TTH300
Field-mount temperature transmitter

Temperature transmitter for all communications protocols. Redundancy thanks to two inputs.

Measurement made easy

Introduction
The TTH300 is available with the HART, PROFIBUS PA and FOUNDATION Fieldbus communications protocols.

The TTH300 has global approvals for explosion protection up to Zone 0.

Safety-relevant applications up to SIL 3 (redundant) are supported in accordance with IEC 61508.

The TTH300 is approved for custody transfer measurements through the MID certificate in accordance with measurement device guideline 2014/32/EU.

Additional Information
Additional documentation on TTH300 is available for download free of charge at www.abb.com/temperature. Alternatively simply scan this code:
Table of contents

1 **Safety** ... 4
 - General information and instructions 4
 - Warnings .. 4
 - Intended use .. 5
 - Improper use ... 5
 - Warranty provisions .. 5
 - Notes on data safety ... 5
 - Manufacturer’s address .. 5

2 **Use in potentially explosive atmospheres in accordance with ATEX and IECEx** 6
 - Ex marking ... 6
 - Transmitter .. 6
 - LCD indicator .. 6
 - Temperature data .. 7
 - Transmitter .. 7
 - LCD indicator .. 7
 - Electrical data .. 7
 - Transmitter .. 7
 - LCD indicator .. 7
 - Installation instructions 8
 - ATEX / IECEx .. 8
 - IP protection rating of housing 8
 - Electrical connections 8
 - Grounding .. 8
 - Intrinsic safety installation check 8
 - Installation in a potentially explosive atmosphere .. 9
 - Commissioning .. 11
 - Operating instructions 11
 - Protection against electrostatic discharges 11

3 **Use in potentially explosive atmospheres in accordance with FM and CSA** 12
 - Ex marking ... 12
 - Transmitter .. 12
 - LCD indicator .. 12
 - Installation instructions 13
 - FM / CSA .. 13
 - IP protection rating of housing 13
 - Electrical connections 13
 - Commissioning .. 14
 - Operating instructions 14
 - Protection against electrostatic discharges 14

4 **Product identification** .. 15
 - Name plate ... 15

5 **Transport and storage** .. 16
 - Inspection .. 16
 - Transporting the device 16
 - Storing the device ... 16
 - Ambient conditions .. 16
 - Returning devices .. 16

6 **Installation** .. 17
 - Ambient conditions .. 17
 - Installation options .. 17
 - Installation on the measuring inset 17
 - Installation in the cover of the connection head 18
 - Installation on the top-hat rail 18
 - Installing / removing the optional LCD indicator .. 18
 - Disassembling the LCD indicator 18
 - Installing the LCD indicator 18
 - Rotating the LCD indicator 18

7 **Electrical connections** ... 19
 - Safety instructions ... 19
 - Protection of the transmitter from damage caused by highly energetic electric interferences ... 19
 - Suited protective measures 20
 - Conductor material .. 20
 - Pin assignment .. 21
 - Resistance thermometers (RTD) / resistors (potentiometer) ... 21
 - Thermocouples / voltages and resistance thermometer (RTD) / thermocouple combinations... 22
 - Electrical data for inputs and outputs 23
 - Input - resistance thermometer / resistances 23
 - Input - thermocouples / voltages 23
 - Functionality input .. 23
 - Output – HART® .. 24
 - Output – PROFIBUS PA® .. 24
 - Output – FOUNDATION Fieldbus® 25
 - Power supply .. 25

8 **MID Certification** .. 27
 - TTH300 with MID Certification 27
 - General .. 27
 - Areas of application, conditions and requirements ... 27
 - Installation and Operation 27

9 **Commissioning** .. 28
 - General .. 28
 - Checks prior to commissioning 28
 - Communication .. 28
 - HART® Communication 28
 - Operating modes .. 28
 - Configuration options / tools 28
 - Diagnosis notice .. 28
 - PROFIBUS® Communication 29
 - Voltage / current consumption 29
 - FOUNDATION Fieldbus® Communication 29
 - Voltage / current consumption 29
 - Basic Setup ... 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operation</td>
<td>30</td>
</tr>
<tr>
<td>Safety instructions</td>
<td>30</td>
</tr>
<tr>
<td>Hardware settings</td>
<td>30</td>
</tr>
<tr>
<td>Menu navigation</td>
<td>31</td>
</tr>
<tr>
<td>Maintenance</td>
<td>32</td>
</tr>
<tr>
<td>Safety instructions</td>
<td>32</td>
</tr>
<tr>
<td>Recycling and disposal</td>
<td>32</td>
</tr>
<tr>
<td>Specification</td>
<td>32</td>
</tr>
<tr>
<td>Additional documents</td>
<td>32</td>
</tr>
<tr>
<td>Appendix</td>
<td>33</td>
</tr>
<tr>
<td>Return form</td>
<td>33</td>
</tr>
</tbody>
</table>
1 Safety

General information and instructions

These instructions are an important part of the product and must be retained for future reference. Installation, commissioning, and maintenance of the product may only be performed by trained specialist personnel who have been authorized by the plant operator accordingly. The specialist personnel must have read and understood the manual and must comply with its instructions.

For additional information or if specific problems occur that are not discussed in these instructions, contact the manufacturer.

The content of these instructions is neither part of nor an amendment to any previous or existing agreement, promise or legal relationship.

Modifications and repairs to the product may only be performed if expressly permitted by these instructions.

Information and symbols on the product must be observed. These may not be removed and must be fully legible at all times. The operating company must strictly observe the applicable national regulations relating to the installation, function testing, repair and maintenance of electrical products.

Warnings

The warnings in these instructions are structured as follows:

⚠️ DANGER
The signal word ‘DANGER’ indicates an imminent danger. Failure to observe this information will result in death or severe injury.

⚠️ WARNING
The signal word ‘WARNING’ indicates an imminent danger. Failure to observe this information may result in death or severe injury.

⚠️ CAUTION
The signal word ‘CAUTION’ indicates an imminent danger. Failure to observe this information may result in minor or moderate injury.

NOTICE
The signal word ‘NOTICE’ indicates possible material damage.

Note
‘Note’ indicates useful or important information about the product.
Intended use

This device is intended for the following uses:
- To measure the temperature of fluid, pulpy or pasty substances and gases or resistance/voltage values.

The device has been designed for use exclusively within the technical limit values indicated on the name plate and in the data sheets.
- The maximum ambient temperature must not be exceeded.
- The IP rating of the housing must be observed during operation.
- For use in potentially explosive atmospheres, follow the associated guidelines.
- When using as a SIL-device in safety-relevant applications, the SIL Safety Manual should be observed.

Improper use

The following are considered to be instances of especially improper use of the device:
- Material application, for example by painting over the housing, name plate or welding/soldering on parts.
- Material removal, for example by spot drilling the housing.

Warranty provisions

Using the device in a manner that does not fall within the scope of its intended use, disregarding this manual, using underqualified personnel, or making unauthorized alterations releases the manufacturer from liability for any resulting damage. This renders the manufacturer's warranty null and void.

Notes on data safety

This product is designed to be connected to and to communicate information and data via a network interface. It is operator's sole responsibility to provide and continuously ensure a secure connection between the product and your network or any other network (as the case may be).

Operator shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and / or theft of data or information.

ABB Automation Products GmbH and its affiliates are not liable for damages and / or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and / or theft of data or information.

Manufacturer’s address

ABB Automation Products GmbH
Measurement & Analytics
Schillerstr. 72
32425 Minden
Germany
Tel: +49 571 830-0
Fax: +49 571 830-1806

Customer service center

Tel: +49 180 5 222 580
Email: automation.service@de.abb.com
2 Use in potentially explosive atmospheres in accordance with ATEX and IECEx

Note
- Further information on the approval of devices for use in potentially explosive atmospheres can be found in the explosion protection test certificates (at www.abb.com/temperature).
- Depending on the design, a specific marking in accordance with ATEX or IECEx applies.

Ex marking

Transmitter

ATEX intrinsic safety
The device fulfills the requirements of Directive 2014/34/EU in case of corresponding purchase orders and is approved for use in Zone 0, 1 and 2.

<table>
<thead>
<tr>
<th>Model</th>
<th>Type Examination Test Certificate</th>
<th>Ex marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-E1H</td>
<td>PTB 05 ATEX 2017 X</td>
<td>II 1 G Ex ia IIC T6 Ga</td>
</tr>
<tr>
<td></td>
<td>II 2 (1) G Ex [ia IIC Ga] lb IIC T6 Gb</td>
<td>II 2 (1D) Ex [ia IIC Da] lb IIC T6 Gb</td>
</tr>
<tr>
<td></td>
<td>Model TTH300-E1P and TTH300-E1F</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PTB 09 ATEX 2016 X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II 1 G Ex ia IIC T6 Ga</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II 2 (1) G Ex [ia IIC Ga] lb IIC T6 Gb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>II 2 (1D) Ex [ia IIC Da] lb IIC T6 Gb</td>
<td></td>
</tr>
</tbody>
</table>

Non-sparking ATEX
The device fulfills the requirements of Directive 2014/34/EU in case of corresponding purchase orders and is approved for use in Zone 2.

<table>
<thead>
<tr>
<th>Model</th>
<th>Declaration of conformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-E2X</td>
<td>II 3 G Ex nA IIC T1-T6 Gc</td>
</tr>
</tbody>
</table>

IECEx intrinsic safety
Approved for use in Zone 0, 1, and 2.

<table>
<thead>
<tr>
<th>Model</th>
<th>IECEx certificate of conformity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-H1H</td>
<td>IECEx PTB 09.0014X</td>
</tr>
<tr>
<td>TTH300-H1P</td>
<td>IECEx PTB 11.0108X</td>
</tr>
</tbody>
</table>

LCD indicator

ATEX intrinsic safety
The device fulfills the requirements of Directive 2014/34/EU in case of corresponding purchase orders and is approved for use in Zone 0, 1 and 2.

<table>
<thead>
<tr>
<th>Type Examination Test Certificate</th>
<th>Ex marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTB 05 ATEX 2079 X</td>
<td>II 1G Ex ia IIC T6 Ga</td>
</tr>
</tbody>
</table>

IECEx intrinsic safety
Approved for use in Zone 0, 1, and 2.

<table>
<thead>
<tr>
<th>IECEx certificate of conformity</th>
<th>Ex ia IIC T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>IECEx PTB 12.0028X</td>
<td></td>
</tr>
</tbody>
</table>
Temperature data

Transmitter
ATEX/IECEx intrinsic safety, non-sparking ATEX

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device category 1 use</td>
</tr>
<tr>
<td>T6</td>
<td>−50 to 44 °C</td>
</tr>
<tr>
<td></td>
<td>(−58 to 111.2 °F)</td>
</tr>
<tr>
<td>T5</td>
<td>−50 to 56 °C</td>
</tr>
<tr>
<td></td>
<td>(−58 to 132.8 °F)</td>
</tr>
<tr>
<td>T4-T1</td>
<td>−50 to 60 °C</td>
</tr>
<tr>
<td></td>
<td>(−58 to 140.0 °F)</td>
</tr>
</tbody>
</table>

LCD indicator
ATEX/IECEx intrinsic safety, non-sparking ATEX

<table>
<thead>
<tr>
<th>Temperature class</th>
<th>Permissible ambient temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device category 1 use</td>
</tr>
<tr>
<td>T6</td>
<td>−40 to 44 °C</td>
</tr>
<tr>
<td></td>
<td>(−40 to 111.2 °F)</td>
</tr>
<tr>
<td>T5</td>
<td>−40 to 56 °C</td>
</tr>
<tr>
<td></td>
<td>(−40 to 132.8 °F)</td>
</tr>
<tr>
<td>T4-T1</td>
<td>−40 to 60 °C</td>
</tr>
<tr>
<td></td>
<td>(−40 to 140 °F)</td>
</tr>
</tbody>
</table>

Electrical data

Transmitter
Intrinsic safety type of protection Ex ia IIC (part 1)

Power supply circuit*

<table>
<thead>
<tr>
<th></th>
<th>TTH300-E1H</th>
<th>TTH300-H1H</th>
<th>TTH300-E1P/-H1P</th>
<th>TTH300-E1F/-H1F</th>
</tr>
</thead>
<tbody>
<tr>
<td>FISCO* ENTITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. voltage</td>
<td>U₁ = 30 V</td>
<td>U₁ ≤ 17.5 V</td>
<td>U₁ ≤ 24.0 V</td>
<td></td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>I₁ = 130 mA</td>
<td>I₁ ≤ 183 mA**</td>
<td>I₁ ≤ 250 mA</td>
<td></td>
</tr>
<tr>
<td>Max. power</td>
<td>P₁ = 0.8 W</td>
<td>P₁ ≤ 2.56 W**</td>
<td>P₁ ≤ 1.2 W</td>
<td></td>
</tr>
<tr>
<td>Internal inductance</td>
<td>L₁ = 0.5 mH</td>
<td>L₁ ≤ 10 μH</td>
<td>L₁ ≤ 10 μH</td>
<td></td>
</tr>
<tr>
<td>Internal capacitance</td>
<td>C₁ = 0.57 nF***</td>
<td>C₁ ≤ 5 nF</td>
<td>C₁ ≤ 5 nF</td>
<td>C₁ ≤ 5 nF</td>
</tr>
</tbody>
</table>

* FISCO in accordance with 60079-27
** I B FISCO: I₁ ≤ 380 mA, P₁ ≤ 5.32 W
*** Only applies for HART variants. From HW Rev. 1.07, previously 5 nF

Intrinsic safety type of protection Ex ia IIC (part 2)

Measurement current circuit

<table>
<thead>
<tr>
<th></th>
<th>Resistance Thermocouples, voltages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. voltage</td>
<td>U₀ = 6.5 V</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>I₀ = 25 mA</td>
</tr>
<tr>
<td>Max. power</td>
<td>P₀ = 38 mW</td>
</tr>
<tr>
<td>Internal inductance</td>
<td>L₁ = 0 mH</td>
</tr>
<tr>
<td>Internal capacitance</td>
<td>C₁ = 49 nF</td>
</tr>
<tr>
<td>Maximum permissible</td>
<td>L₀ = 5 mH</td>
</tr>
<tr>
<td>external inductance</td>
<td>C₀ = 1.55 μF</td>
</tr>
</tbody>
</table>

Intrinsic safety type of protection Ex ia IIC (part 3)

LCD indicator interface

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. voltage</td>
<td>U₀ = 6.2 V</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>I₀ = 65.2 mA</td>
</tr>
<tr>
<td>Max. power</td>
<td>P₀ = 101 mW</td>
</tr>
<tr>
<td>Internal inductance</td>
<td>L₁ = 0 mH</td>
</tr>
<tr>
<td>Internal capacitance</td>
<td>C₁ = 0 nF</td>
</tr>
<tr>
<td>Maximum permissible</td>
<td>L₀ = 5 mH</td>
</tr>
<tr>
<td>external inductance</td>
<td>C₀ = 1.4 μF</td>
</tr>
</tbody>
</table>

LCD indicator
Intrinsic safety type of protection Ex ia IIC

Supply circuit

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. voltage</td>
<td>U₁ = 9 V</td>
</tr>
<tr>
<td>Short-circuit current</td>
<td>I₁ = 65.2 mA</td>
</tr>
<tr>
<td>Max. power</td>
<td>P₁ = 101 mW</td>
</tr>
<tr>
<td>Internal inductance</td>
<td>L₁ = 0 mH</td>
</tr>
<tr>
<td>Internal capacitance</td>
<td>C₁ = 0 nF</td>
</tr>
</tbody>
</table>
Use in potentially explosive atmospheres in accordance with ATEX and IECEx

Installation instructions

ATEX / IECEx
The installation, commissioning, maintenance and repair of devices in potentially explosive atmospheres must only be carried out by appropriately trained personnel. Works may be carried out only by persons, whose training has included instructions on different types of protection and installation techniques, concerned rules and regulations as well as general principles of zoning. The person must possess the appropriate competences for the type of work to be conducted.

When operating with combustible dusts, comply with EN 60079-31.
The safety instructions for electrical apparatus in potentially explosive areas must be in accordance with Directive 2014/34/EU (ATEX) and IEC 60079-14 (Installation of electrical equipment in potentially explosive areas).

Comply with the applicable regulations for the protection of employees to ensure safe operation.

IP protection rating of housing
The temperature transmitter and LCD indicator Type A and Type AS must be installed such that an IP rating of at least IP 20 is achieved in accordance with IEC 60529.

Electrical connections

Grounding
If, for functional reasons, the intrinsically safe circuit needs to be grounded by means of a connection to the potential equalization, it may only be grounded at one point.

Intrinsic safety installation check
If transmitters are operated in an intrinsically safe circuit, proof that the interconnection is intrinsically safe must be provided in accordance with IEC/EN 60079-14 as well as IEC/EN 60079-25.
The supply isolators / DCS inputs must feature intrinsically safe input protection circuits in order to eliminate hazards (spark formation).

In order to provide proof of intrinsic safety, the electrical limit value must be used as the basis for the EC-type examination certificates for the equipment (devices); this includes the capacitance and inductance values of the cables.

Proof of intrinsic safety is said to have been provided if the following conditions are fulfilled when a comparison is carried out in relation to the limit values of the equipment:

<table>
<thead>
<tr>
<th>Transmitter (intrinsically safe equipment)</th>
<th>Supply isolator / DCS input (related equipment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_i \geq U_o)</td>
<td></td>
</tr>
<tr>
<td>(I_i \geq I_o)</td>
<td></td>
</tr>
<tr>
<td>(P_i \geq P_o)</td>
<td></td>
</tr>
<tr>
<td>(L_i + L_c) (cable) (\leq L_o)</td>
<td></td>
</tr>
<tr>
<td>(C_i + C_c) (cable) (\leq C_o)</td>
<td></td>
</tr>
</tbody>
</table>

Field (Ex area) | Control room (safe area)

A Transmitter B Supply isolator / DCS input with supply / segment coupler

Figure 1: Intrinsic safety installation check
Installation in a potentially explosive atmosphere

Transmitters can be installed in all kinds of industrial sectors. Potentially explosive systems are divided into zones, meaning that a wide range of different instruments are also required. For this, pay attention to the country-specific guidelines and certificates!

Note
Ex relevant specifications must be taken from the EC-type examination certificates and other relevant certificates that apply in each case.

With transmitters for PROFIBUS PA and FOUNDATION Fieldbus H1 applications, FISCO interconnection methods can be used.

ATEX – Zone 0
Designation: II 1 G Ex ia IIC T6 Ga

When using the transmitter in Zone 0, it must be installed in a suitable housing with IP rating IP 20. The input for the supply isolator must be designed with ‘Ex ia’ type of protection. As the user, it is your responsibility to ensure that the sensor instrumentation meets the requirements of applicable explosion protection standards. The sensor can be installed in Zone 1 or Zone 0. When using the transmitter in Zone 1, you must ensure that impermissible electrostatic charging of the temperature transmitter is prevented (observe the warnings on the device).

ATEX – Zone 1 (0)
Marking: II 2 (1) G Ex [ia IIC Ga] ib IIC T6 Gb

When using the transmitter in Zone 1, it must be installed in a suitable housing with IP rating IP 20. The input for the supply isolator must be designed with ‘Ex ib’ type of protection.

When using the transmitter in Zone 0, make sure that impermissible electrostatic charging of the transmitter is avoided (observe the warnings on the device).

As the user, it is your responsibility to ensure that the sensor instrumentation meets the requirements of applicable explosion protection standards.

Encapsulation material used for the transmitter:
Polyurethane (PUR), WEVO PU-417

Note
When operating the transmitter in Zone 0 (EPL ‘Ga’), the compatibility of the device materials with the surrounding atmosphere must be ensured.
Use in potentially explosive atmospheres in accordance with ATEX and IECEx

Installation instructions

ATEX – Zone 1 (20)
Marking: II 2 G (1D) Ex [ia IIIC Da] ib IIC T6 Gb

Zone 20 or Zone 21
Ex area Zone 1 Safe area

A Sensor
B Transmitter in housing with IP rating IP 20
C Supply isolator [Ex ib]
D Interface for LCD indicator

Figure 4: Hookup in ATEX – Zone 1 (20)

When using the transmitter in Zone 1, it must be installed in a suitable housing with IP rating IP 20.
The input for the supply isolator must be designed with ‘Ex ib’ type of protection.
As the user, it is your responsibility to ensure that the sensor instrumentation meets the requirements of applicable explosion protection standards. The sensor can be installed in Zone 20 or Zone 21.

When using the transmitter in Zone 1, make sure that impermissible electrostatic charging of the temperature transmitter is avoided (observe the warnings on the device).

ATEX – Zone 2
Designation: II 3 G Ex nA IIC T1-T6 Gc

Ex area Zone 2 Safe area

A Sensor
B Transmitter in housing with IP rating IP 54
C Supply isolator
D Interface for LCD indicator

Figure 5: Hookup in ATEX – Zone 2

When using the transmitter in Zone 2, observe the following:

- The temperature transmitter must be installed in its own housing. This housing must at least meet IP rating IP 54 (in accordance with EN 60529) and other requirements for potentially explosive atmosphere (e.g. a certified housing).
- External measures must be made for the power supply circuit in order to prevent the rated voltage from being up-scaled by more than 40% in the event of transient disturbances.
- The electrical connections must only be opened or closed when there is no hazardous atmosphere.
- When using the transmitter in Zone 2, make sure that impermissible electrostatic charging of the temperature transmitter is prevented (observe the warnings on the device).
Commissioning

The commissioning and parameterization of the device may also be carried out in potentially explosive atmospheres using a handheld terminal that has been approved accordingly under consideration of an intrinsic safety installation check. Alternatively, an Ex modem can be connected to the circuit outside the potentially explosive atmosphere.

Operating instructions

Protection against electrostatic discharges

The plastic parts inside the device can store electrostatic charges. Make sure that no electrostatic charges can accumulate when handling the device.
3 Use in potentially explosive atmospheres in accordance with FM and CSA

Note

- Further information on the approval of devices for use in potentially explosive atmospheres can be found in the explosion protection test certificates (at www.abb.com/temperature).
- Depending on the design, a specific marking in accordance with FM or CSA applies.

Ex marking

Transmitter

FM Intrinsically Safe

<table>
<thead>
<tr>
<th>Model</th>
<th>Control Drawing</th>
<th>Class I, Div. 1 + 2, Groups A, B, C, D</th>
<th>Class I, Zone 0, Ex ia IIC T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-L1H</td>
<td>SAP_214829</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTH300-L1P</td>
<td>TTH300-L1P (IS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTH300-L1F</td>
<td>TTH300-L1F (IS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FM Non-Incendive

<table>
<thead>
<tr>
<th>Model</th>
<th>Control Drawing</th>
<th>Class I, Div. 2, Groups A, B, C, D</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-L2H</td>
<td>214831 (Non-Incendive)</td>
<td></td>
</tr>
<tr>
<td>TTH300-L2P</td>
<td>TTH300-L2P (NI_PS)</td>
<td></td>
</tr>
<tr>
<td>TTH300-L2F</td>
<td>TTH300-L2F (NI_PS)</td>
<td></td>
</tr>
</tbody>
</table>

CSA Intrinsically Safe

<table>
<thead>
<tr>
<th>Model</th>
<th>Control Drawing</th>
<th>Class I, Zone 0, Ex ia IIC T6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-R1H</td>
<td>SAP_214748</td>
<td></td>
</tr>
<tr>
<td>TTH300-R1P</td>
<td>TTH300-R1P (IS)</td>
<td></td>
</tr>
<tr>
<td>TTH300-R1F</td>
<td>TTH300-R1F (IS)</td>
<td></td>
</tr>
</tbody>
</table>

CSA Non-Incendive

<table>
<thead>
<tr>
<th>Model</th>
<th>Control Drawing</th>
<th>Class I, Div. 2, Groups A, B, C, D</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-R2H</td>
<td>SAP_214896 (Non-Incendive)</td>
<td></td>
</tr>
<tr>
<td>TTH300-R2P</td>
<td>TTH300-R2P (NI_PS)</td>
<td></td>
</tr>
<tr>
<td>TTH300-R2F</td>
<td>TTH300-R2F (NI_PS)</td>
<td></td>
</tr>
</tbody>
</table>

LCD indicator

FM Intrinsically Safe

<table>
<thead>
<tr>
<th>Model</th>
<th>Control Drawing</th>
<th>I.S. Class I Div 1 and Div 2, Group: A, B, C, D or I.S. Class I Zone 0 Ex ia IIC T*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-L1</td>
<td>SAP_214748</td>
<td>Ui / V_max = 9 V, I_i / I_max < 65.2 mA, P_i = 101 mW, C_i = 0.4 μF, L_i = 0</td>
</tr>
<tr>
<td>TTH300-L2</td>
<td>214831 (Non-Incendive)</td>
<td></td>
</tr>
<tr>
<td>TTH300-R1</td>
<td>SAP_214750</td>
<td></td>
</tr>
</tbody>
</table>

FM Non-Incendive

<table>
<thead>
<tr>
<th>Model</th>
<th>Control Drawing</th>
<th>I.S. Class I Div 2, Group: A, B, C, D oder Ex nL IIC T**, Class I Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-L1</td>
<td>SAP_214748</td>
<td>Ui / V_max = 9 V, I_i / I_max < 65.2 mA, P_i = 101 mW, C_i = 0.4 μF, L_i = 0</td>
</tr>
<tr>
<td>TTH300-L2</td>
<td>214831 (Non-Incendive)</td>
<td></td>
</tr>
<tr>
<td>TTH300-R1</td>
<td>SAP_214750</td>
<td></td>
</tr>
</tbody>
</table>

CSA Intrinsically Safe

<table>
<thead>
<tr>
<th>Model</th>
<th>Control Drawing</th>
<th>I.S. Class I Div 1 and Div 2; Group: A, B, C, D oder Ex nL IIC T*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-L1</td>
<td>SAP_214748</td>
<td>Ui / V_max = 9 V, I_i / I_max < 65.2 mA, P_i = 101 mW, C_i < 0.4 μF, L_i = 0</td>
</tr>
<tr>
<td>TTH300-L2</td>
<td>214831 (Non-Incendive)</td>
<td></td>
</tr>
<tr>
<td>TTH300-R1</td>
<td>SAP_214750</td>
<td></td>
</tr>
</tbody>
</table>

CSA Non-Incendive

<table>
<thead>
<tr>
<th>Model</th>
<th>Control Drawing</th>
<th>I.S. Class I Div 2, Group: A, B, C, D oder Ex nL IIC T**, Class I Zone 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTH300-L1</td>
<td>SAP_214748</td>
<td>Ui / V_max = 9 V, I_i / I_max < 65.2 mA, P_i = 101 mW, C_i < 0.4 μF, L_i = 0</td>
</tr>
<tr>
<td>TTH300-L2</td>
<td>214831 (Non-Incendive)</td>
<td></td>
</tr>
<tr>
<td>TTH300-R1</td>
<td>SAP_214750</td>
<td></td>
</tr>
</tbody>
</table>

* Temp. Ident: T6 T_amb 56 °C, T4 T_amb 85 °C
** Temp. Ident: T6 T_amb 60 °C, T4 T_amb 85 °C
Installation instructions

FM / CSA
The installation, commissioning, maintenance and repair of devices in areas with explosion hazard must only be carried out by appropriately trained personnel. The operator must strictly observe the applicable national regulations with regard to installation, function tests, repairs, and maintenance of electrical devices. (e.g. NEC, CEC).

IP protection rating of housing
The temperature transmitter and LCD indicator Type A and Type AS must be installed such that an IP rating of at least IP 20 is achieved in accordance with IEC 60529.

Electrical connections

Grounding
If, for functional reasons, the intrinsically safe circuit needs to be grounded by means of a connection to the potential equalization, it may only be grounded at one point.

Intrinsic safety installation check
If transmitters are operated in an intrinsically safe circuit, proof that the interconnection is intrinsically safe must be provided in accordance with IEC/EN 60079-14 as well as IEC/EN 60079-25. The supply isolators / DCS inputs must feature intrinsically safe input protection circuits in order to eliminate hazards (spark formation).
In order to provide proof of intrinsic safety, the electrical limit value must be used as the basis for the EC-type examination certificates for the equipment (devices); this includes the capacitance and inductance values of the cables.

Proof of intrinsic safety is said to have been provided if the following conditions are fulfilled when a comparison is carried out in relation to the limit values of the equipment:

<table>
<thead>
<tr>
<th>Transmitter (intrinsically safe equipment)</th>
<th>Supply isolator / DCS input (related equipment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(U_i \geq U_o)</td>
<td></td>
</tr>
<tr>
<td>(I_i \geq I_o)</td>
<td></td>
</tr>
<tr>
<td>(P_i \geq P_o)</td>
<td></td>
</tr>
<tr>
<td>(L_i + L_c) (cable) (\leq L_o)</td>
<td></td>
</tr>
<tr>
<td>(C_i + C_c) (cable) (\leq C_o)</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of Intrinsic safety installation check]

Figure 6: Intrinsic safety installation check

Installation in a potentially explosive atmosphere
Transmitters can be installed in all kinds of industrial sectors. Potentially explosive systems are divided into zones, meaning that a wide range of different instruments are also required. For this, pay attention to the country-specific guidelines and certificates!

Note
Ex relevant specifications must be taken from the EC-type examination certificates and other relevant certificates that apply in each case.

With transmitters for PROFIBUS PA and FOUNDATION Fieldbus H1 applications, FISCO interconnection methods can be used.
... 3 Use in potentially explosive atmospheres in accordance with FM and CSA

Commissioning

The commissioning and parameterization of the device may also be carried out in potentially explosive atmospheres using a handheld terminal that has been approved accordingly under consideration of an intrinsic safety installation check. Alternatively, an Ex modem can be connected to the circuit outside the potentially explosive atmosphere.

Operating instructions

Protection against electrostatic discharges

The plastic parts inside the device can store electrostatic charges. Make sure that no electrostatic charges can accumulate when handling the device.
4 Product identification

Name plate

Note

Products that are marked with the adjacent symbol may *not* be disposed of as unsorted municipal waste (domestic waste). They should be disposed of through separate collection of electric and electronic devices.

Note

The ambient temperature range provided on the name plate refers only to the transmitter itself and not to the sensor element used in the measuring inset.

For devices with PROFIBUS PA or FOUNDATION Fieldbus, the device-ID is also specified.

Figure 7: HART name plate (example)

![HART name plate example](image)

Figure 8: PROFIBUS PA name plate (example)

![PROFIBUS PA name plate example](image)

Figure 9: FOUNDATION Fieldbus name plate (example)

![FOUNDATION Fieldbus name plate example](image)

Figure 10: Additional plate for explosion-protected apparatus (example)

![Additional plate example](image)

Devices with an explosion-proof design are marked with the following special data plate.

1. Type designation in accordance with approval
2. Type designation
3. Temperature class of the explosion-proof design
4. CE-mark (EU conformity) and notified body for quality assurance
5. Ex-marking
6. IP rating explosion-proof design

Note

The name plates displayed are examples. The device identification plates affixed to the device can differ from this representation.
5 Transport and storage

Inspection
Check the devices immediately after unpacking for possible damage that may have occurred from improper transport. Details of any damage that has occurred in transit must be recorded on the transport documents. All claims for damages must be submitted to the shipper without delay and before installation.

Transporting the device
Observe the following instructions:
- Do not expose the device to humidity during transport. Pack the device accordingly.
- Pack the device so that it is protected against vibrations during transport, for example, by using air-cushioned packing.

Storing the device
Bear the following points in mind when storing devices:
- Store the device in its original packaging in a dry and dust-free location.
- Observe the permitted ambient conditions for transport and storage.
- Avoid storing the device in direct sunlight.
- In principle, the devices may be stored for an unlimited period. However, the warranty conditions stipulated in the order confirmation of the supplier apply.

Ambient conditions
The ambient conditions for the transport and storage of the device correspond to the ambient conditions for operation of the device.
Adhere to the device data sheet!

Returning devices
Use the original packaging or a secure transport container of an appropriate type if you need to return the device for repair or recalibration purposes. Fill out the return form (see Return form on page 33) and include this with the device.
In accordance with the EU Directive governing hazardous materials, the owner of hazardous waste is responsible for its disposal or must observe the following regulations for shipping purposes:
All devices delivered to ABB must be free from any hazardous materials (acids, alkalis, solvents, etc.).

Please contact Customer Center Service acc. to page 5 for nearest service location.
6 Installation

DANGER
Improper installation and commissioning of the device carries a risk of explosion.
For use in potentially explosive atmospheres, observe the information in Use in potentially explosive atmospheres in accordance with ATEX and IECEx on page 6 and Use in potentially explosive atmospheres in accordance with FM and CSA on page 12.

Ambient conditions

Ambient temperature
• Standard: −40 to 85 °C (−40 to 185 °F)
• Optional: −50 to 85 °C (−58 to 185 °F)
• Restricted range during operation with LCD-indicator: −20 to 70 °C (−4 to 158 °F)
• Restricted range during operation with explosion-proof design: see corresponding certificate

Transport-/Storage temperature
−50 to 85 °C (−58 to 185 °F)

Climate class in accordance with DIN EN 60654-1
Cx −40 to 85 °C (−40 to 185 °F) at 5 to 95 % relative air humidity

Max. permissible humidity in accordance with IEC 60068-2-30
100 % relative air humidity

Vibration resistance in accordance with IEC 60068-2-6
10 to 2000 Hz at 5 g, during operation and transport

Shock resistance in accordance with IEC 68-2-27
gn = 30, during operation and transport

IP rating
• Power supply circuit: IP 20
• Measurement current circuit: IP 00 or IP-rating of installation housing

Installation options

There are three options for installing the transmitter:
• Installation in the cover of the connection head (without springs)
• Direct installation on the measuring inset (with springs)
• Installation on a top-hat rail

Installation on the measuring inset

Note
Before mounting the transmitter on the measuring inset, remove the ceramic block on the measuring inset and the captive screws in the transmitter.

To install the transmitter on the measuring inset, cambered toothed discs and the corresponding mounting screws are required; these must be ordered as separate accessories:
Measuring inset installation set (2 fixing screws, 2 springs, 2 toothed discs) order number: 263750

1. Remove the ceramic block from the measuring inset ③.
2. Remove the screws from the transmitter ②. Remove the sleeves from the screw holes and then remove the screws.
3. Insert new fixing screws ① from above in the fixing holes of the transmitter.
4. Place the cambered toothed discs ④ with curve facing upward on the downward protruding screw thread.
5. Connect the power supply cable to the transmitter according to connection diagram.
6. Place the transmitter in the housing on the measuring inset and secure it.

Note
The toothed discs between measuring inset and transmitter are straightened when the screws are tightened. This enables them to grip the mounting screws.
... 6 Installation

... Installation options

Installation in the cover of the connection head

1. Release the screw plug 3 for the cover of the connection head.
2. Open the cover 1.
3. Secure the transmitter 2 at the proper position on the cover, using the captive screws found in the transmitter.

Figure 12: Installation example

Installing / removing the optional LCD indicator

The transmitter can be optionally equipped with an LCD indicator.

NOTICE

Damage to the LCD indicator caused by incorrect installation / disassembly

The flat ribbon cable of the LCD indicator can become damaged due to incorrect installation / disassembly.

- Make sure the flat ribbon cable does not get twisted or torn when installing / disassembling or rotating the LCD indicator.

Disassembling the LCD indicator

The indicator must be removed to enable connection of the sensor line or supply line:

1. Carefully remove the LCD indicator from the transmitter inset. The LCD indicator is held firmly in place, meaning that you may have to use the tip of a screwdriver to pry it loose.
2. Take care to avoid any mechanical damage.

Installing the LCD indicator

No tools are required to install the LCD indicator.

1. Carefully insert the guide pins for the LCD indicator in the guide holes of the transmitter inset. Make sure the black connection socket fits into the terminal on the transmitter inset.
2. Then press the LCD indicator in as far as it will go. Make sure that the guide pins and connection socket are fully inserted.

Rotating the LCD indicator

The position of the LCD indicator can be adjusted to suit the mounting position of the transmitter, to ensure that the display is as clearly legible as possible.

There are twelve positions at increments of 30°.

1. Carefully turn the LCD indicator to the left to release it from its holder.
2. Carefully turn the LCD indicator until the required position is reached.
3. Insert the LCD indicator into its holder again and turn it to the right into the required position until it snaps into place.

Figure 13: Installation example

When mounted on a top-hat rail, the transmitter can be placed at a distance from the sensor in a housing that is suitable for the ambient conditions.
7 Electrical connections

Safety instructions

DANGER
Improper installation and commissioning of the device carries a risk of explosion.
For use in potentially explosive atmospheres, observe the information in Use in potentially explosive atmospheres in accordance with ATEX and IECEx on page 6 and Use in potentially explosive atmospheres in accordance with FM and CSA on page 12!

Observe the following instructions:
- The electrical connection may only be established by authorized specialist personnel and in accordance with the connection diagrams.
- The relevant regulations must be observed during electric installation.
- The electrical connection information in the instruction must be observed; otherwise, the electric IP rating may be adversely affected.
- Safe isolation of electric circuits which are dangerous if touched is ensured only if the connected devices satisfy the requirements of DIN EN 61140 (VDE 0140 Part 1) (basic requirements for safe isolation).
- To ensure safe isolation, install connection leads separate from electric circuits which are dangerous if touched, or implement additional insulation measures.
- Connections must only be established in a dead-voltage state!
- The transmitter has no switch-off elements. Therefore, overcurrent protective devices, lightning protection, or voltage disconnection options must be provided with the installation.
- The power supply and signal are routed in the same conductor and should be implemented as a SELV or PELV circuit in accordance with the relevant standard (standard version). For the explosion-proof design, the guidelines in accordance with the Ex standard must be adhered to.
- You need to check that the available power supply corresponds to the information on the name plate.

Note
The signal cable wires must be provided with wire end sleeves. The slotted screws of the connection terminals are tightened with a size 1 screwdriver (3.5 or 4 mm).

Protection of the transmitter from damage caused by highly energetic electric interferences

The transmitter has no switch-off elements. Therefore, overcurrent protective devices, lightning protection, or voltage disconnection options must be provided at the plant. For the shielding and grounding of the device and the connection cable, observe Pin assignment on page 21.

Notice
Temperature transmitter damage!
Overvoltage, overcurrent and high-frequency interference signals on the supply connection as well as sensor connection side of the device can damage the temperature transmitter.

Figure 14: Warning signs

A Do not weld
B No high-frequency interference signals / switching operations of large consumers
C No overvoltage due to lightning

Overcurrent and overvoltage can occur through for example welding operations, switching operations of large electric consumers, or lightning in the vicinity of the transmitter, sensor, as well as connector cables. Temperature transmitters are sensitive devices on the sensor side as well. Long connector cables to the sensor can encourage damaging interference. This can already happen if temperature sensors are connected to the transmitter during installation, but are not yet integrated into the system (no connection to the supply isolator / DCS)!
... 7 Electrical connections

... Protection of the transmitter from damage caused by highly energetic electric interferences

Suited protective measures
The following items should be observed to protect the transmitter from sensor-side damage:

- In the vicinity of the transmitter, sensor and sensor connector cable in case of a connected sensor, high-energy overvoltage, overcurrent and high-frequency interference signals due to welding operations, lightning, circuit breakers or large consumers of electricity among others should be absolutely avoided.

- The connection cable of the sensor on the transmitter should be disconnected when performing welding work in the vicinity of the installed transmitter, sensor, as well as supply lines from the sensor to the transmitter.

- This correspondingly also applies to the supply side, if there is a connection there.

Conductor material

NOTICE

Danger of wire break!
The use of stiff cable material can lead to wire breaks in the cables.

- Only use cable material with stranded wires.

Supply voltage
Power supply cable:
Flexible standard cable material

Maximum wire cross section:
1.5 mm² (AWG 16)

Sensor connection
Depending on the type of sensor, a variety of cable materials can be used for connections.
The integrated internal reference junction makes it possible to directly connect thermal compensating cables.
Pin assignment

Resistance thermometers (RTD) / resistors (potentiometer)

![Diagram of pin assignment]

- **A**: Potentiometer, four-wire circuit
- **B**: Potentiometer, three-wire circuit
- **C**: Potentiometer, two-wire circuit
- **D**: 2 × RTD, three-wire circuit*
- **E**: 2 × RTD, two-wire circuit*
- **F**: RTD, four-wire circuit
- **G**: RTD, three-wire circuit
- **H**: RTD, two-wire circuit
- **I**: Sensor 1
- **J**: Sensor 2*
- **K**: Interface for LCD indicators and service
- **1** – 6: Sensor connection (of measuring inset)
- **7** – 9: 4 to 20 mA HART®, PROFIBUS PA®, FOUNDATION Fieldbus®

* Sensor backup / sensor redundancy, sensor drift monitoring, mean measurement, or differential measurement

Figure 15: Terminal assignment resistance thermometers (RTD) / resistors (potentiometer)
... 7 Electrical connections

... Pin assignment

Thermocouples / voltages and resistance thermometer (RTD) / thermocouple combinations

A 2 × voltage measurement*
B 1 × voltage measurement
C 2 × thermocouple*
D 1 × thermocouple
E 1 × RTD, four-wire circuit and 1 x thermocouple*
F 1 × RTD, three-wire circuit and 1 x thermocouple*

G 1 × RTD, two-wire circuit and 1 x thermocouple*
H Sensor 1
I Sensor 2“)
J Interface for LCD indicators and service
1 – 6 Sensor connection (of measuring inset)
7 – 9 4 to 20 mA HART®, PROFIBUS PA®, FOUNDATION Fieldbus®

* Sensor backup / sensor redundancy, sensor drift monitoring, mean measurement, or differential measurement

Figure 16 Terminal assignment thermocouples / voltages and resistance thermometer (RTD) / thermocouple combinations
Electrical data for inputs and outputs

Input - resistance thermometer / resistances

Resistance thermometer
- Pt100 in accordance with IEC 60751, JIS C1604, MIL-T-24388
- Ni in accordance with DIN 43760
- Cu in accordance with recommendation OIML R 84

Resistance measurement
- 0 to 500 Ω
- 0 to 5000 Ω

Sensor connection type
Two-, three-, four-wire circuit

Connection lead
- Maximum sensor line resistance per line 50 Ω in accordance with NE 89
- Three-wire circuit:
 Symmetrical sensor line resistances
- Two-wire circuit:
 Compensation up to 100 Ω total lead resistance

Measurement current
< 300 μA

Sensor short circuit
< 5 Ω (for resistance thermometer)

Sensor wire break
- Measuring range: 0 to 500 Ω > 0.6 to 10 kΩ
- Measuring range: 0 to 5 Ω > 5.3 to 10 kΩ

Corrosion detection in accordance with NE 89
- Three-wire resistance measurement > 50 Ω
- Four-wire resistance measurement > 50 Ω

Sensor error signaling
- Resistance thermometer:
 Sensor short circuit and sensor wire break
- Linear resistance measurement:
 Sensor wire break

Input - thermocouples / voltages

Types
- B, E, J, K, N, R, S, T in accordance with IEC 60584
- U, L in accordance with DIN 43710
- C, D in accordance with ASTM E-988

Voltages
- −125 to 125 mV
- −125 to 1100 mV

Connection lead
- Maximum sensor line resistance:
 per line 1.5 kΩ, total 3 kΩ

Sensor wire break monitoring in accordance with NE 89
- Pulsed with 1 μA outside measurement interval
- Thermocouple measurement 5.3 to 10 kΩ
- Voltage measurement 5.3 to 10 kΩ

Input resistance
> 10 MΩ

Internal reference junction Pt1000, IEC 60751 Cl. B
(no additional jumpers necessary)

Sensor error signaling
- Thermocouple:
 Sensor wire break
- Linear voltage measurement:
 Sensor wire break

Functionality input

Freestyle characteristic / 32-points-sampling point table
- Resistance measurement up to a maximum of 5 kΩ
- Voltages up to maximum 1.1 V

Sensor error adjustment
- Through Callendar-Van Dusen coefficients
- Through value table, 32 support points
- Through single-point adjustment (offset adjustment)
- Through two-point adjustment

Input functionality
- 1 Sensor
- 2 Sensors:
 mean measurement,
 differential measurement,
 sensor redundancy,
 Sensor drift monitoring
... 7 Electrical connections

... Electrical data for inputs and outputs

Output – HART®

Note
The HART® protocol is an unsecured protocol, as such the intended application should be assessed to ensure that these protocols are suitable before implementation.

Transmission characteristics
- Temperature linear
- Resistance linear
- Voltage linear

Output signal
- Configurable 4 to 20 mA (standard)
- Configurable 20 to 4 mA
 (Dynamic range: 3.8 to 20.5 mA in accordance with NE 43)

Simulation mode
3.5 to 23.6 mA

Induced current consumption
< 3.5 mA

Maximum output current
23.6 mA

Configurable error current signal
- Overrange 22 mA (20.0 to 23.6 mA)
- Underrange 3.6 mA (3.5 to 4.0 mA)

Output – PROFIBUS PA®

Note
The PROFIBUS PA® protocol is an unsecured protocol, as such the intended application should be assessed to ensure that these protocols are suitable before implementation.

Output signal
- PROFIBUS – MBP (IEC 61158-2)
- Baud rate 31.25 kBit/s
- PA-Profile 3.01
- FISCO compliant (IEC 60079-27)
- ID-Number: 0x3470 [0x9700]

Error current signal
- FDE (Fault Disconnection Electronic)

Block structure
- Physical Block
- Transducer Block 1 – Temperature
- Transducer Block 2 – HMI (LCD indicator)
- Transducer Block 3 – enhanced diagnosis
- Analog Input 1 – Primary Value (Calculated Value*)
- Analog Input 2 – SECONDARY VALUE_1 (Sensor 1)
- Analog Input 3 – SECONDARY VALUE_2 (Sensor 2)
- Analog Input 4 – SECONDARY VALUE_3 (reference junction temperature)
- Analog Output – optional HMI display
 (Transducer Block 2)
- Discrete Input 1 – extended diagnosis 1
 (Transducer Block 3)
- Discrete Input 2 – extended diagnosis 2
 (Transducer Block 3)
* Sensor 1, Sensor 2 or difference or mean
Output – FOUNDATION Fieldbus®

Note
The FOUNDATION Fieldbus® protocol is an unsecured protocol, as such the intended application should be assessed to ensure that these protocols are suitable before implementation.

Output signal
- FOUNDATION Fieldbus H1 (IEC 611582-2)
- Baud rate 31.25 kBit/s, ITK 5.x
- FISCO compliant (IEC 60079-27)
- Device ID: 000320001F...

Error current signal
- FDE (Fault Disconnection Electronic)

Block structure*
- Resource Block
- Transducer Block 1 – Temperature
- Transducer Block 2 – HMI (LCD indicator)
- Transducer Block 3 – enhanced diagnosis
- Analog Input 1 – PRIMARY_VALUE_1 (Sensor 1)
- Analog Input 2 – PRIMARY_VALUE_2 (Sensor 2)
- Analog Input 3 – PRIMARY_VALUE_3 (Calculated Value**)
- Analog Input 4 – SECONDARY_VALUE (reference junction temperature)
- Analog Output – optional HMI display (Transducer Block 2)
- Discrete Input 1 – extended diagnosis 1 (Transducer Block 3)
- Discrete Input 2 – extended diagnosis 2 (Transducer Block 3)
- PID – PID controller

LAS (Link Active Scheduler) link master functionality

* For the block description, block index, execution times, and block class, refer to the interface description
** Sensor 1, Sensor 2 or difference or mean

Power supply
Two-wire technology, polarity safe; power supply lines = signal lines

Note
Following calculations apply for standard applications. This should be taken into consideration when working with a higher maximum current.

Power supply – HART®

Input terminal voltage
Non-Ex application:
US = 11 to 42 V DC
Ex applications:
US = 11 to 30 V DC

Maximum permissible residual ripple for input terminal voltage
During communication this is in accordance with the HART FSK ‘Physical Layer’ specification.

Undervoltage detection on the transmitter
If the terminal voltage on the transmitter down-scales a value of 10 V, this may lead to an output current of Ia ≤ 3.6 mA.

Maximum load
\[R_B = \frac{(\text{supply voltage} - 11 \text{ V})}{0.022 \text{ A}} \]

Maximum power
\[P = U_S \times 0.022 \text{ A} \]
E.G. US = 24 V → Pmax = 0.528 W

Figure 17: Maximum load depending on input terminal voltage

A TTH300
B TTH300 in Ex-applications
C HART communication resistance
7 Electrical connections

Electrical data for inputs and outputs

Voltage drop on the signal line
When connecting the devices, note the voltage drop on the signal line. The minimum supply voltage on the transmitter must not be undershot.

![Diagram](image)

Figure 18: HART load resistance

- $U_{1\text{min}}$: Minimum supply voltage on the transmitter
- $U_{2\text{min}}$: Minimum supply voltage of the supply isolator / DCS input
- R: Line resistance between transmitter and supply isolator
- R_{250}: Resistance (250 Ω) for HART functionality

Standard application with 4 to 20 mA functionality
When connecting these components, observe the following condition:

$$U_{1\text{min}} \leq U_{2\text{min}} - 22 \text{ mA} \times R$$

Standard application with HART functionality
Adding resistance R_{250} increases the minimum supply voltage

$$U_{2\text{min}}: U_{1\text{min}} \leq U_{2\text{min}} - 22 \text{ mA} \times (R + R_{250})$$

For HART functionality, use supply isolators or DCS input cards with a HART mark. If this is not possible, a resistance of ≥ 250 Ω (< 1100 Ω) must be added to the interconnection.

The signal line can be operated with / without grounding. When establishing a ground connection (minus side), make sure that only one side of the terminal is connected to the equipotential bonding.

Unless the profile HART protocol Rev. 7 is specifically selected during the ordering process, the device normally supports the profile HART protocol Rev. 5 in the delivery status. The user can later change at any time to the HART Protocol Rev. 7 profile via a miniature switch. For additional information, see Hardware settings on page 30.

Power supply – PROFIBUS / FOUNDATION Fieldbus

Input terminal voltage
Non-Ex application:

- $U_S = 9$ to 32 V DC

Ex-applications with:

- $U_S = 9$ to 17 V DC (FISCO)
- $U_S = 9$ to 24 V DC (Fieldbus Entity model I.S.)

Current consumption:

- ≤ 12 mA

Standard application with PROFIBUS PA and FOUNDATION Fieldbus H1 functionality
During hookup, the following condition should be complied with:

$$U_{1\text{min}} \leq U_{2\text{min}} - 12 \text{ mA} \times R$$
8 MID Certification

TTH300 with MID Certification

The temperature transmitter TTH300 is certified by an MID Parts Certificate in accordance with the Measuring Instruments Directive 2014/32/EU (MID) and the standard WELMEC 7.2. The device with the appropriate configuration is therefore approved for ‘Custody Transfer’-measurements (fiscal metering). The MID certification emphasizes the high accuracy, reliability and durability of the TTH300.

Note
This chapter provides basic information on the MID-certified transmitter TTH300. Before commissioning the device, full information should be consulted in the supplied MID documents (Parts Certificate and associated ‘Description’). Any generally applicable statements on the transmitter TTH300, especially pertaining to explosion protection and device safety, remain unaffected.

General
Devices with MID certification have their own EU declaration of conformity. In addition to the declaration, the ‘Parts Certificate’ and the associated ‘Description’ are enclosed with the device. It is compulsory and imperative that the described areas of application, requirements and restrictions are complied with for the intended use of the device!

The requirements of explosion protection and functional safety (SIL) remain unaffected by the MID certification.

The number of the partial certificate (TC11002) of the notified body NMI Certin B.V. and the checksum (0x46c9) of the certified SW revision 01.03.00 are printed on the name plate of the device.

Areas of application, conditions and requirements

The temperature transmitter TTH300 with MID certification for custody transfer measurements is especially suited for measurement and control systems in the oil and gas industry. In addition to gas, any liquids except for water are permitted for measurement.

The MID certification refers to a special configuration of the transmitter. This must not be modified! An extract of the conditions and requirements stated in the certificate follows below:

- Communication protocol: HART 5, HART 7
- HW revision: 1.07
- SW revision: 01.03.00 with checksum 0x46c9
- The checksum of the software (firmware) is printed on the name plate of the device
- On sensor Pt100 in a four-wire circuit
- Permissible measuring range: −50 to 150 °C (−58 to 302 °F)
- Ambient temperature range without LCD indicator: −40 to 85 °C (−40 to 185 °F)

Note
- Based on the MID certificate, an operation of the TTH300 with the connected LCD indicator is not permitted.
- The MID certification can generally be combined with all certifications of explosion protection. The ambient temperature and measuring range named in the corresponding explosion protection certificate, however, limit the ranges permitted in the MID certificate.

Installation and Operation

The following should be observed in particular during installation and operation of the device:

- Protection against overwrite:
 Local write protection (DIP switch 1) should be activated after installation and configuration.
- The housing which encloses the transmitter must be closed and secured against opening using a seal.
 If the transmitter is integrated in the connection head of a temperature sensor, – e.g. a SensyTemp TSP100 (TSP1x1) or TSP300 (TSP3x1) from ABB – the seal should be applied over the gap between the top and the base of the head.
9 Commissioning

General
In case of corresponding order the transmitter is ready for operation after mounting and installation of the connections. The parameters are set at the factory.

If not exclusively selected while ordering the profile HART 7, the transmitter is delivered present with the profile HART 5. The profile can be always switched to HART 7 via a miniature switch, see Hardware settings on page 30.

The connected lines must be checked for firm seating. Only firmly seated lines ensure full functionality.

Checks prior to commissioning
The following points must be checked before commissioning the device:

- Correct wiring in accordance with Electrical connections on page 19.
- The ambient conditions must correspond to the information given on the name plate and in the data sheet.

Communication
HART® Communication

Note
The HART® protocol is an unsecured protocol, as such the intended application should be assessed to ensure that these protocols are suitable before implementation.

Communication with the transmitter takes place using the HART protocol. The communication signal is modulated onto both wires of the signal line in accordance with the HART FSK ‘Physical Layer’ specification.

The HART modem is connected at the signal line of the current output via which power is also supplied via the power supply unit.

The device is listed with the FieldComm Group.

![Diagram](image)

<table>
<thead>
<tr>
<th>Manufacturer ID</th>
<th>0x1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device ID</td>
<td>HART 5: 0x000B, HART 7: 0x1A0B</td>
</tr>
<tr>
<td>Profile</td>
<td>HART 5.1 (can be switched to HART 7)</td>
</tr>
<tr>
<td>Configuration</td>
<td>On device using LCD indicator DTM, EDD, FDI (FIM)</td>
</tr>
<tr>
<td>Transmission signal</td>
<td>BELL Standard 202</td>
</tr>
</tbody>
</table>

Operating modes
- Point-to-point communication mode – standard (general address 0)
- Multidrop mode (addressing 1 to 15)
- Burst Mode

Configuration options / tools
Driver-independent:
- HMI LCD Indicator with configuration function

Driver-dependent:
- Device management / Asset management tools
- FDT technology – via TTX300-DTM driver (Asset Vision Basic / DAT200)
- EDD – via TTX300 EDD driver (Handheld terminal, Field Information Manager / FIM)
- FDI technology – via TTX300 package (Field Information Manager / FIM)

Diagnosis notice
- Overrange- / underrange in accordance with NE 43
- HART diagnosis
PROFIBUS® Communication

Note
The PROFIBUS PA® protocol is an unsecured protocol, as such the intended application should be assessed to ensure that these protocols are suitable before implementation.

The interface complies with Profile 3.01 (Standard PROFIBUS®, EN 50170, DIN 1924 [PRO91]).

<table>
<thead>
<tr>
<th>Manufacturer ID</th>
<th>0x1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID number</td>
<td>0x3470 (0x9700)</td>
</tr>
<tr>
<td>Profile</td>
<td>PA 3.01</td>
</tr>
<tr>
<td>Configuration</td>
<td>On device using LCD indicator</td>
</tr>
<tr>
<td>Transmission signal</td>
<td>IEC 61158-2</td>
</tr>
</tbody>
</table>

Voltage / current consumption
- Mean current consumption: 12 mA.
 In the event of an error, the FDE function (= Fault Disconnection Electronic) integrated in the device makes sure that the current consumption cannot exceed a maximum of 20 mA.

FOUNDATION Fieldbus® Communication

Note
The FOUNDATION Fieldbus® protocol is an unsecured protocol, as such the intended application should be assessed to ensure that these protocols are suitable before implementation.

<table>
<thead>
<tr>
<th>Device ID</th>
<th>000320001F...</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITK</td>
<td>5.x</td>
</tr>
<tr>
<td>Configuration</td>
<td>On device using LCD indicator</td>
</tr>
<tr>
<td>Transmission signal</td>
<td>IEC 61158-2</td>
</tr>
</tbody>
</table>

Voltage / current consumption
- Mean current consumption: 12 mA.
 In the event of an error, the FDE function (= Fault Disconnection Electronic) integrated in the device makes sure that the current consumption cannot exceed a maximum of 20 mA.
... 9 Commissioning

Basic Setup

Note
Transmitter communication and configuration via HART, PROFIBUS PA, and FOUNDATION Fieldbus H1 are described in separate documentation (‘Interface description’).

The following configuration types are available for the transmitter:

- With DTM: Configuration can be performed within an FDT frame application that is approved for use with the DTM.
- With EDD: Configuration can be performed within an EDD frame application that is approved for use with the EDD.
- With FDI-Package (FIM): Configuration is possible within an FDI frame applications (Field Information Manager / FIM) for which the FDI packages are released.
- With LCD indicator Type A with operating buttons Commissioning via the LCD indicator does not require any tools to be connected to the device and is therefore the simplest way of configuring the TTH300.

The general operation and menus of the LCD indicator are described in Menu navigation on page 31.

Note
Unlike configuration using the DTM, EDD or FDI-Package (FIM) the functionality of the transmitter can only be changed to a limited extent with the LCD indicator.

10 Operation

Safety instructions

If there is a chance that safe operation is no longer possible, take the device out of operation and secure it against unintended startup.

Hardware settings

Figure 23: DIP switch on the transmitter

The transmitter has two DIP switches that can be accessed via a hinged cover.

- Switch 1 activates the hardware write protection.
- Switch 2 supports the FOUNDATION Fieldbus requirement for a hardware enable for simulation in accordance with ITK.

For transmitters that support HART 7, switch 2 allows the desired HART version to be set (HART 5 or HART 7).

<table>
<thead>
<tr>
<th>DIP switch</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Local write protection</td>
</tr>
<tr>
<td></td>
<td>Off: Local write protection deactivated</td>
</tr>
<tr>
<td></td>
<td>On: Local write protection activated</td>
</tr>
<tr>
<td>2</td>
<td>Enabling the simulation (only with FOUNDATION Fieldbus)</td>
</tr>
<tr>
<td></td>
<td>Off: Simulation blocked</td>
</tr>
<tr>
<td></td>
<td>On: Simulation enabled</td>
</tr>
<tr>
<td></td>
<td>Selecting the HART version (only with HART protocol)</td>
</tr>
<tr>
<td></td>
<td>Off: HART 5</td>
</tr>
<tr>
<td></td>
<td>On: HART 7</td>
</tr>
</tbody>
</table>

Note
- Factory settings: Both switches ‘OFF’. Local write protection deactivated and HART 5, unless explicitly ordered HART 7 (HART version) or simulation locked (FOUNDATION Fieldbus).
- With PROFIBUS PA devices, Switch 2 must always be in the ‘OFF’ position.
Menu navigation

You can use the or operating buttons to browse through the menu or select a number or character within a parameter value. Different functions can be assigned to the and operating buttons. The function that is currently assigned to them is shown on the LCD display.

Control button functions

<table>
<thead>
<tr>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit</td>
</tr>
<tr>
<td>Back</td>
</tr>
<tr>
<td>Cancel</td>
</tr>
<tr>
<td>Next</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select</td>
</tr>
<tr>
<td>Edit</td>
</tr>
<tr>
<td>OK</td>
</tr>
</tbody>
</table>

Note
For detailed information on the parameterization of the device, consult the associated operating instructions.
11 Maintenance

Safety instructions

⚠️ CAUTION

Risk of burns due to hot measuring media
The device surface temperature may exceed 70 °C (158 °F), depending on the measuring medium temperature!
- Before starting work on the device, make sure that it has cooled sufficiently.

If transmitters are used as intended under normal operating conditions, no maintenance is required.

Note
For detailed information on the maintenance of the device, consult the associated operating instructions (OI)!

12 Recycling and disposal

Note
Products that are marked with the adjacent symbol may not be disposed of as unsorted municipal waste (domestic waste).
They should be disposed of through separate collection of electric and electronic devices.

This product and its packaging are manufactured from materials that can be recycled by specialist recycling companies.

Bear the following points in mind when disposing of them:
- As of 8/15/2018, this product will be under the open scope of the WEEE Directive 2012/19/EU and relevant national laws (for example, ElektroG - Electrical Equipment Act - in Germany).
- The product must be supplied to a specialist recycling company. Do not use municipal waste collection points. These may be used for privately used products only in accordance with WEEE Directive 2012/19/EU.
- If there is no possibility to dispose of the old equipment properly, our Service can take care of its pick-up and disposal for a fee.

13 Specification

Note
The device data sheet is available in the ABB download area at www.abb.com/temperature.

14 Additional documents

Note
Declarations of conformity of the device are available in the download area of ABB at www.abb.com/temperature. In addition, these are also included with the device in case of ATEX-certified devices.
15 Appendix

Return form

Statement on the contamination of devices and components

Repair and/or maintenance work will only be performed on devices and components if a statement form has been completed and submitted. Otherwise, the device/component returned may be rejected. This statement form may only be completed and signed by authorized specialist personnel employed by the operator.

Customer details:
Company:
Address:
Contact person:
Telephone:
Fax:
Email:

Device details:
Type:
Serial no.:
Reason for the return/description of the defect:

Was this device used in conjunction with substances which pose a threat or risk to health?

☐ Yes ☐ No
If yes, which type of contamination (please place an X next to the applicable items):

☐ biological ☐ corrosive / irritating ☐ combustible (highly / extremely combustible)
☐ toxic ☐ explosive ☐ other toxic substances
☐ radioactive

Which substances have come into contact with the device?
1.
2.
3.

We hereby state that the devices/components shipped have been cleaned and are free from any dangerous or poisonous substances.

Town/city, date
Signature and company stamp
Trademarks

HART is a registered trademark of FieldComm Group, Austin, Texas, USA

PROFIBUS and PROFIBUS PA are registered trademarks of PROFIBUS & PROFINET International (PI)

FOUNDATION Fieldbus is a registered trademark of FieldComm Group, Austin, Texas, USA.
Notes
Introduction

The TTH300 is available with the HART, PROFIBUS PA and FOUNDATION Fieldbus communications protocols. The TTH300 has global approvals for explosion protection up to Zone 2 as well as Zone 1. It is IECEx approved up to 1000 V. The TTH300 is an intelligent temperature transmitter for all communications protocols. Redundancy thanks to two inputs.

Additional Information

Additional documentation on TTH300 is available for download free of charge at www.abb.com/temperature. Alternatively simply scan this code:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.