The Company

We are an established world force in the design and manufacture of instrumentation for industrial process control, flow measurement, gas and liquid analysis and environmental applications.

As a part of ABB, a world leader in process automation technology, we offer customers application expertise, service and support worldwide.

We are committed to teamwork, high quality manufacturing, advanced technology and unrivalled service and support.

The quality, accuracy and performance of the Company's products result from over 100 years experience, combined with a continuous program of innovative design and development to incorporate the latest technology.

The NAMAS Calibration Laboratory No. 0255 is just one of the ten flow calibration plants operated by the Company, and is indicative of our dedication to quality and accuracy.

Electrical Safety

This equipment complies with the requirements of CEI/IEC 61010-1:2001-2 'Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use'. If the instrument is used in a manner NOT specified by the Company, the protection provided by the instrument may be impaired.

Symbols

One or more of the following symbols may appear on the instrument labelling:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️</td>
<td>Warning – Refer to the manual for instructions</td>
</tr>
<tr>
<td>⚠️</td>
<td>Caution – Risk of electric shock</td>
</tr>
<tr>
<td>⚠️</td>
<td>Protective earth (ground) terminal</td>
</tr>
<tr>
<td>⚠️</td>
<td>Earth (ground) terminal</td>
</tr>
<tr>
<td>☑️</td>
<td>Direct current supply only</td>
</tr>
<tr>
<td>☑️</td>
<td>Alternating current supply only</td>
</tr>
<tr>
<td>☑️</td>
<td>Both direct and alternating current supply</td>
</tr>
<tr>
<td>☑️</td>
<td>The equipment is protected through double insulation</td>
</tr>
</tbody>
</table>

Information in this manual is intended only to assist our customers in the efficient operation of our equipment. Use of this manual for any other purpose is specifically prohibited and its contents are not to be reproduced in full or part without prior approval of the Technical Publications Department.

Health and Safety

To ensure that our products are safe and without risk to health, the following points must be noted:

1. The relevant sections of these instructions must be read carefully before proceeding.
2. Warning labels on containers and packages must be observed.
3. Installation, operation, maintenance and servicing must only be carried out by suitably trained personnel and in accordance with the information given.
4. Normal safety precautions must be taken to avoid the possibility of an accident occurring when operating in conditions of high pressure and/or temperature.
5. Chemicals must be stored away from heat, protected from temperature extremes and powders kept dry. Normal safe handling procedures must be used.
6. When disposing of chemicals ensure that no two chemicals are mixed.

Safety advice concerning the use of the equipment described in this manual or any relevant hazard data sheets (where applicable) may be obtained from the Company address on the back cover, together with servicing and spares information.
CONTENTS

1 INTRODUCTION .. 2
 1.1 Electrical Connection .. 2
 1.2 Protocol ... 2

2 PREPARATION .. 2
 2.1 Company Standard Settings 2

3 INSTALLATION .. 3
 3.1 Serial Communication
 Adaptors for Personal Computers 3
 3.1.1 Five-wire Configuration 3
 3.1.2 Three-wire Configuration 3

4 ELECTRICAL CONNECTIONS 3
 4.1 Serial Connections .. 3
 4.1.1 Five-wire Cable 3
 4.1.2 Three-wire Cable 3

5 SETTING UP ... 5
 5.1 Termination Resistors .. 5

6 PROGRAMMING .. 6
 6.1 Serial Interface Page .. 6

7 MODBUS PROTOCOL .. 7
 7.1 Introduction to MODBUS Protocol (RTU only) 7
 7.2 MODBUS Function Codes1 7

8 MODBUS FUNCTIONS .. 8
 8.1 Read Coil Status – Function Code 01 8
 8.1.1 Read Coil Status Query 8
 8.1.2 Read Coil Status Response 8
 8.2 Read Holding Register – Function Code 03 8
 8.2.1 Read Holding Register Query 8
 8.2.2 Read Holding Register Response 9
 8.3 Force Single Coil – Function Code 05 9
 8.3.1 Force Single Coil Query 9
 8.3.2 Force Single Coil Response 9
 8.4.2 Preset Single Register Response 10
 8.4 Preset Single Register – Function Code 06 ... 10
 8.4.1 Preset Single Register Query 10
 8.5 Loopback Test – Function Code 08 11
 8.5.1 Loopback Test Query 11
 8.5.2 Loopback Test Response 11
 8.6 Preset Multiple Registers – Function Code 16 11
 8.6.1 Preset Multiple Registers Query 11
 8.6.2 Preset Multiple Registers Response . 11

9 EXCEPTION RESPONSES 12
 9.1 Examples ... 12

10 MODBUS COILS AND REGISTERS 12
 10.1 Coils .. 12
 10.2 Holding Registers .. 13

11 OPERATION ... 14

12 SPECIFICATION .. 16

APPENDICES ... 16
 A1 Non-volatile Memory Limitations 16
1 INTRODUCTION

This manual must be read in conjunction with the 8037 Operating Instructions.

For repeatable and reliable serial communication to take place between a master (host computer) and slaves (instruments) it is essential that the two conditions detailed in this section are met.

1.1 Electrical Connection
A standard method of electrical connection is used between the master and the slaves, with defined voltage levels and characteristics. The transmitter and receiver integrated circuits within the 8037 meet the requirements of the EIA (Electronic Industries Association, American) RS485 and RS422 Serial Interface Standards.

The RS422/485 communication standard is used with the following logic levels:

a) for logic ‘1’ (MARK condition or IDLE state) the ‘A’ terminal of the transmitter is negative (0 V) with respect to the ‘B’ terminal (+5 V);

b) for logic ‘0’ (SPACE condition or ACTIVE state) the ‘A’ terminal of the transmitter is positive (+5 V) with respect to the ‘B’ terminal (0 V).

Note. The ‘A’ terminal is Tx + or Rx + and the ‘B’ terminal is Tx – or Rx –.

1.2 Protocol
A standard language or protocol must be used in both the master and the slaves for messages (commands and data) to be interpreted and acted upon. To achieve this second condition, MODBUS Protocol is utilized on the 8037 Monitor using the Remote Terminal Unit (RTU) mode only.

Two methods of message error checking are used. Parity checking is used, if selected, to detect transmission errors in individual characters.

Parity is used for simple error checking. The parity bit is a one-bit code which is transmitted in addition to the ASCII character. It can detect only one error per character, since two errors may cancel out. Parity is calculated by finding the sum of logic ‘1’s in the character and either:

a) setting the parity bit to logic ‘1’ if the sum is odd, or

or

b) setting the parity bit to logic ‘0’ if the sum is odd, or

logic ‘1’ if the sum is even, when using odd parity.

Cyclic Redundancy Checking (CRC-16) is used to detect errors in the Master messages and Slave responses. This therefore detects errors in the complete message sent and also the replies.

Preparation is as given in the Operating Instructions, with additions as detailed in this section.

2 PREPARATION

2.1 Company Standard Settings
Only those parameters detailed on the customer order are programmed at the factory. If any parameters are unsuitable for the application they can be reprogrammed – see Operating Instructions. Serial data programming details are given in Section 7 of this manual.

Standard parameter settings for the serial data programme are as follows:

<table>
<thead>
<tr>
<th>Instrument Identity</th>
<th>Parity</th>
<th>Transmission Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>none</td>
<td>9600 baud</td>
</tr>
</tbody>
</table>

Preparation is as given in the Operating Instructions, with additions as detailed in this section.
3 INSTALLATION

Observe the limitations outlined in the Operating Instructions. The maximum serial data transmission line length for both RS422 and RS485 systems is 1200 m.

3.1 Serial Communication Adaptors for Personal Computers

An RS422/485 communications adaptor board is required for serial links. It is strongly recommended that the card used has galvanic isolation to protect the computer from lightning damage and increase immunity from noise pick-up from cables.

3.1.1 Five-wire Configuration

The following OPTO22 boards are recommended for use with the 4600 serial instruments:

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Computer Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC24</td>
<td>XT Bus IBM PC compatible</td>
</tr>
<tr>
<td>AC24 AT</td>
<td>AT Bus IBM PC compatible</td>
</tr>
<tr>
<td>AC34</td>
<td>Microchannel IBM PC</td>
</tr>
</tbody>
</table>

The following ‘jumper’ selections are required on OPTO22 boards (usually supplied as the default configuration):

- **RX & TX**
 - install line termination jumper
 - install pull-up and pull-down jumpers
- **CTS & RTS**
 - disable jumper installed.

Select board address and interrupts as described in the OPTO22 manual.

3.1.2 Three-wire Configuration

The adaptor card must have the provision for disabling the transmitter after each message is transmitted, so that bus contention does not occur. This is often implemented by the use of the RTS signal to control the transmitter enable. Consult the adaptor card manufacturer to determine suitability.

Caution. Install the pull-up/pull-down resistors on either the RX or TX lines. The resistors must not be connected on both pairs of lines.

4 ELECTRICAL CONNECTIONS

All connections, apart from those for serial data communication, are made as shown in the Operating Instructions.

4.1 Serial Connections – Figs. 4.1 and 4.2

The transmitters must be connected in parallel as shown in the schematic diagram – Fig. 4.1. The RS485 standard quotes connection of maximum thirty two slaves (8037 Transmitters) to any single driver (computer terminal or host computer); the RS422 standard quotes connection of up to ten slaves. However, these numbers can be increased if the driver’s serial port permits.

Make serial data connections and check the processor board links as shown in Fig. 4.2. The type of cable used is dependent on the transmission speed and cable length.

4.1.1 Five-wire Cable (refer also to Fig. 11.1)

- Up to 6 m (all speeds) – standard screened or twisted pair cable.
- Up to 300 m – twin twisted pair with overall foil screen and an integral drain wire, e.g. Belden 9502 or equivalent;
- Up to 1200 m – twin twisted pair with separate foil screens and integral drain wires for each pair, e.g. Belden 9729 or equivalent.

4.1.2 Three-wire Cable (refer also to Fig. 11.2)

- Up to 6 m (all speeds) – standard screened or twisted pair cable.
- Up to 1200 m – single twisted pair with overall foil screen and integral drain wire, e.g. Belden 9501 or equivalent.
...4 ELECTRICAL CONNECTIONS

...4.1 Serial Connections

A – Five-wire Connections

1 – No connection
2 – Rx+
3 – Rx–
4 – Tx+
5 – Tx–
6 – Common (0V)

B – Three-wire Connections

1 – No connection
2 – No connection
3 – No connection
4 – Rx/Tx+
5 – Rx/Tx–
6 – Common (0V)

Note. For 3-wire applications IC25 must be removed and the 3-wire link positioned as shown.

C – Three- and Five-wire Links

Fig. 4.2 Serial Connections
For all aspects other than serial data transmission the transmitter is set up as shown in the Operating Instructions – see Section 1. Unless otherwise requested, the instrument is despatched with a transmission rate of 9600 baud and transmission line termination resistors linked-out. If the resistors are to be linked-in (see Fig. 5.1) carry out the following section.

5.1 Termination Resistors – Fig. 5.1
For long transmission lines, termination resistors are required on the last 8037 Transmitter in the chain and at the host computer/computer terminal. Under normal operating conditions the resistors are required at the last 8037 receive inputs only – see Fig. 4.1. The transmitter's resistors are selected using plug-in links – see Fig. 5.1.

Switch off the supply and gain access to the processor board (see the Operating Instructions). Set the termination resistor links as shown in Fig. 5.1.
6 PROGRAMMING

The general programming procedure is as detailed in the Operating Instructions but with an additional Serial Interface page between the Set Up Outputs and Electrical Cal pages.

Fig. 6.1 Location of Serial Data Interface Page

6.1 Serial Interface Page

Page Header – Serial Interface

Transmission Rate
Select the retransmission rate required (1200 slowest, 9600 fastest).

Transmitter Identification
Assign the transmitter an identification number (1 to 99) – see Section 4.1. The identification number allows more than one transmitter to be accessed via the communication channel.

Parity
Select the appropriate parity to match the computer terminal or host computer.

Return to the top of the Serial Interface Page or advance to the next page.
7 MODBUS PROTOCOL

7.1 Introduction to MODBUS Protocol (RTU only)
MODBUS communication is based on a master and a slave arrangement. The master sends a message to one slave at a time and waits for a reply.

The slave cannot accept a new message until the existing message is processed and a reply sent to the master (maximum response time 250 milliseconds). The slave monitors the elapsed time between receipt of characters. If the elapsed time without a new character is 3½ character times, the slave assumes the next character received is the start of a new message.

To allow the master to differentiate between more than one slave in a system, each slave is given a unique identity address (between 1 and 99).

A broadcast address (address zero) can be used to access all slave devices with one command. This is limited to write messages only and there is no slave acknowledgment.

Note. MODBUS RTU requires 1 start bit, 8 data bits, 1 parity bit (optional) and 1 or 2 stop bits. The 8037 uses only 1 stop bit.

7.2 MODBUS Function Codes – Table 7.1
The function code field instructs the addressed slaves which function to perform.

<table>
<thead>
<tr>
<th>MODBUS Function Code</th>
<th>MODBUS Message Name</th>
<th>8037 MODBUS Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Read Coil Status</td>
<td>Read up to 16 consecutive discrete (boolean) points from a specific point. The 8037 returns zeros for points which do not contain defined data and NAKs* any request for point numbers greater than 100.</td>
</tr>
<tr>
<td>03</td>
<td>Read Holding Register</td>
<td>Up to 8 consecutive registers from a specific starting register. The 8037 returns zeros from registers which do not contain defined data and NAKs any request for register numbers greater than 100.</td>
</tr>
<tr>
<td>05</td>
<td>Force Single Coil</td>
<td>Write one discrete (boolean) point. The 8037 NAKs this if the point is not currently writeable.</td>
</tr>
<tr>
<td>06</td>
<td>Preset Single Register</td>
<td>Write one register. The 8037 NAKs if the register is not currently writeable. This function code also applies any existing limits to the register before storage in the database.</td>
</tr>
<tr>
<td>08</td>
<td>Loopback Diagnostic Test</td>
<td>Echo the message, only 'Return of Query' is supported.</td>
</tr>
<tr>
<td>16</td>
<td>Preset Multiple Registers</td>
<td>Write up to 8 consecutive registers from a specified starting register. The 8037 NAKs if any of the registers are not currently writeable, but still carries out all the writes which are valid, applying any currently applicable limits to the value before storage in the database.</td>
</tr>
</tbody>
</table>

*NAK = Negative Acknowledgement

Table 7.1 MODBUS Function Codes
8 MODBUS FUNCTIONS

This section shows typical examples of MODBUS function codes 01, 03, 05, 06, 08 and 16.

8.1 Read Coil Status – Function Code 01

8.1.1 Read Coil Status Query
This function allows the user to obtain the ON/OFF status of logic coils used to control discrete outputs from the addressed slave only. Broadcast mode is not supported with this function code. In addition to the slave address and function fields, the message requires that the information field contain the initial coil offset address to be read (starting address) and the number of locations to be interrogated must obtain status data.

Note. The coil offset address is the coil number minus one, e.g. to start at coil 31 the data start value must be set to 30 (1EH).

Example – a read coil status request to read 2 coils from slave (01) starting at coil 11 (Alarm 1 Relay State) is shown below.

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Coil Start Offset High</th>
<th>Coil Start Offset Low</th>
<th>Number of Coils High</th>
<th>Number of Coils Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>01</td>
<td>00</td>
<td>0A</td>
<td>00</td>
<td>02</td>
<td>9D</td>
</tr>
</tbody>
</table>

8.1.2 Read Coil Status Response
The data is packed one bit for each coil (1 = ON, 0 = OFF). The response includes the slave address, function code, quantity of data characters, the data characters and error checking. The low order bit of the first character contains the first addressed coil and the remainder follow. For coil quantities that are not even multiples of eight, the last characters are filled in with zeros at high order end.

Example – the response to the read coil status query shows the following:
- Relay alarm state 1 De-energised
- Relay alarm state 2 De-energised
- System Error - No

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Byte Count</th>
<th>Data Coil Status 11 to 18</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>01</td>
<td>01</td>
<td>00</td>
<td>51</td>
</tr>
</tbody>
</table>

8.2 Read Holding Register – Function Code 03

8.2.1 Read Holding Register Query
The Read holding registers allow the user to obtain the binary contents of holding registers in the addressed slave.

Note. The data start register must contain the offset address of the first register to be accessed, e.g. to start at register 11 the data start register must contain 10 (0AH).

Broadcast mode is not allowed.

Example – a read holding register request to read 6 holding registers from slave (01) starting at holding address 121 (alarm trip A1) is shown below.

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Register Start Offset High</th>
<th>Register Start Offset Low</th>
<th>Data Number of Registers High</th>
<th>Data Number of Registers Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>03</td>
<td>00</td>
<td>0A</td>
<td>00</td>
<td>04</td>
<td>64</td>
</tr>
</tbody>
</table>
8.2.2 Read Holding Register Response
The addressed slave responds with its address and function code, followed by the information field. The information field contains 1 byte describing the quantity of data bytes to be returned. The contents of each register requested (DATA) is two bytes, the first byte includes the high order bits and the second the low order bits.

Example – the response to the read holding register query shows the following:
- Measured sodium – 1.14 mg l⁻¹
- Sodium set point 1 – 1.00 µg l⁻¹
- Sodium set point 2 – 10.0 µg l⁻¹
- Measured millivolts – –182 mV

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Byte Count</th>
<th>Holding Register 11 High</th>
<th>Holding Register 11 Low</th>
<th>Holding Register 12 High</th>
<th>Holding Register 12 Low</th>
<th>Holding Register 13 High</th>
<th>Holding Register 13 Low</th>
<th>Holding Register 14 High</th>
<th>Holding Register 14 Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>03</td>
<td>08</td>
<td>40</td>
<td>72</td>
<td>10</td>
<td>64</td>
<td>20</td>
<td>64</td>
<td>6</td>
<td>8B</td>
<td>B9 60</td>
</tr>
</tbody>
</table>

8.3 Force Single Coil – Function Code 05

8.3.1 Force Single Coil Query
This message forces a single coil either ON or OFF. The data value 65,280 (FF00 HEX) sets the coil ON and the value zero turns it OFF. All other values are illegal and do not affect the coil.

Note. To write to a coil the coil offset address must be used, e.g. to write to coil 50, the coil address 49(31H) is transmitted.

The use of slave address zero (broadcast mode) forces all attached slaves to modify the desired coil.

Example – a force single coil request to switch ON coil address 50 (NV Memory Save) in slave 01 is shown below.

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Coil Offset High</th>
<th>Coil Offset Low</th>
<th>Data Value High</th>
<th>Data Value Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>05</td>
<td>00</td>
<td>31</td>
<td>FF</td>
<td>00</td>
<td>DD</td>
</tr>
</tbody>
</table>

8.3.2 Force Single Coil Response
The response is confirmation of the query after the coil state has been altered.

Example:

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Coil Offset High</th>
<th>Coil Offset Low</th>
<th>Data Value High</th>
<th>Data Value Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>05</td>
<td>00</td>
<td>31</td>
<td>FF</td>
<td>00</td>
<td>DD</td>
</tr>
</tbody>
</table>
8.4 Preset Single Register – Function Code 06

8.4.1 Preset Single Register Query
The preset single register allows the user to modify the contents of a holding register.

Note. Function codes 5, 6 and 16 are the only messages that are recognized as valid for broadcast.

Example – a preset single register request to write the value 100 µg l⁻¹ to holding register 12 (alarm A1 Setpoint) in slave 01 is shown below.

Select decade from table (xxx) – Decade = 3. Convert 100 µg l⁻¹ into hex (64H); therefore the required 16-bit data is (3064H).

Note. To write to a register, the register’s offset address must be used, e.g. to write to register 12, the offset address 11(0B) is transmitted.

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Register Offset High</th>
<th>Register Offset Low</th>
<th>Data Value High</th>
<th>Data Value Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>06</td>
<td>00</td>
<td>0B</td>
<td>30</td>
<td>64</td>
<td>ED</td>
</tr>
</tbody>
</table>

8.4.2 Preset Single Register Response
The normal response to a preset single register request is to retransmit the query message after the register has been altered.

Example:

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Register Offset High</th>
<th>Register Offset Low</th>
<th>Data Value High</th>
<th>Data Value Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>08</td>
<td>00</td>
<td>0B</td>
<td>30</td>
<td>64</td>
<td>ED</td>
</tr>
</tbody>
</table>
8.5 Loopback Test – Function Code 08

8.5.1 Loopback Test Query
The purpose of the loopback test is to test the MODBUS system, it does not affect the content of the controller. Variations in the response may indicate faults in the MODBUS system. The information field contains 2 bytes for the designation of the diagnostic code followed by 2 bytes to designate the action to be taken.

Example:

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Register Offset High</th>
<th>Register Offset Low</th>
<th>Data Value High</th>
<th>Data Value Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>08</td>
<td>00</td>
<td>08</td>
<td>30</td>
<td>64</td>
<td>84 22</td>
</tr>
</tbody>
</table>

8.5.2 Loopback Test Response
The response always echoes the query, only diagnostic code 0 (bytes 3 and 4) can be used.

Example:

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Data Diagnostic Code High</th>
<th>Data Diagnostic Code Low</th>
<th>Data *</th>
<th>Data *</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>08</td>
<td>00</td>
<td>08</td>
<td>30</td>
<td>64</td>
<td>84 22</td>
</tr>
</tbody>
</table>

*These are considered to be the information fields for diagnostic mode.

8.6 Preset Multiple Registers – Function Code 16

8.6.1 Preset Multiple Registers Query
Holding registers existing within the controller can have their contents changed by this message. When used with slave address zero (Broadcast mode) all slave controllers load the selected registers with the contents specified.

Note. To write to multiple registers, the initial register offset address must be used, e.g. to write to register 02 onwards, the offset address 01 is transmitted.

Example – a preset multiple registers request to write the value 100 µg l⁻¹ to the register address (Alarm Set Point 1) and the value 10.0 µg l⁻¹ to the register address (Alarm Set Point 2) in slave 01 is shown below.

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Register Start Offset High</th>
<th>Register Start Offset Low</th>
<th>Number of Registers</th>
<th>Byte Count</th>
<th>Holding Register 02 High</th>
<th>Holding Register 02 Low</th>
<th>Holding Register 03 High</th>
<th>Holding Register 03 Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>10</td>
<td>00</td>
<td>0B</td>
<td>00 02</td>
<td>04</td>
<td>30</td>
<td>64</td>
<td>20</td>
<td>64</td>
<td>E4 E8</td>
</tr>
</tbody>
</table>

8.6.2 Preset Multiple Registers Response
The response confirms slave identification, function code, starting register address and quantity only.

Example:

<table>
<thead>
<tr>
<th>Address</th>
<th>Function</th>
<th>Register Start Offset High</th>
<th>Register Start Offset Low</th>
<th>Number of Registers</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>10</td>
<td>00</td>
<td>0B</td>
<td>00 02</td>
<td>30 0A</td>
</tr>
</tbody>
</table>
9 EXCEPTION RESPONSES

The exception response codes sent by the slave are shown in Table 9.1. When a slave detects one of these errors, it sends a response message to the master consisting of slave address, function code, error code and error check fields.

<table>
<thead>
<tr>
<th>Exception Response Code</th>
<th>Exception Response Name</th>
<th>Exception Response Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Illegal Function</td>
<td>The message function received is not an allowable action for the 8037.</td>
</tr>
<tr>
<td>02</td>
<td>Illegal Data Address</td>
<td>The address reference in the data field is not an allowable address for the 8037.</td>
</tr>
<tr>
<td>03</td>
<td>Illegal Data Value</td>
<td>The value referenced in the data field is not allowable in the addressed slave location.</td>
</tr>
<tr>
<td>07</td>
<td>Negative Acknowledgement</td>
<td>The function just requested cannot be performed.</td>
</tr>
<tr>
<td>08</td>
<td>Memory Parity Error</td>
<td>Parity check indicates an error in one or more of the characters received.</td>
</tr>
</tbody>
</table>

Table 9.1 Exception Response Data

9.1 Examples

A read register request to read holding register address 251 of slave 01 (undefined address for slave, beyond address limit) is shown below.

<table>
<thead>
<tr>
<th>Slave Address</th>
<th>Function</th>
<th>Register Start Offset High</th>
<th>Register Start Offset Low</th>
<th>Number of Registers High</th>
<th>Number of Registers Low</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>03</td>
<td>00</td>
<td>FA</td>
<td>00</td>
<td>06</td>
<td>E5</td>
</tr>
</tbody>
</table>

The response is an exception response sighting 'Negative Acknowledgement'. To indicate that the response is a notification of an error, the most significant bit of the function code is set to 1.

<table>
<thead>
<tr>
<th>Slave Address</th>
<th>Function</th>
<th>Exception Code</th>
<th>Error Check Field (CRC-16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>83</td>
<td>07</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F2</td>
</tr>
</tbody>
</table>

10 MODBUS COILS AND REGISTERS

10.1 Coils

<table>
<thead>
<tr>
<th>Dec</th>
<th>Hex</th>
<th>R or RW</th>
<th>Name</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>$0B</td>
<td>R</td>
<td>Alarm 1 Relay</td>
<td>Energised</td>
<td>De-energised</td>
</tr>
<tr>
<td>12</td>
<td>$0C</td>
<td>R</td>
<td>Alarm 2 Relay</td>
<td>Energised</td>
<td>De-energised</td>
</tr>
<tr>
<td>13</td>
<td>$0D</td>
<td>R</td>
<td>System Error</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>17</td>
<td>$11</td>
<td>R</td>
<td>NV Checksum Error</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>19</td>
<td>$13</td>
<td>R</td>
<td>Outputs Held</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>$14</td>
<td>R</td>
<td>Calibration in Progress</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>50</td>
<td>$32</td>
<td>R/W</td>
<td>Enable writes to the non-volatile memory</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
10.2 Holding Registers

<table>
<thead>
<tr>
<th>Dec</th>
<th>Hex</th>
<th>R or RW</th>
<th>Name</th>
<th>Response/Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>$0B</td>
<td>R - Note (1)</td>
<td>Sodium Value</td>
<td>Sodium Value</td>
</tr>
<tr>
<td>12</td>
<td>$0C</td>
<td>RW - Note (1)</td>
<td>Sodium Setpoint A1</td>
<td>Sodium Value</td>
</tr>
<tr>
<td>13</td>
<td>$0D</td>
<td>RW - Note (1)</td>
<td>Sodium Setpoint A2</td>
<td>Sodium Value</td>
</tr>
<tr>
<td>14</td>
<td>$0E</td>
<td>R - Note (2)</td>
<td>Measured Millivolts</td>
<td>± 1000 mV</td>
</tr>
<tr>
<td>15</td>
<td>$0F</td>
<td>R - Note (3)</td>
<td>Measured temperature (°C)</td>
<td>5°C to 55°C</td>
</tr>
<tr>
<td>17</td>
<td>$11</td>
<td>R</td>
<td>Slope (%)</td>
<td>See User Manual</td>
</tr>
<tr>
<td>18</td>
<td>$12</td>
<td>R - Note (2)</td>
<td>Millivolt Offset</td>
<td>± 1000 mV</td>
</tr>
<tr>
<td>21</td>
<td>$15</td>
<td>R</td>
<td>Sodium Units</td>
<td>0 = ppb / ppm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = ug l⁻¹ / mg l⁻¹</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = ug kg⁻¹ / mg kg⁻¹</td>
</tr>
<tr>
<td>22</td>
<td>$16</td>
<td>R</td>
<td>Temperature Units</td>
<td>0 = °C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = °F</td>
</tr>
<tr>
<td>23</td>
<td>$17</td>
<td>R</td>
<td>Filter Time (Seconds)</td>
<td>10 to 600 seconds</td>
</tr>
<tr>
<td>33</td>
<td>$21</td>
<td>R</td>
<td>Alarm A1 Action</td>
<td>0 = Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = High</td>
</tr>
<tr>
<td>34</td>
<td>$22</td>
<td>R</td>
<td>Alarm A2 Action</td>
<td>0 = Off</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = High</td>
</tr>
<tr>
<td>35</td>
<td>$23</td>
<td>R</td>
<td>Retrans Curve</td>
<td>0 = Linear</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = Logarithmic</td>
</tr>
<tr>
<td>36</td>
<td>$24</td>
<td>R</td>
<td>Retrans Type</td>
<td>0 = 0 to 10 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 = 0 to 20 mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 = 4 to 20 mA</td>
</tr>
<tr>
<td>37</td>
<td>$25</td>
<td>R - Note (1)</td>
<td>Retrans Span</td>
<td>Sodium Value</td>
</tr>
<tr>
<td>38</td>
<td>$26</td>
<td>R - Note (1)</td>
<td>Retrans Zero</td>
<td>Sodium Value</td>
</tr>
</tbody>
</table>

Notes.

1) Data stored in 16 bit format. The 4 most significant bits indicate the decade and the 12 bit data indicates the integer value of the measured value. See table below.

2) -1000 mV = 0 and $+1000$ mV = 4095

3) $5°C (41°F) = 0$ and $55°C (131°F) = 4095

<table>
<thead>
<tr>
<th>Range</th>
<th>Decade</th>
<th>16 bit data format</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.0 mg l⁻¹</td>
<td>5</td>
<td>5064</td>
</tr>
<tr>
<td>1.00 to 9.99 mg l⁻¹</td>
<td>4</td>
<td>4064 to $43E7$</td>
</tr>
<tr>
<td>100 to 999 µg l⁻¹</td>
<td>3</td>
<td>3064 to $33E7$</td>
</tr>
<tr>
<td>10.0 to 99.9 µg l⁻¹</td>
<td>2</td>
<td>2064 to $23E7$</td>
</tr>
<tr>
<td>0.10 to 9.99 µg l⁻¹</td>
<td>1</td>
<td>$100A$ to $13E7$</td>
</tr>
</tbody>
</table>

Example: If the sodium setpoint A1 is to be changed to 500 µg l⁻¹ then from the above table the decade is 3 and the integer value is 500 ($1F4$ Hex). So the required 16 bit data format is $31F4$ Hex.

Example: If the sodium value returned is 1250 Hex, then from the above table the decade is 1 (0.10 to 9.99 µg l⁻¹) and the integer part is 592 (250 Hex). Hence the sodium reading is 5.92 µg l⁻¹.
Before attempting any serial communication, first ensure that the 8037 Transmitters connected to the computer terminal or host computer by serial link are functioning correctly as individual instruments. This is achieved by connecting all analog inputs, applying the input signals and checking that the digital display reads appropriately.

Ensure that the serial data connections to 8037 Transmitter have been made correctly with respect to the computer terminal, or host computer, interface. If the above check appears satisfactory, test the serial communication by sending an appropriate message from the computer terminal or host computer to a transmitter and observe if it replies; thus establishing communication. If communication is not established, check that the computer terminal, or host computer, interface is set up correctly and that the plug-in links within each transmitter are correctly positioned – see Section 5.
Check that the parameters programmed in the instrument’s **Serial Data Communication Page** are compatible with those of the computer terminal or host computer – see Section 7.

If communication is still not possible or is erratic, check that the computer terminal, or host computer, interface has pull-up and pull-down resistors connected as shown in Figs. 11.1 and 11.2.

Note. If no reply is received from the instrument within 160 ms, retransmit the command. If after five command re-entries a satisfactory reply has not been received, the communication link has been broken and must be re-checked.

Fig. 11.2 Pull-up and Pull-down Resistors (3-wire only)
As detailed in the Operating Instructions, with the following additions:

<table>
<thead>
<tr>
<th>EIA Communication</th>
<th>RS422, RS485</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>2-wire or 4-wire modes</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Odd</td>
</tr>
<tr>
<td></td>
<td>Even</td>
</tr>
<tr>
<td></td>
<td>Programmable</td>
</tr>
<tr>
<td>Transmission line length</td>
<td>1200 m maximum</td>
</tr>
<tr>
<td>Transmission speeds</td>
<td>1200 baud</td>
</tr>
<tr>
<td></td>
<td>2400 baud</td>
</tr>
<tr>
<td></td>
<td>4800 baud</td>
</tr>
<tr>
<td></td>
<td>9600 baud</td>
</tr>
</tbody>
</table>

APPENDICES

A1 Non-volatile Memory Limitations

Note. If the number of write cycles to any particular non-volatile memory register exceeds 10^4 write cycles, the register's contents may not be retained.

Any changes made to a parameter, e.g. Alarm trip value, via the serial link are stored in a non-volatile memory register assigned to that parameter.

The number of write cycles to a particular register can be reduced by disabling the non-volatile memory access when making changes to parameters which do not need to be saved on power-down. This is done by using the non-volatile save state (coil number 50).

When the non-volatile save state is set to 'Enable', any parameter changes made via the serial link are written to the non-volatile memory register and retained on power-down. If the non-volatile save state is set to 'Disable', parameter changes made via the serial link are not retained on power-down.

The non-volatile save state is not retained on power-down and must be reset to the required state each time the instrument is powered down, replaced with another instrument or the host computer is powered down.
PRODUCTS & CUSTOMER SUPPORT

Products

Automation Systems
- for the following industries:
 - Chemical & Pharmaceutical
 - Food & Beverage
 - Manufacturing
 - Metals and Minerals
 - Oil, Gas & Petrochemical
 - Pulp and Paper

Drives and Motors
- AC and DC Drives, AC and DC Machines, AC Motors to 1kV
- Drive Systems
- Force Measurement
- Servo Drives

Controllers & Recorders
- Single and Multi-loop Controllers
- Circular Chart and Strip Chart Recorders
- Paperless Recorders
- Process Indicators

Flexible Automation
- Industrial Robots and Robot Systems

Flow Measurement
- Electromagnetic Flowmeters
- Mass Flow Meters
- Turbine Flowmeters
- Flow Elements

Marine Systems & Turbochargers
- Electrical Systems
- Marine Equipment
- Offshore Retrofit and Refurbishment

Process Analytics
- Process Gas Analysis
- Systems Integration

Transmitters
- Pressure
- Temperature
- Level
- Interface Modules

Valves, Actuators and Positioners
- Control Valves
- Actuators
- Positioners

Water, Gas & Industrial Analytics Instrumentation
- pH, Conductivity and Dissolved Oxygen Transmitters and Sensors
- Ammonia, Nitrate, Phosphate, Silica, Sodium, Chloride, Fluoride, Dissolved Oxygen and Hydrazine Analyzers
- Zirconia Oxygen Analyzers, Katharometers, Hydrogen Purity and Purge-gas Monitors, Thermal Conductivity

Customer Support

We provide a comprehensive after sales service via a Worldwide Service Organization. Contact one of the following offices for details on your nearest Service and Repair Centre.

United Kingdom
ABB Limited
Tel: +44 (0)1453 826661
Fax: +44 (0)1453 829671

United States of America
ABB Inc.
Tel: +1 (0) 775 850 4800
Fax: +1 (0) 775 850 4808

Client Warranty

Prior to installation, the equipment referred to in this manual must be stored in a clean, dry environment, in accordance with the Company's published specification.

Periodic checks must be made on the equipment’s condition. In the event of a failure under warranty, the following documentation must be provided as substantiation:

1. A listing evidencing process operation and alarm logs at time of failure.
2. Copies of all storage, installation, operating and maintenance records relating to the alleged faulty unit.