PFTL 101BER-10.0 kN Art No. 3BSE023160R0001
- PFTL 101BER-20.0 kN Art No. 3BSE023161R0001

4x1 mm steel wire braided cable. Insulation: ETFE Insulation covering: ETFE

Degree of protection: IP66/67
A.7 Adapter Plate Lower PFTL 101A/AE/AER, Dimension drawing

<table>
<thead>
<tr>
<th>REV</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DEPT./INIT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yield strength was 250 N/mm²</td>
<td>97-02-29</td>
<td>SEISY/AGK/ÅP</td>
</tr>
<tr>
<td>B</td>
<td>Title block updated</td>
<td>97-06-11</td>
<td>SEISY/AGK/ÅP</td>
</tr>
<tr>
<td>C</td>
<td>PFTL 101A/E added to Material table</td>
<td>00-10-10</td>
<td>SEAPR/AGB/JK</td>
</tr>
<tr>
<td>D</td>
<td>Redrawn, material table moved to 3BSEQ03638D3101</td>
<td>01-02-21</td>
<td>SEAPR/AGB/LEN</td>
</tr>
<tr>
<td>E</td>
<td>Table Technical materials added.</td>
<td>2009-04-23</td>
<td>PA/FM/GF/JK</td>
</tr>
<tr>
<td>F</td>
<td>Technical materials table adjusted. Doc. title adjusted.</td>
<td>2012-12-07</td>
<td>PA/FM/GF/ML</td>
</tr>
</tbody>
</table>

Technical materials

<table>
<thead>
<tr>
<th>Loadcell</th>
<th>Material description</th>
<th>Material specification</th>
<th>Material designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFTL101A/AE</td>
<td>Steel, through hardened</td>
<td>Hardness 300-400HB, Yield stress 500MPa/N/mm², CTE 10-13 µm/m/°C. Remanent magnetism of the finished detail must be less than 2 Gauss (0-2mT)</td>
<td>34CrNiMo4 + QT900, T10v, T10v6, Wnr. 16582 + QT900, ASTM 4340 or equivalent</td>
</tr>
<tr>
<td>PFTL101A/E</td>
<td>Martensic Stainless Steel</td>
<td>Hardness 300-400HB, Yield stress 450MPa/N/mm², CTE 10-13 µm/m/°C. Remanent magnetism of the finished detail must be less than 2 Gauss (0-2mT)</td>
<td>X12CrMo13-4, Wnr. 114005-4AT, ASTM 410L, 20</td>
</tr>
<tr>
<td>PFTL101AER</td>
<td>Austenitic Stainless Steel</td>
<td>Hardness 150-350HB, Yield stress 220MPa/N/mm², CTE 16-18 µm/m/°C. Remanent magnetism of the finished detail must be less than 2 Gauss (0-2mT)</td>
<td>X2CrNiMo17-10-2 + AT, X5CrNi18-10 AT, Wnr. 141301 + AT, Wnr. 14404 AT, ASTM 304, 314 or equivalent</td>
</tr>
</tbody>
</table>

Manufacturing drawing: 3BSEQ03638D3101

Mass (weight): App 8 kg

Prep.: PA/FMGF Magnus X Lindström 2013-06-10

App.: PA/FMGF Håkan F Winzel 2013-06-14

Resp. dep.: PA/FMGF

ABB AB

Document number: 3BSEQ012173

Language: en

Rev.: 1

Sheet: 1

3BSEQ00968RD0401 en Rev F
A.8 Adapter Plate Upper PFTL 101A/AE/AER, Dimension drawing

Technical materials

<table>
<thead>
<tr>
<th>Loadcell</th>
<th>Material description</th>
<th>Material specification</th>
<th>Material designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFTL101A/AE</td>
<td>Steel, Through hardened</td>
<td>Hardness 300–400HB, Yield stress>500MPa(N/mm²), CTE 11–13 µm/°C, Remanent magnetism of the finished detail must be less than 2 Gauss(0.2mT)</td>
<td>3CrNiMo6-QT1000, T600, Toolox 33, Toolox 44, Wnr. 1.6582–07900, ASTM 4340 or equivalent</td>
</tr>
<tr>
<td></td>
<td>Martensitic Stainless Steel</td>
<td>Hardness 300–400HB, Yield stress>400MPa(N/mm²), CTE 10–13 µm/°C, Remanent magnetism of the finished detail must be less than 2 Gauss(0.2mT)</td>
<td>X12CrMo13-15-AT, Wnr. 1.4031–AT, Wnr. 1.4031–AT, ASTM A 46, 420 or equivalent</td>
</tr>
<tr>
<td>PFTL101AER</td>
<td>Austenitic Stainless Steel</td>
<td>Hardness 150–350HB, Yield stress>220MPa(N/mm²), CTE 16–18 µm/°C, Remanent magnetism of the finished detail must be less than 2 Gauss(0.2mT)</td>
<td>X2CrNiMo17-12-2–AT, X1CrNi18-10–AT, Wnr. 14301–AT, Wnr. 14301–AT, ASTm 316L, 316L or equivalent</td>
</tr>
</tbody>
</table>

Manufacturing drawing

![Manufacturing drawing](3BSE030638D3100)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PA/FMGF</td>
<td>PA/FMGF</td>
<td>PA/FMGF</td>
<td>Top adpt. plate PFTL101A/AE/AER</td>
</tr>
<tr>
<td>Magnus X Lindström</td>
<td>Håkan F Wintzell</td>
<td>ABB AB</td>
<td>Øvr. adpt. platta PFTL101A/AE/AER</td>
</tr>
<tr>
<td>2013-06-13</td>
<td>2013-06-14</td>
<td>ABB AB</td>
<td>Document number: 3BSE012172</td>
</tr>
</tbody>
</table>

Mass (weight): App 8 kg

<table>
<thead>
<tr>
<th>Contain. (No of sh.)</th>
<th>Document number</th>
<th>Rev.</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>3BSE09065R0401 en Rev F</td>
<td>3BSE012172</td>
<td>en</td>
<td>F</td>
</tr>
</tbody>
</table>
A.9 Adapter Plate Lower PFTL 101B/BE/BER, Dimension drawing

<table>
<thead>
<tr>
<th>REV</th>
<th>DESCRIPTION</th>
<th>DATE</th>
<th>DEPT./INIT.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>New drawing</td>
<td>97-02-28</td>
<td>SEISY/AGK/ÅP</td>
</tr>
<tr>
<td>A</td>
<td>Yield strength was 250N/mm²</td>
<td>97-06-11</td>
<td>SEISY/AGK/ÅP</td>
</tr>
<tr>
<td>B</td>
<td>Title block updated</td>
<td>00-10-10</td>
<td>SEAPR/AGB/JK</td>
</tr>
<tr>
<td>C</td>
<td>PFTL 101BER added to Material table</td>
<td>01-02-21</td>
<td>SEAPR/AGB/LEN</td>
</tr>
<tr>
<td>D</td>
<td>Changed to all english version. Redrawn</td>
<td>2009-04-22</td>
<td>PA/FM/GF/JK</td>
</tr>
<tr>
<td>E</td>
<td>Table Technical materials added.</td>
<td>2012-12-07</td>
<td>PA/FM/GF/ML</td>
</tr>
<tr>
<td>E</td>
<td>Doc. title Lower adpt. plate for PFTL101B/BE was</td>
<td>2012-12-07</td>
<td>PA/FM/GF/ML</td>
</tr>
<tr>
<td>E</td>
<td>Lower adapter plate for PFTL 101B.</td>
<td>2012-12-07</td>
<td>PA/FM/GF/ML</td>
</tr>
</tbody>
</table>

Technical materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Material description</th>
<th>Material specification</th>
<th>Material designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFTL 101B/BE</td>
<td>Steel, through hardened</td>
<td>Hardness 300-400HB, Yield stress 500MPa/N/m², CTE 11-13 µm/m°C, Remanent magnetism of the finished detail must be less than 2 Gauss (0-2,2mT)</td>
<td>34CH/MN6-GTF00, Toolox 33, Toolox 44, Wnr. 15582-GTF00, ASTM A36 or equivalent</td>
</tr>
<tr>
<td>PFTL 101BER</td>
<td>Martensitic Stainless Steel</td>
<td>Hardness 300-400HB, Yield stress 420MPa/N/m², CTE 10-15 µm/m°C, Remanent magnetism of the finished detail must be less than 2 Gauss (0-2.2mT)</td>
<td>X22CrMo51-18-1, X22Cr13-AT, Wnr. 1.4055 -AT, Wnr. 1.4201 -AT, ASTM A4, 420 or equivalent</td>
</tr>
<tr>
<td>PFTL 101BER</td>
<td>Austenitic Stainless Steel</td>
<td>Hardness 150-350HB, Yield stress 220MPa/N/m², CTE 16-18 µm/m°C, Remanent magnetism of the finished detail must be less than 2 Gauss (0-2.2mT)</td>
<td>X2CrNiMo17-12-2-AT, X5CrNi18-10-AT, Wnr. 1.4301-AT, Wnr. 1.4404-AT, ASTM 316, 316L or equivalent</td>
</tr>
</tbody>
</table>

Manufacturing drawing: 3BSE03063803201

Weight: 18 kg

Prep. PA/PMGF Magnus X Lindström 2013-06-10
Appr. PA/PMGF Håkan F Wintzell 2013-06-14
Resp.dept. PA/PMGF

ABB AB
A.10 Adapter Plate Upper PFTL 101B/BE/BER, Dimension drawing

Technical materials

<table>
<thead>
<tr>
<th>Loadcell</th>
<th>Material description</th>
<th>Material specification</th>
<th>Material designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFTL101/B</td>
<td>Steel, through hardened</td>
<td>Hardness 300-400HB, Yield stress 500MPa, Aln. temp. 11-13 °C, Remanent magnetism of the finished detail must be less than 2 Gauss(0-0,2mT)</td>
<td>3C(NiMo6)QT900, Toolox 33, Toolox 44, Wnr. 16582 - QT900, ASTM 403, or equivalent</td>
</tr>
<tr>
<td>PFTL101/BE</td>
<td>Martensitic Stainless Steel</td>
<td>Hardness 400-400HB, Yield stress 600MPa, Aln. temp. 11-13 °C, Remanent magnetism of the finished detail must be less than 2 Gauss(0-0,2mT)</td>
<td>X20Cr13, Wnr. 14051, ASTM 410, or equivalent</td>
</tr>
<tr>
<td>PFTL101/BER</td>
<td>Austenitic Stainless Steel</td>
<td>Hardness 350-350HB, Yield stress 720MPa, Aln. temp. 16-18 °C, Remanent magnetism of the finished detail must be less than 2 Gauss(0-0,2mT)</td>
<td>X5CrNiMo17-12-2, Wnr. 1-709, ASTM 316, or equivalent</td>
</tr>
</tbody>
</table>

Manufacturing drawing

Manufacturing drawing: 3BSE030638D3200

Weight: App. 17.5 kg

Prep. PA/FMGF Magnus X. Lindström 2013-06-10
Appr. PA/FMGF Håkan F. Winzell 2013-06-14
Resp. dept. PA/FMGF ABB AB

Document number: 3BSE012170
Language: en
Rev.: F
Sheet: 1
Alphabetical index

accuracy and accuracy class ... 12
adapter plates ... 19
cable ... 21
circuit diagram ... 28
compensated temperature range 13
control unit .. 7
electrical circuit .. 17
force shunting ... 27
hysteresis ... 12
intermittent faults ... 28
junction box ... 7
linearity deviation ... 12
load cell ... 9
measuring principle .. 14
nominal load ... 11
repeatability error ... 13
sensitivity ... 11
sensitivity drift with temperature 13
shunting forces ... 22
unstable zero ... 26
working temperature range .. 13
zero point drift with temperature ... 13