HMC operating mechanisms
Designed for reliable switching
Introduction
HMC operating mechanisms for HV circuit-breakers
The successors of the HMB family

Overview:
- Applications
- Types of operating mechanisms
- Innovation and reliability
- Modular design
- Maintenance
- Adaptation
- Working principle
Applications

General examples – HMB and HMC

1 | Gas-Insulated Switchgear (GIS)
 52-1200 kV

2 | Dead Tank Breaker (DTB)
 52-800 kV

3 | Generator Circuit Breaker (GCB)
 Up to 300 kA

4 | Air Insulated Switchgear (AIS)
 52-800 kV
HMC is suitable

- for high-voltage circuit-breakers
- LTB
- DTB
- Hybrid
- GIS
- for generator circuit-breakers (GCB)
Types of operating mechanisms
HMC-1, HMC-2 and HMC-4

HMC-1 and HMC-2
- stored energy
 max. 2.2 kJ (open operation)
- suitable for circuit breakers
 up to 245 kV

HMC-4
- stored energy
 max. 5.1 kJ (open operation)
- suitable for circuit breakers
 from 245 up to 420 kV
Types of operating mechanisms

HMC versus ABB competitors

<table>
<thead>
<tr>
<th></th>
<th>Pneumatic Operating Mechanism</th>
<th>Hydraulic Operating Mechanism</th>
<th>Spring Operating Mechanism</th>
<th>HMC Operating Mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Number of Moving Parts</td>
<td>Minimum number of moving parts</td>
<td>Minimum number of moving parts</td>
<td>Higher number of moving parts</td>
<td>Minimum number of moving parts</td>
</tr>
<tr>
<td>Extensive Size</td>
<td>Extensive size because of gas tank</td>
<td>Extensive size because of gas tank</td>
<td>Medium size due to mechanical gear</td>
<td>Very compact due to hydraulic gear</td>
</tr>
<tr>
<td>Complex Adaptation</td>
<td>Complex adaptation to breaker</td>
<td>Simple adaptation to breaker</td>
<td>Simple adaptation to breaker</td>
<td>Very simple adaptation to breaker</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Intensive maintenance</td>
<td>Minimum maintenance</td>
<td>Minimum maintenance</td>
<td>No maintenance</td>
</tr>
</tbody>
</table>
Innovation and reliability

Experience

- Experience based on
 - 30 years of design and manufacturing
 - more than 110,000 delivered units
 - more than 100 different applications

- Experience consequently used for
 - innovative solutions
 - new, patented technologies

- Resulting in the HMC family
Modular Design
HMC-4

- Working module
- Monitoring module
- Control module
- Charging module
- Adapter with auxiliary switches
- Storage module

Modules are easily accessible around the central working cylinder.
Modular design HMC-4
360° view

click on picture to start animation
Modular design HMC-4
Working module (cylinder)

- Cylinder made from ferrous materials for longest life-time
- Adjustable speed and integrated damping
- Close-position interlocking pin with damage-free design
Modular design HMC-4
Storage module (energy)

- consisting of storage blocks and helical spring assembly
- spring assembly designed and tested for one million cycles
- protected sealing system for highest reliability
Modular design HMC-4
Charging module (pump)

- gearless pump unit for reliability and low noise
- high pressure filtering
- plug-in motor for easy exchange
Modular design HMC-4
Control module (valves)

- new robust valve technology
- slip-on coils – not interfering with the hydraulic system, for easy exchange
Modular design HMC-4
Monitoring module (spring travel switch)

- simplified robust design for longer life-time
- 9 poles – selectable for N/O or N/C
- pressure relief valve
Modular design HMC-4
Adaptor (interface)

- same mechanical interface as for HMB
- 2 auxiliary switches
Working principle HMC-4
Open operation
HMC-2
HMC-1 and HMC-2

Scope of delivery also includes adapter to circuit-breaker and auxiliary switch assembly.

HMC-1 and -2 differ only in number of springs.
Modular design
HMC-1 and HMC-2

- Working module
- Monitoring module
- Control module
- Charging module
- Adapter with auxiliary switches
- Storage module

Advantages
- easily accessible modules
- clear functional separation

Benefits of the modules features:
see section for HMC-4
HMC-1 and HMC-2 – one-fits-all
3 possible orientations with 1 design

<table>
<thead>
<tr>
<th>horizontal – min. width</th>
<th>horizontal – min. height</th>
<th>vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adaptors: O-Type and L-Type
HMC-1 and HMC-2

<table>
<thead>
<tr>
<th></th>
<th>O-type</th>
<th>L-type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• designed for coupling to breakers using linear feedthrough</td>
<td>• designed for coupling to breakers using rotary feedthrough</td>
</tr>
<tr>
<td></td>
<td>• lateral force support included (for use in combination with rotary</td>
<td>• lateral force support included</td>
</tr>
<tr>
<td></td>
<td>feedthrough)</td>
<td>• designed and tested for 15 g</td>
</tr>
<tr>
<td></td>
<td>• designed and tested for 15 g</td>
<td></td>
</tr>
</tbody>
</table>
Technical data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>number of springs</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>piston rod diameter</td>
<td>16 mm</td>
<td>16 mm</td>
<td>16 mm</td>
<td>16 mm</td>
<td>18 mm</td>
<td>22 mm</td>
<td>18 mm</td>
<td>22 mm</td>
</tr>
<tr>
<td>stroke</td>
<td>90 mm</td>
<td>135 mm</td>
<td>90 mm</td>
<td>135 mm</td>
<td>205 mm</td>
<td>205 mm</td>
<td>230 mm</td>
<td>230 mm</td>
</tr>
<tr>
<td>stored energy open</td>
<td>0.9 kJ</td>
<td>1.2 kJ</td>
<td>1.6 kJ</td>
<td>2.2 kJ</td>
<td>4.7 kJ</td>
<td>4.0 kJ</td>
<td>5.2 kJ</td>
<td>4.2 kJ</td>
</tr>
<tr>
<td>stored energy close</td>
<td>0.4 kJ</td>
<td>0.6 kJ</td>
<td>0.7 kJ</td>
<td>1.1 kJ</td>
<td>2.1 kJ</td>
<td>3.2 kJ</td>
<td>2.3 kJ</td>
<td>3.3 kJ</td>
</tr>
<tr>
<td>operating sequence</td>
<td>O-CO - 15 s - CO</td>
<td></td>
<td></td>
<td></td>
<td>O-CO - 60 s - CO / CO - 15 s - CO / O-CO - 15 s - CO (optional)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mechanical endurance</td>
<td>M2 acc. to IEC 62271-100</td>
<td></td>
<td></td>
<td></td>
<td>M2 acc. to IEC 62271-100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>expansion stages</td>
<td>EP</td>
<td></td>
<td></td>
<td></td>
<td>EP, CM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dimensions Ø x h (EP)</td>
<td>350 mm x 580 mm x 770 mm</td>
<td></td>
<td></td>
<td></td>
<td>555 mm x 847 mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weight (EP)</td>
<td>approx. 195 kg</td>
<td></td>
<td></td>
<td></td>
<td>approx. 350 kg</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Basic technical data for the variants of HMC. Other data, defining secondary technology, are customer specific. We reserve the right to make technical changes without prior notice.
Maintenance
Definition and schedule

Levels of maintenance

<table>
<thead>
<tr>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level A</td>
<td>visual inspection at site with no preventive maintenance</td>
</tr>
<tr>
<td>Level B</td>
<td>visual inspection, preventive maintenance of wear parts (e.g. motor carbon brushes, etc.)</td>
</tr>
<tr>
<td>Level C</td>
<td>replace mechanism</td>
</tr>
</tbody>
</table>

Schedule for maintenance

<table>
<thead>
<tr>
<th>Event</th>
<th>Indoor</th>
<th>Outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every 5 years</td>
<td>n/a</td>
<td>Level A</td>
</tr>
<tr>
<td>Every 5,000 CO</td>
<td>Level A</td>
<td>Level A</td>
</tr>
<tr>
<td>After 10,000 CO</td>
<td>Level B</td>
<td>Level B</td>
</tr>
<tr>
<td>After 20,000 CO</td>
<td>Level C</td>
<td>Level C</td>
</tr>
</tbody>
</table>

Electrical parts can be easily changed by customer:
- heater
- slip-on coils
- motor

New compared to HMB:
- simple exchange of motor and pump module

Design with modules around working cylinder simplifies service.
Adaptation
Substitution and compatibility

Substitution for HMB
- same mechanical interface (HMC-4)
- nearly identical travel curve as HMB, allowing alternative operating mechanisms test according to IEC62271-100

Compatibility to circuit-breaker
- matching the linear motion of the interrupter – levers and gears are not necessary
- avoiding friction and wear, saving space and money
- well devised and proven adaptation process (Application Release Process)
Summary

HMC family

- Reliable spring mechanism with modular components for quick, safe maintenance
- Latest technology for a most compact system, allowing for most compact circuit-breakers
- New robust valve technology, protected sealing systems, gearless pump unit, simplified spring travel switch, close-position interlocking pin with damage-free design
- Simple and easy adaption to all circuit breaker types
- Low life-cycle cost
- Maintenance free for 10,000 CO-operations

- Learn more on abb.com/highvoltage
Power and productivity for a better world™